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Abstract. Random contractions and dilations of positive variables are essential probabilistic tools
in the discipline of stochastic modelling. The present paper establishes two stochastic models
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the random dilation of random variable. The theoretical contribution is based on the computation
of the corresponding characteristic function, while the practical contribution is attained through
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management and risk management.
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1. Introduction
Random contractions and dilations are considered powerful analytical tools in the discipline of
probability theory. They constitute types of stochastic models that have valuable applications in
various disciplines, including statistics, engineering, economics and systemics (see, Akiba et
al. [2], Artikis and Artikis [5,6], Artikis [3], Beutner and Kamps [8], Fagnani and Zampieri [10],
Gupta et al. [12]). In the context of stochastic modelling, the concepts of contraction and dilation
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describe a modification or operation performed on a random variable (see, Artikis [3], Hashorva
et al. [14], Kawano and Hosoe [17], Kumar et al. [18], Letac [19]). In stochastic modelling,
random contractions and dilations of random variables serve a significant role in investigating
extreme variations of random variables and their effects (see, Belock and Dobric [7], Hasegawa
et al. [13], Pal et al. [22]).

The main contribution of the paper involves the formulation of two stochastic models through
the incorporation of a random contraction of a positive random variable and the random dilation
of a positive random variable. The theoretical contribution is demonstrated by calculating
the corresponding characteristic functions, while the practical applicability arises from the
interpretation within the disciplines of investment decision making, liquidity management, and
risk management.

The structure of the paper is outlined as follows. Section 2 presents relevant prior research
in the area of stochastic modelling, concentrating on the utilization of random contractions and
dilations of random variables. The structural elements and the formulation of the two stochastic
models are presented in Section 3. The process for determining the corresponding characteristic
function of the formulated stochastic models is presented in Section 4. Section 5 covers the
applicability of the two stochastic models in investment decision-making, liquidity management,
and risk management operations. Section 6 provides a simulation of the proposed stochastic
models and a presentation of the simulation outcomes. Section 7 consists of final remarks and
topics for further investigation.

2. Previous Research
A significant number of studies have been conducted in the discipline of stochastic modelling,
focusing on random contractions, random dilations, and their application in numerous practical
disciplines. This section provides research work that is significant to the present work.

Hashorva et al. [14] analyze the asymptotic behavior of random contractions and their
practical use in insurance and finance. Kawano and Hosoe [17] conducted a study on contraction
analysis of discrete time stochastic systems and established an innovative contraction
framework to analyze the stability of discrete time nonlinear systems. A model predictive
control approach for stochastic nonlinear discrete time systems that relies on contractions
was introduced by Wang and Yan [25]. Artikis [3] focuses on the development, theoretical
analysis, and practical application of a stochastic model that utilizes a random dilation for
crisis management. Artikis and Artikis [5] contributed to the theoretical investigation of several
stochastic models that incorporate random contractions and their practical interpretation in
global risk management practices.

3. Principal Components and Formulation of the Stochastic Model
The current section presents the key components and the process by which the proposed
stochastic models are formulated. The stochastic models are formulated by utilizing four
independent, continuous, positive random variables.
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We suppose that X is a continuous, positive random variable and U is a random variable
with values in the interval (0,1). If the random variables X and U are independent then the
random variable

L = XU

is considered a contraction of the random variable X via the random variable U (Hashorva et
al. [14]).

We also suppose that Y is a continuous, positive random variable and S is a random variable
with values in the interval (1,∞). If the random variables Y and S are independent then the
random variable

K =Y S

is considered a dilation of the random variable Y via the random variable S (Artikis [3]).
Incorporating the aforementioned considerations, we formulate the stochastic model

H = L
K

and

J = L−K

or equivalently

H = XU
Y S

and

J = XU −Y S.

The paper focuses on analyzing the probabilistic factors and determining practical
applications in investment decision making, cash flow and liquidity management, and risk
management of the stochastic models H and J .

4. Calculating the Characteristic Function of the Stochastic Model
The characteristic function is a powerful mathematical tool in order to analyze and comprehend
the probabilistic characteristics of random variables and their distributions, in probability
theory. Considering the characteristic function of a random variable enables the estimation of
its distribution, and vice versa. Characteristic functions are essential in stochastic modelling
due to their crucial role in analyzing and validating models. Characteristic functions are a
fundamental tool for comprehending the structural elements of stochastic models and are crucial
for stochastic modelling methods (Artikis [4], Artikis and Artikis [6], Mun [20]). As indicated,
the present section establishes the necessary conditions for evaluating the corresponding
characteristic function of the formulated stochastic models.

Theorem. Let X be a positive random variable with characteristic function ϕX (u) and U
a positive random variable taking values in the set (0,1) with distribution function FU (υ).
We also suppose that Y is a positive random variable with distribution function FY (y), and
S a positive random variable taking values in the set (1,∞) with distribution function FS(s).
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We set the random variable

L = XU

and the random variable

K =Y S.

If X ,U ,Y and S are independent then characteristic function of the stochastic models

H = L
K

and

J = L−K

or equivalently

H = XU
Y S

and J = XU −Y S

are given by

ϕH(u)=
∫ ∞

0

[∫ 1

0
ϕX

(uυ
k

)
dFU (υ)

]
d

[∫ ∞

1
FY

(
k
s

)
dFS(s)

]
and

ϕJ(u)=
(∫ 1

0
ϕX (uυ)dFU (υ)

)(∫ ∞

1
ϕY (−us)dFS(s)

)
.

respectively.

Proof. The independence of X ,U ,Y and S implies the independence of X and U and
the independence of Y and S. It easily follows that the characteristic functions of L = XU
and K =Y S are given by

ϕL(u)= E(eiuL)

= E(eiuXU )

= E(E(eiuXU |U = υ))

=
∫ 1

0
E(eiuXU |U = υ)dFU (υ)

=
∫ 1

0
E(eiuυX |U = υ)dFU (υ)

=
∫ 1

0
E(eiuυX )dFU (υ)

=
∫ 1

0
ϕX (uυ)dFU (υ) (4.1)

and

ϕK (u)= E(eiuK )

= E(eiuY S)

= E(E(eiuY S | S = s))

=
∫ ∞

1
(eiuY S | S = s)dFS(s)
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=
∫ ∞

1
E(eiusY | S = s)dFS(s)

=
∫ ∞

1
E(eiusY )dFS(s)

=
∫ ∞

1
ϕY (us)dFS(s). (4.2)

Moreover, the distribution function of K =Y S is given by

FK (k)= P(K ≤ k)

= P(Y S ≤ k)

=
∫ ∞

1
P(Y S ≤ k | S = s)dFS(s)

=
∫ ∞

1
P(Y s ≤ k | S = s)dFS(s)

=
∫ ∞

1
P

(
Y ≤ k

s

)
dFS(s)

=
∫ ∞

1
FY

(
k
S

)
dFS(s) . (4.3)

The independence of X ,U ,Y and S implies the independence of K and L. If ϕH(u) is
the characteristic function of the random variable H then it can be written in the form

ϕH(u)= E(eiuH)

= E(eiu L
K )

= E(eiu L
K )

= E[E(eiu L
K | K = k)]

=
∫ ∞

1
E(eiu L

K | K = k)dFk(k)

=
∫ ∞

1
E(eiu L

k | K = k)dFk(k)

=
∫ ∞

1
E(ei u

k L)dFk(k)

=
∫ ∞

1
ϕL

(u
k

)
dFK (k) , (4.4)

and if ϕJ(u) is the characteristic function of the random variable J then it can be written in
the form

ϕJ(u)= E(eiuJ)

= E(eiu(L−K))

= E(eiuL−iuK )

= E(eiuLeiuK )

= E(eiuL)E(e−iuK )

=ϕL(u)ϕK (−u). (4.5)
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From (4.1), (4.3) and (4.4) we get

ϕH(u)=
∫ ∞

1

[∫ 1

0
ϕX

(uυ
k

)
dFU (υ)

]
d

[∫ ∞

1
FY

(
k
s

)
dFS(s)

]
and from (4.1), (4.2) and (4.5) we get

ϕJ(u)=
(∫ 1

0
ϕX (uυ)dFU (υ)

)(∫ ∞

1
ϕY (−us)dFS(s)

)
.

5. Practical Implementation in Decision Making and Management
Stochastic models that incorporate random contractions and dilations of random variables
enable the modification of random variables in order to consider their extreme variability and
the effects on complex systems. As a result, the utilization of random contractions and dilations
of random variables in stochastic modelling offers a method to examine and comprehend extreme
value events in various practical disciplines ([3,5]). This section provides practical applications
that illustrate how the formulated stochastic models can be utilized in business decision making
and financial management, such as investment evaluation, liquidity management and risk
management.

Stochastic models can be employed in order to evaluate the outcomes or profitability of an
investment. As a result, stochastic modelling can be used to quantify the return of an investment
regarding to its cost (see, Abel [1], de Freitas et al. [11]). We suppose that X represents the
revenue generated by an investment. We also suppose that Y represents the cost associated to
implement the investment. Therefore, L = XU and K =Y S represent the random contraction
via the random variable U and the random dilation via the random variable S of the income
and the cost generated by the investment, respectively. As a result, the stochastic models H
and J serve as significant indicators of investment assessment, by providing crucial insights
about the performance of the investment under conditions of high uncertainty and fluctuation
in terms of revenue and costs.

Effective liquidity management is crucial for the sustainability of an organization.
Organizations can improve their ability to withstand challenges, adapt to changes, and maintain
their viability by successfully managing liquidity. Stochastic models are widely acknowledged
to offer organizations beneficial techniques for analyzing, predicting, and efficiently managing
liquidity. By integrating stochasticity and ambiguity into financial decision making processes,
these models provide organizations optimal liquidity management procedures, enhancing
adaptability to financial turbulence, and promoting business viability and profitability (see, He
and Lin [15], Routledge and Zin [23]). We suppose that X represents the cash reserves that
an organization maintains for use in unforeseen circumstances, primarily to fulfil unexpected
costs or expenses. We also suppose that Y represents unexpected costs or expenses that the
organization may be obligated to fulfill. Therefore L = XU and K =Y S represent the random
contraction via the random variable U and random dilation via the random variable S of the
cash reserves retained by the organization and the unexpected costs obliged to cover, respectively.
As a result, the stochastic models H and J serve as significant liquidity indicators, providing
crucial information concerning the ability of the organization to maintain sufficient funds for
situations of significant expenditures and cost demands.
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Stochastic modelling is essential in risk management. Stochastic models offer an effective
framework for comprehending, measuring, and controlling risks in various situations,
supporting organizations in making accurate decisions when confronted with uncertainty
([3,5,21]). We suppose that X represents the capital reserve held by an organization in order to
protect against losses that may occur after a risk occurrence. We also suppose that Y represents
unexpected losses occurring after the risk occurrence. Therefore, L = XU and K =Y S represent
the random contraction via the random variable U and random dilation via the random variable
S of the capital reserves held by the organization and the unexpected losses after the risk
occurrence, respectively. As a result, the stochastic models H and J provide vital information
regarding the financial requirements of the organization to withstand significant losses in the
event of a risk occurrence that threatens its long-term sustainability.

6. Implementation and Interpretation of the Simulation
The following section presents the simulation results of the formulated stochastic models.
Simulation of stochastic models provides an opportunity to assess various techniques or
strategies across different scenarios. The simulation was executed through the MATLAB

programming and computational environment, version 8.5.0.197613 [9, 16, 24]. The process
involved an overall number of 500 iterations. Furthermore, the simulation of the stochastic
model was executed utilizing the below assumptions.

We assume that X follows the normal distribution with parameters µ = 100.000 and
σ = 5.000 and U follows the continuous uniform distribution with parameters a = 0 and
b = 1. We also assume that Y follows the normal distribution with parameters µ= 60.000 and
σ= 10.000 and S follows the continuous uniform distribution with parameters γ= 1 and δ= 2.
After performing 500 iterations, the frequency table and descriptive statistics for the random
variables X ,U ,Y ,S,L,K ,H and J are displayed in Tables 1 to 8, respectively.

Table 1. Frequency table and descriptive
statistic of X

BinStart BinEnd Frequency

80.000 900.000 9
90.000 1,00e+05 232

1,00e+05 1,10e+05 249
1,10e+05 1,20e+05 10
Mean: 100207,154
Median: 100180,5
Standard Deviation: 4839,1195
Variance: 23417077,7818
Minimum: 86144
Maximum: 116331
Range: 30187
Interquartile Range (IQR): 6445

Table 2. Frequency table and descriptive
statistic of U

BinStart BinEnd Frequency

0 0,2 101
0,2 0,4 94
0,4 0,6 90
0,6 0,8 102
0,8 1 113

Mean: 0,5142
Median: 0,52009
Standard Deviation: 0,2938
Variance: 0,086319
Minimum: 0,0014632
Maximum: 0,99977
Range: 0,99831
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Table 3. Frequency table and descriptive
statistics of Y

BinStart BinEnd Frequency

20.000 30.000 1
30.000 40.000 10
40.000 50.000 75
50.000 60.000 178
60.000 70.000 160
70.000 80.000 65
80.000 90.000 10
90.000 1,00e+05 1

Mean: 59143,1714
Median: 58966,6457
Standard Deviation: 10112,1055
Variance: 102254677,4033
Minimum: 22777,8875
Maximum: 93255,3583
Range: 70477,4707
Interquartile Range (IQR): 13114,5369

Table 4. Frequency table and descriptive
statistics of S

BinStart BinEnd Frequency

1 1,2 105
1,2 1,4 96
1,4 1,6 91
1,6 1,8 108
1,8 2 100

Mean: 1,5009
Median: 1,5103
Standard Deviation: 0,29057
Variance: 0,084433
Minimum: 1,0003
Maximum: 1,9969
Range: 0,99655
Interquartile Range (IQR): 0,50541

Table 5. Frequency table and descriptive
statistics of L

BinStart BinEnd Frequency

0 20.000 102
20.000 40.000 87
40.000 60.000 100
60.000 80.000 100
80.000 1,00e+05 101

1,00e+05 1,20e+05 10
Mean: 51535,674
Median: 51797
Standard Deviation: 29489,4607
Variance: 869628293,6791
Minimum: 141
Maximum: 108134
Range: 107993
Interquartile Range (IQR): 53705,5

Table 6. Frequency table and descriptive
statistics of K

BinStart BinEnd Frequency

35.000 50.000 8
50.000 65.000 76
65.000 80.000 122
80.000 95.000 105
95.000 1,10e+05 93

1,10e+05 1,25e+05 57
1,25e+05 1,40e+05 20
1,40e+05 1,55e+05 17
1,55e+05 1,70e+05 2
Mean: 88858,478
Median: 85600
Standard Deviation: 23959,6625
Variance: 574065428,4143
Minimum: 37615
Maximum: 166389
Range: 128774
Interquartile Range (IQR): 33160
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Table 7. Frequency table and descriptive
statistics of H

BinStart BinEnd Frequency

0 0,5 209
0,5 1 206
1 1,5 73

1,5 2 11
2 2,5 0

2,5 3 1
Mean: 0,62206
Median: 0,5955
Standard Deviation: 0,4076
Variance: 016613
Minimum: 0,001
Maximum: 2,607
Range: 2,606
Interquartile Range (IQR): 0,6195

Table 8. Frequency table and descriptive
statistics of J

BinStart BinEnd Frequency

−140.000 −119.800 9
−119.800 −99.600 18
−99.600 −79.400 42
−79.400 −59.200 73
−59.200 −39.000 87
−39.000 −18.800 111
−18.800 1.400 71

1.400 21.600 64
21.600 41.800 21
41.800 62.000 4

Mean: −37322,8233
Median: −36047,405
Standard Deviation: 37563,0874
Variance: 1410985538,5925
Minimum: −140957
Maximum: 60444.85
Range: 201401,85
Interquartile Range (IQR): 54223595

The corresponding cumulative distribution functions of the stochastic models H and J are
displayed in Figure 1 and Figure 2, respectively.

Figure 1. Cumulative distribution function of H
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Figure 2. Cumulative distribution function of J

As it follows from the cdf shown in Figure 1 and Figure 2 there is a probability of
approximately eighty five percent that the random variable H = L

K is less than or equal to 1,
and the random variable J = L−K is less than or equal to 0, i.e., P(H ≤ 1) = P(J ≤ 0) = 0,85.
The interpretation based on the aforementioned applications of the proposed stochastic models
is the following, there is a probability of approximately eighty five percent that the cost in
order to implement the investment will be greater than or equal to the revenue produced by
the investment, the unexpected expenses will be greater than or equal to the available cash
reserves, and the losses after the manifestation of the risk will be greater than or equal to the
available capital reserve.

7. Conclusion
Stochastic models incorporating random contractions and dilations, constitute an essential
component in examining and analyzing extreme uncertainty in intricate systems and processes.
The present paper introduces two stochastic models that integrate both a random contraction
of a random variable and a random dilation of a random variable. The incorporation of these
two probabilistic transformations of random variables in stochastic modelling offers a thorough
examination of the effects under conditions of extreme variability of the structural random
variables and allows for comparative analysis of the outcomes under normal conditions.

The computation of the corresponding characteristic function establishes the theoretical
significance of the formulated stochastic models and their interpretation in decision making
and business operations management provides the practical implementation and utilization.
Furthermore, it would be an interesting scientific endeavor to develop stochastic models with
more intricate structural components, enabling the investigation and assessment of complex
processes under critical fluctuation and extreme circumstances.
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