
Communications in Mathematics and Applications
Vol. 15, No. 3, pp. 1153–1166, 2024
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v15i3.2778

Research Article

A Numerical Scheme for Solving Fourth-Order
Convection–Reaction–Diffusion Problems with
Boundary Layers

Charuka D. Wickramasinghe

Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, USA
gi6036@wayne.edu

Received: June 17, 2024 Accepted: October 8, 2024

Abstract. This paper presents a numerical approach for decoupling singularly perturbed boundary
value problems involving fourth-order ordinary differential equations, characterized by a small
positive parameter ϵ multiplying the highest derivative. Such equations arise in various engineering
and physics applications, including the modeling of diffusing chemical species, viscous flows with
convection and diffusion, and heat transfer in electronic chips or microfluidic channels. We focus
on problems with Lidstone boundary conditions and demonstrate how the fourth-order equation
can be decomposed into a system of two second-order problems—one independent of ϵ, and the
other singularly perturbed with ϵ multiplying the highest derivative. These problems often exhibit
boundary layers, where the solution undergoes rapid changes near the domain boundaries. Numerical
solutions to such higher-order problems are typically more challenging than those for lower-order
ones. To address this, we propose a linear finite element method combined with a Shishkin mesh to
accurately resolve boundary layers. We prove that the solution obtained from the decoupled second-
order system is equivalent to that of the original fourth-order problem. The proposed method is direct
and highly accurate, with computational time increasing linearly with the number of grid points.

Keywords. Shishkin mesh, Finite element algorithm, Boundary layers, Convection-diffusion problems

Mathematics Subject Classification (2020). 65L10, 65L11, 65L50, 65L60

Copyright © 2024 Charuka D. Wickramasinghe. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

http://doi.org/10.26713/cma.v15i3.2778
https://orcid.org/0009-0007-8002-0632


1154 A Numerical Scheme for Solving Fourth-Order Convection–Reaction–Diffusion. . . : C. D. Wickramasinghe

1. Introduction
In this paper, we consider the following stationary state fourth order singularly perturbed
differential equation with Lidstone boundary conditions:

Lϵ =−εuiv(x)−a(x)u′′′(x)+b(x)u′′(x)=− f (x),

u(0)= 0, u(1)= 0, u′′(0)= 0, u′′(1)= 0.

}
(1.1)

The function f (x), a(x), and b(x) are all smooth and satisfy a(x) ≥ α > 0 and b(x) ≥ β > 0.
The parameter ϵ is assumed to be a small positive value, such that 0< ϵ≤ 1. While it may be
easy to analytically solve this problem in some cases, finding the solution u with analytical
techniques can be difficult or even impossible for a general function f . The well-posedness of
problem (1.1) has been discussed in more deeply by Ehme et al. [3], and Sun and Styne [16].

The convection-diffusion-reaction equation is used in three processes: convection, which
involves the movement of materials from one region to another; diffusion, which involves the
movement of materials from an area of high concentration to an area of low concentration;
and reaction, which involves decay, adsorption, and the reaction of substances with other
components. Singularly perturbed problems have many applications in engineering and applied
mathematics, including chemicals and nuclear engineering , linearized Navier-Stokes equation
at high Reynolds number, elasticity, aerodynamics, oceanography, meteorology, modeling of
semiconductor devices, control theory, and oil extraction from underground reservoirs, and in
many other fields (Kreiss and Lorenz [8], and Polak et al. [11]). However, solving these problems
numerically presents major computational difficulties due to boundary layers, where the solution
changes rapidly. The study of second-order singularly perturbed differential equations are quite
large, as seen in the extensive literature and references cited therein (Farrell [5], Kadalbajoo
and Reddy [6], and Natesan and Ramanujam [10]). However, very few studies have addressed
singularly perturbed fourth-order boundary value problems in the literature.

The following paragraph presents a brief overview of analytical and numerical methods used
for solving singularly perturbed fourth-order differential equations. El-Zahar [4] introduced
the Differential Transform Method (DTM) as an alternative to existing methods for solving
higher-order singularly perturbed boundary value problems (SPBVPs). Vrabel [17] provided a
detailed analysis of the boundary layer phenomenon subject to the Lidstone boundary conditions
by analyzing the integral equation associated with the SPBVPs. Sun and Stynes [15] developed
piecewise polynomial Galerkin finite-element methods on a Shishkin mesh, which achieved
almost optimal convergence results in various norms. Shanthi and Ramanujam [13] transformed
the SVBVP into a system of weakly coupled system of two second-order ODEs and then used
the fitted operator method (FOM), fitted mesh method (FMM), and boundary value technique
(BVT) to approximate the solution.

The problem being studied involves rapidly changing solutions in very thin regions near
the boundary. Traditional numerical methods often fail to accurately capture these changes,
which can result in errors across the entire domain. To address this issue, various methods
such as Bakhavalov and Gartland meshes have been developed (Bakhvalov [1], Miller et al. [9],
Roos et al. [12], and Wickramasinghe and Ahire [19]). In this study, we analyze a standard
finite element method combined with the Shishkin mesh, which is a type of local refinement
strategy introduced by a Russian mathematician Grigorii Ivanovich Shishkin in 1988 [14]
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(Kopteva and Riordan [7]). Finite element methods on Shishkin meshes in 1D were first studied
1995 by Sun and Styne [16]. The analysis for second order problems was published in the
two books by Miller et al. [9], and Roos et al. [12]. The goal is to propose a new finite element
algorithm that is reliable, effective, and easy to implement, and can be used to solve (1.1)
and even higher order singularly perturbed differential equations. The main advantage of
decoupling system is that it reduces both memory space and time requirements.

It is noted that, for simplicity, the current paper focuses on analyzing a one-dimensional
problem where the coefficients a(x) and b(x) are both constant. However, the analysis could
be extended to two dimensions and variable coefficients, although this may present some
challenges. Additionally, the problem could be expanded to include non-homogeneous boundary
conditions through a simple linear transformation.

The rest of the article is organized as follows: In Section 2, we introduce the decouple
formulation of (1.1). In Section 3, we present Shishkin mesh method and the finite element
algorithm. We also present error estimate results of the decouple formulations. In Section 4,
we present numerical results to validate out theoretical results. Throughout the following text,
the generic positive constants C, a and b may take different values in different formulas but is
always independent of the mesh and the small positive parameter ϵ.

2. The Decouple Formulation
Hereafter, we will consider the following problem by setting a(x)= a = constant and b(x)= b =
constant in equation (1.1):

Lϵ =−εuiv(x)−au′′′(x)+bu′′(x)=− f (x),

u(0)= 0, u(1)= 0, u′′(0)= 0, u′′(1)= 0.

}
(2.1)

The function f (x), a(x), and b(x) are assumed to be sufficiently smooth for 0≤ x ≤ 1, where
a ≥α> 0,

b ≥β> 0,

a+ 1
2 b′ > c > 0, for all x ∈ [0,1].

 (2.2)

Under the conditions in (2.2) the problem (2.1) is well posed (Sun and Styne [16]). Let (·, ·)
denote the usual L2(0,1) inner product. We define the bilinear form of equation (2.1) as follows:

Aε(u,v)= (−εu′′,v′′)+ (au′′,v′)− (bu′,v′)=−( f ,v), (2.3)

for all u,v ∈ H2
0(0,1).

The weighted energy norm is given by

~v~= {ε|v|22 +∥v∥2
1}

1
2 , for all v ∈ H2

0(0,1).

Assume (2.2) holds. Then there exist positive constants C1, and C2 such that for all u,v ∈ H2
0(0,1)

(Sun and Stynes [15]),

|Aε(u,v)| ≤ C1ε
− 1

2~u~ ·~v~ (2.4)

and

C2~u~2 ≤ |Aε(u,u)| . (2.5)
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The weak formulation of (2.1) is to find u ∈ H2
0(0,1) such that

Aε(u,v)= (− f ,v), for all v ∈ H2
0(0,1). (2.6)

By the Lax-Milgram lemma, equation (2.6) has a unique solution u in H2
0(0,1).

We are now able to present our decoupled formulation. It is widely recognized that numerical
solutions of higher order problems, such as (2.1), are significantly more challenging than those
of lower order problems. To address this issue, we decouple (2.1) into a system of lower order
differential equations, as follows:

−w′′(x)= f (x), for x ∈ (0,1),

w(0)= 0, w(1)= 0,

}
(2.7)

−ϵu′′(x)−au′(x)+bu(x)= w(x),

u(0)= 0, u(1)= 0.

}
(2.8)

The equation represented by equation (2.7) is a standard Poison equation, which has the
same source term f (x) as equation (2.1). Assuming that f (x) belongs to L2(0,1) and the given
boundary conditions for equation (2.7) are met, the problem defined by equation (2.7) is well-
posed, according to Ciarlet [2]. These kind of finite element decouple formulations can be found
from the literature for some particular problems for two dimensions (Wickramasinghe [18], and
Li et al. [20]).

Equation (2.8) is a second-order problem that involves a convection-reaction-diffusion process
with a singular perturbation. The source term for this equation is represented by w(x), which is
the solution to the problem defined by equation (2.7). Under following assumptions,

a ≥β> 0,

b ≥ 0,

b+ a′
2 > 0, for all x ∈ [0,1],

 (2.9)

the problem defined by equation (2.8) is well-posed.
In order to establish a connection between the solution u obtained from equations (2.7)

and (2.8) and the fourth-order problem represented by equation (2.1), we present the following
lemma. Let us define Hm(0,1) as the Sobolev space comprising functions whose ith derivative,
0≤ i ≤ m, is square-integrable.

Lemma 2.1. The solution u ∈ H4(0,1) obtained through (2.7) and (2.8) satisfies the following
fourth order differential equation:

−εuiv(x)−au′′′(x)+bu′′(x)=− f (x),

u(0)= 0, u(1)= 0, u′′(0)= 0, u′′(1)= 0.

}
(2.10)

Proof. We first apply the differential operator L = d2/dx2 to both sides of equation (2.8), which
gives us:

−εuiv(x)−au′′′(x)+bu′′(x)= w′′(x). (2.11)

As we know from equation (2.7), −w′′(x)= f (x). Therefore, the equation:

−εuiv(x)−au′′′(x)+bu′′(x)=− f (x)

holds.
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To verify the boundary conditions, we apply the differential operator L to the boundary
conditions u(0)= 0 and u(1)= 0 in equation (2.8). This yields the boundary conditions u′′(0)= 0
and u′′(1)= 0. Thus, the conclusion of Lemma 2.1 holds.

3. The Finite Element Method on Shishkin Mesh
In this section, we present a linear finite element method to solve the singularly perturbed
boundary value problem (2.1) based on the results obtained in the previous section. We utilize
the Shishkin mesh to present error estimates for the singularly perturbed convection reaction
diffusion problem (2.8), and we adopt the same definitions and notations as in [16].

3.1 Layer Adapted Shishkin Mesh
Given an even positive integer N , the Shishkin mesh X N

s is constructed by dividing the interval
[0,1] into two subintervals. We shall consider a mesh X N

s : 0= x0 < x1 < x2 < · · · < xn−1 < xn = 1
that is equidistant in [τ,1] but graded in [0,τ], where we choose the transition point τ as
Shishkin does:

τ=min{1/2, (s+1)α−1εN}

which depends on ε and N , where s is the order of the highest derivative.

Figure 1. 1D Shishkin mesh with transition point τ

Assumption 3.1. In this study, we will assume that

ϵ≤ CN−1 (3.1)

as is generally the case for discretizations of convection-dominated problems.

3.2 The Finite Element Algorithm
Let V be a Hilbert space with norm ∥ · ∥v (but we shall often omit the subscript v to simplify
the notation) and scalar product. In the discretization of second-order differential equations
with domain I , one generally chooses V as a subset of the Sobolev space H1(I). Let I = [0,L]
be an interval and let the n+1 node points {xi}n

i=0 define a partition. I : 0 = x0 < x1 < x2 <
·· · < xn−1 < xn = L of I into n sub-intervals of length hi = xi − xi−1 for i = 1, ·, ·, ·,n, and
H =max

i
hi . On the mesh I we define the space Vn ⊆V of continuous piecewise linear functions

by Vn = {v : v ∈ C0(I), v|I i ∈ PI(I i)}, where C0(I) denotes the space of continuous functions on I ,
and PI(I i) denotes the space of linear functions on I i .

Let An
ε (u,v) be the discrete bilinear form of Aε(u,v) in equation (2.3). There exists a positive

constant h0 (independent of ε) such that for H ≤ h0 (Sun and Stynes [15]), we have

C1~v~2 ≤ An
ε (v,v), for all v ∈ H2

0. (3.2)

Then, the Galerkin discretization of problem (2.1) is to find un ∈Vn such that

An
ε (un,v)= ( f ,v), for all v ∈Vn. (3.3)
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We will use the following notations:

a(u,v)=
∫ 1

0
u′(x)v′(x)dx, ( f ,v)=

∫ 1

0
f (x)v(x)dx, b(u,v)= εa(u,v)+ (u′,v)+ (u,v),

for all u,v ∈V := H1
0(0,1).

The variational formulation of (2.7) is to find w ∈V := H1
0(0,1) such that

a(w,v)= ( f ,v), for all v ∈V . (3.4)

The variational formulation of (2.8) is to find u ∈V := H1
0(0,1) such that

b(u,v)= ( f ,v), for all v ∈V . (3.5)

Algorithm 1 summarizes the basic steps in computing the finite element solution wn for the two
point boundary value problem (2.7).

Figure 2. The linear hat basis functions in 1D

Algorithm 1
Step 1: Create a mesh X N

s : 0 = x0 < x1 < x2 < · · · < xn−1 < xn = 1 and define the corresponding
space of continuous piecewise linear functions Vn,0 = {v ∈ Vn : v(0) = v(1) = 0} with has basis
functions:

ϕ j(xi)=
{

1, if i = j,
0, if i ̸= j, for i, j = 0,1,2, · · · ,n.

Step 2: Compute the (n−1)× (n−1) matrix A and the (n−1)×1 vector b, with entries

A i, j =
∫ 1

0
ϕ′

jϕ
′
i dx, bi =

∫ 1

0
fϕi dx. (3.6)

Step 3: Solve the linear system

Aξ= b . (3.7)

Step 4: Set

wn =
n−1∑
j=1

ξ jϕ j . (3.8)

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 1153–1166, 2024



A Numerical Scheme for Solving Fourth-Order Convection–Reaction–Diffusion. . . : C. D. Wickramasinghe 1159

Next, we introduce Algorithm 2 for solving the fourth-order singularly perturbed convection
reaction diffusion equation (2.10). To obtain the finite element solution of the singularly
perturbed boundary value problem (2.10), we utilize the decomposition method described
through equations (2.7) and (2.8).

Algorithm 2
Let k be the order of the interpolation polynomial. For, any f ∈ H−1(0,1) and k ≥ 1, we consider
the following steps:

Step 1: Find wn ∈V k
n in the weak formulation of the Poisson equation (2.7) on a Shishkin mesh

X N
s

a(wn,v)= ( f ,v), for all v ∈V . (3.9)

Step 2: Set

−wn = fϵ , (3.10)

where fϵ is the source terms of the equation singularly purtubed second order differential
equation (2.8).

Step 3: Then find un ∈V k
n in the weak formulation of equation (2.8) on the Shishkin mesh X N

s
for sufficiently large N (an even positive integer) independent of ϵ,

b(un,v)= ( fϵ,v), for all v ∈V . (3.11)

The discretized linear systems corresponding to the stiffness matrix S, convection matrix C,
and mass matrix M are obtained as shown below. Equation (3.12) represents the discretized
linear system of (3.9), while equation (3.13) corresponds to the discretized linear system of
(3.11),( ϵ

h
S

)
W = F1, (3.12)(

ϵ

h
S−C+ h

6
M

)
U = F2 , (3.13)

where U ,F ∈Rn−1 and S,C, M ∈Rn−1×n−1 with:

W :=


w1
w2
...

wn−1

, F1 :=


( f ,φ1)
( f ,φ2)

...
( f ,φn−1)

, U :=


u1
u2
...

un−1

, F2 :=


( fϵ,φ1)
( fϵ,φ2)

...
( fϵ,φn−1)

,

S :=


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

, C := 1
2


0 1
−1 0 1

. . . . . . . . .
−1 0 1

−1 0

, M :=


2 1
1 4 1

. . . . . . . . .
1 4 1

1 2

.
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3.3 The Error Estimates
In this section, we present maximum norm error estimate result for our model problem (2.1)
using linear finite elements. As a special case to our model problem we present maximum
norm error estimate result with ε = 1 for linear finite elements. In the case of ε = 1 there is
no boundary layer and thus the Shishkin mesh can be replaced by an uniformly refined mesh
(equidistant). However, we present numerical results for different values of ε.

Lemma 3.1. Suppose that we use a sufficiently accurate quadrature rule, namely, that k+1≥ 2.
Let u be the exact solution to equation (2.1) with ε= 1 and un be the finite element approximation
to the weak formulation of equation (2.8) with ε= 1, on a uniform mesh. Then, we have

∥u−un∥∞ ≤ CN−2 . (3.14)

Proof. On a uniformly refined mesh it is well known that one has

~u−un~≤ CN−2 . (3.15)

It is easy to see that

∥u−un∥∞ ≤ ∥u−un∥1 ≤~u−un~. (3.16)

Combining equations (3.15) and (3.16) the conclusion holds.

Remark 3.1. Let u be the solution of problem (2.1). Let un be the solution of (3.3) on the
Shishkin mesh X N

s and k be the order of the interpolation polynomial. Then, for N sufficiently
large (independently of ε) as shown in [16, Corollary 5.1], we have

∥u−un∥∞ ≤ C(N−1 ln N)min(2,k+1). (3.17)

4. Numerical Results
In this section, we present a few numerical experiments to illustrate the computational method
discussed in this paper. The numerical experiments are performed on a laptop computer with
MATLAB R2022a in MACBOOK AIR with M1 chip. The linear finite elements are used to solve
our model problem. We use the following numerical convergence rate to validate the theoretical
convergence rates:

R= ln∥u−un∥∞− ln∥u−un−1∥∞
ln2

,

where un is the finite element approximation after n mesh refinements and u is the exact
solution at the same mesh level as the finite element approximation un is calculated. We use
the following model problem to validate theoretical results over the following three examples:

−ϵuiv(x)−u′′′(x)+u′′(x)=− f (x), for x ∈ (0,1), (4.1)

u(0)= 0, u(1)= 0, u′′(0)= 0, u′′(1)= 0, (4.2)

where f (x) is chosen so that the exact solution is

u(x)= c1er1x + c2er2x − x2 + x+1
2

−ϵ, (4.3)

where

c1 =−c2 +
(
1
2
+ϵ

)
,
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c2 =
er1

(1
2 +ϵ

)− (3
2 +ϵ

)
er1 − er2

,

r1 = 2
1+p

(1+4ϵ)
,

r2 = 2
1−p

(1+4ϵ)
.

Example 4.1. In this example, we compared the finite element approximation to equation
(4.1) with its exact solution (4.3). Table 1 and Table 2 summarize the maximum norm errors
for different ε values for both uniform and Shishkin meshes with various mesh sizes N . Both
tables show that when the problem has high singularly perturbed features, our numerical
approximation captures the true solution under the Shishkin mesh, while the uniform mesh
fails to capture the solution. This observation strongly agrees with existing theoretical results.

Table 1. ∥u−un∥∞ for ε= 10−10, 10−8 and 10−6 for uniform and Shishkin meshes

ϵ= 10−10 ϵ= 10−8 ϵ= 10−6

N Uniform Shishkin Uniform Shishkin Uniform Shishkin

128 0.0300 5.2171e-05 0.0300 6.4006e-05 0.0311 6.3812e-05

256 0.0301 1.5676e-05 0.0301 1.5991e-05 0.0342 1.5830e-05

512 0.0302 5.3830e-06 0.0303 4.8273e-06 0.0429 4.7611e-06

1024 0.0302 1.8953e-06 0.0309 1.4789e-06 0.0512 1.4328e-06

2048 0.0302 7.0754e-07 0.0329 4.4459e-07 0.0514 4.2862e-07

4096 0.0303 2.8955e-07 0.0395 1.3130e-07 0.0510 1.2852e-07

8192 0.0307 4.0176e-08 0.0500 3.8094e-08 0.0501 3.8150e-08

Table 2. ∥u−un∥∞ for ε= 10−4, 10−2 and 1 for uniform and Shishkin meshes

ϵ= 10−4 ϵ= 10−2 ϵ= 1

N Uniform Shishkin Uniform Shishkin Uniform Shishkin

128 0.0491 5.2171e-05 0.0010 2.8929e-04 6.8864e-07 6.7792e-07

256 0.0467 1.5676e-05 2.4386e-04 1.5611e-04 1.7081e-07 1.6948e-07

512 0.0422 5.3830e-06 6.0942e-05 8.2720e-05 4.2536e-08 4.2370e-08

1024 0.0342 1.8953e-06 1.5157e-05 4.3196e-05 1.0613e-08 1.0593e-08

2048 0.0221 7.0754e-07 3.7826e-06 2.2282e-05 2.6510e-09 2.6486e-09

4096 0.0097 2.8955e-07 9.4508e-07 1.1371e-05 6.6242e-10 6.6407e-10

8192 0.0027 1.3217e-07 2.3621e-07 5.7469e-06 1.6553e-10 1.7331e-10
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Remark 4.1. All of the N and ε values in Table 1 satisfy Assumption 3.1. However, for some
values of N and ε in Table 2, we have ε≥ CN−1.

Figures 3 and 4 compare the exact solution with the numerical approximation under a
uniformly refined meshes and Shishkin meshes, respectively. When the singularly perturbed
effect is high, it can be observed from Figures 3 that the numerical solution does not converge to
the true solution under a uniform mesh due to the boundary layer occurring at the point x = 0.
However, from Figures 4 it can be seen that our algorithm converges to the true solution under
a Shishkin mesh.

(a) (b) (c)

Figure 3. Uniform mesh: (a) N = 32, ε= 10−8; (b) N = 128, ε= 10−4; (c) N = 1024, ε= 10−6

(a) (b) (c)

Figure 4. Shishkin mesh: (a) N = 32, ε= 10−8; (b) N = 128, ε= 10−4; (c) N = 1024, ε= 10−6

Example 4.2. In this example we validated the results in Lemma 3.1 and the Remark 3.1.
As can be seen from Tables 3 and 4, as we decrease the singular perturbed properties of the
problem, the uniform mesh starts showing convergent rates. For example, in Table 4, when
ε= 1, the convergent rate R= 2 is observed under a uniformly refined mesh, which is in strong
agreement with Lemma 3.1. The convergent rates under a Shishkin meshes are also in strong
agreement with Remark 3.1. This concludes that our proposed algorithm works well on fourth-
order singularly perturbed problems like (2.1). Figure 5 supports to the same conclusions in
Tables 3 and 4. It shows that there is no convergent rate for uniformly refined meshes with high
singularly perturbed properties of the problem. However, with a Shishkin mesh, we can observe
the expected convergent rates as explained by Remark 3.1.
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Table 3. Convergent rate R for ε= 10−10, 10−8 and 10−6 for uniform and Shishkin meshes

ϵ= 10−10 ϵ= 10−8 ϵ= 10−6

N Uniform Shishkin Uniform Shishkin Uniform Shishkin

128 0.0080 1.9975 0.0084 1.9976 0.0457 2.0006

256 0.0043 2.0008 0.0059 2.0009 0.1372 2.0111

512 0.0023 1.7275 0.0086 1.7280 0.3273 1.7333

1024 0.0014 1.7051 0.0260 1.7067 0.2550 1.7325

2048 0.0016 1.7288 0.0919 1.7340 0.0059 1.7410

4096 0.0044 1.7425 0.2631 1.7596 0.0117 1.7377

8192 0.0163 1.7330 0.3392 1.7853 0.0236 1.7522

Table 4. Convergent rate R for ε= 10−4, 10−2 and 1 for uniform and Shishkin meshes

ϵ= 10−4 ϵ= 10−2 ϵ= 1

N Uniform Shishkin Uniform Shishkin Uniform Shishkin

128 0.1240 2.1640 2.1549 0.8570 2.0227 2.0000

256 0.0711 1.7347 2.0872 0.8899 2.0113 2.0000

512 0.1478 1.5421 2.0005 0.9163 2.0057 2.0000

1024 0.3023 1.5060 2.0074 0.9373 2.0028 2.0000

2048 0.6301 1.4215 2.0026 0.9551 2.0012 1.9998

4096 1.1936 1.2890 2.0009 0.9705 2.0007 1.9958

8192 1.8130 1.1314 2.0004 0.9845 2.0006 1.9380

(a) (b)

Figure 5. (a) Convergent rate plots under uniform mesh; (b) Convergent rate plots under Shishkin rate
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Example 4.3. In this example, we presented the CPU time required by our finite element
algorithm to solve problem (2.1) on uniform and Shishkin meshes. The results are presented in
Table 5 and Table 6. From the tables, we can observe that the algorithm converges to the true
solution faster under the Shishkin mesh compared to the uniform mesh.

Table 5. The CPU time for ε= 10−10, 10−8 and 10−6

ϵ= 10−10 ϵ= 10−8 ϵ= 10−6

N Uniform Shishkin Uniform Shishkin Uniform Shishkin

4096 1.43 0.76 1.42 0.78 1.24 0.81

8192 5.21 2.64 4.90 2.88 4.12 2.92

16384 20.06 13.27 18.69 14.05 17.69 13.52

Table 6. The CPU time for ε= 10−4, 10−2 and 1

ϵ= 10−4 ϵ= 10−2 ϵ= 1
N Uniform Shishkin Uniform Shishkin Uniform Shishkin

4096 1.15 0.72 1.13 0.78 0.91 0.85

8192 4.00 2.75 3.86 2.73 3.78 2.88

16384 17.34 14.11 17.27 13.04 17.00 14.23

5. Conclusion
It is worth noting that the proposed method can be applied to a wide range of singularly
perturbed problems, not only the specific type of problem studied in this work and can be used
as a benchmark for comparing the performance of other numerical methods. Furthermore, there
are promising avenues for extending this approach to two-dimensional and three-dimensional
problems through the development of innovative mesh algorithms. Overall, the proposed
method provides a promising approach for solving singularly perturbed problems efficiently and
accurately for future advancements in numerical analysis.
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