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1. Introduction
Laplace transform is one of the most useful transform techniques to solve various problems
in mathematics and other areas. It has applications in Science, Engineering, and Technology
(Nyeo et al. [23], Nozhak and Paskar [22]), Finance (Kim et al. [20], Kim and Kim [19], Daci
and Tola [7]), Population growth (Daci and Tola [8]). The Laplace transform approach is a
practical method for engineers, Debnath and Bhatta [9], and is used to solve various differential
equations, Borawake and Hiwarekar [3], Ali et al. [1]. It has a wide range of applications in
many fields including mathematics, physics, statistics, Poularikas and Seely [24].
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The Laplace transform of a function of one variable and its applications are found in the
literature, Kokulan and Lai [21], Chiu and Li [5], Chung et al. [6], Schiff [27], Debnath and
Bhatta [9], Eltayeb and Kiliçman [15], and Hiwarekar [18]. However, such few results are
available on functions of two variables and there is a need to extend this theory. The function
of two or more variables and its double Laplace transform plays an important role in solving
many problems, Debnath [10], Dhunde and Waghmare [11], Dhunde et al. [12] to solve space
time-fractional equation with initial and boundary conditions, further, its applications are found
in Eltayeb and Kiliçman [13–15], Tsaur and Wang [28], Hiwarekar [16–18], Riekstyn’s [25], and
Viaggiu [29]. Generalization of the double Laplace transforms will play an important role in
developing new theory and its applications. We have extended the theory of the double Laplace
transform developed by Debnath [10], and Borawake and Hiwarekar [3, 4] by obtaining new
results.

2. Notations, Definitions and Basic Results
Definition 2.1 (Modified Laplace Transform). The modified Laplace transform of piece wise
continuous and exponential order function u(x) is

L1,a[u(x)]= ū(p)=
∫ ∞

0
a−pxu(x)dx (Re(p)> 0, a ∈ (0,∞)\1), (2.1)

and L1,a[u(y)]= ū(q), provided that the integral exists (Saif et al. [26]), and the corresponding
inverse transform is

L−1
1,a[u(x)]= 1

2πi

∫ m+i∞

m−i∞
apxU(p,a)dx (m ≥ 0).

Definition 2.2 (Double Laplace Transform; Debnath [10]). The double Laplace transform is
given by

L2[u(x, y)]= L[L[u(x; y); x → p]; y→ q]=
∫ ∞

0

∫ ∞

0
e−(px+qy)u(x, y)dxdy (2.2)

and the corresponding inverse transform is L−1
2 [ ¯̄u(p, q)]= u(x, y) is defined by

u(x, y)= L−1
2 [ ¯̄u(p, q)]= 1

2πi

∫ m+i∞

m−i∞
epxdp

1
2πi

∫ n+i∞

n−i∞
eqy ¯̄u(p, q)dq (m,n ≥ 0).

Definition 2.3 (Modified Double Laplace Transform; Borawake and Hiwarekar [3, 4]).
The modified double Laplace transform of a function u(x, y) is defined by

¯̄u(p, q)= L2,a[u(x, y)]= La[La[u(x, y); x → p]; y→ q]= L2,a[ū(p, y); y→ q]

and
¯̄u(p, q)=

∫ ∞

0

∫ ∞

0
a−(px+qy)u(x, y)dx dy (a > 0). (2.3)

The modified double Laplace transform of u(x, y) exists for all p and q, where Re(p) > c and
Re(q) > d and u(x, y) is a piece-wise continuous and of exponential order defined in finite
intervals (X ,0) and (0,Y ).
The corresponding inverse transform is

L−1
2,a[ ¯̄u(p, q)]= 1

2πi

∫ m+i∞

m−i∞
apx dp

1
2πi

∫ n+i∞

n−i∞
aqy ¯̄u(p, q) dq (m,n ≥ 0, a > 0).
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Definition 2.4 (Heaviside Unit Step Function). The H(x, y) is Heaviside unit step function
given by

H(x−h, y−k)=
{

1, if x ≥ h, y≥ k,
0, if x < h, y< k.

(2.4)

Definition 2.5 (Periodic Function; Amberkhane et al. [2]). The function U(x, y) is a periodic
function of periods T and S given by

U(x+T, y+S)=U(x, y), for all x and y, (2.5)

where T and S are non-zero constants and independent of x and y, respectively.

In this work, we used all terms, definitions, and standard results developed in [3,4]. We also
used the following results.

Theorem 2.1 (Shifting Property).

L2,a[e−αx−βyu(x, y)]= L2,e[p loga+α, q loga+β]. ([7]) (2.6)

Theorem 2.2 (Change of Scale Property). If L2,a[u(x, y)]= ¯̄u(p, q), then

L2,a[u(αx,βy)]= 1
αβ

L2,a

[
u

(
x
α

,
y
β

)]
. ([4]) (2.7)

Here we developed the following properties of modified double Laplace transform.

3. Properties of Modified Double Laplace Transforms
In continuation with results in [3], [4] and [10], in this paper, we developed some new results on
the modified double Laplace transform which are included in this section.

We consider u(x, y) to be an exponentially ordered and piece-wise continuous function.

Theorem 3.1.
(i) L2,a[u(x)]= 1

q loga
[ū(p)], (3.1)

(ii) L2,a[u(y)]= 1
p loga

[ū(q)]. (3.2)

Proof. By Definition 2.3, we have

L2,a[u(x)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)u(x)dxdy

=
[∫ ∞

0
a−qyd y

][∫ ∞

0
a−pxu(x)dx

]
= 1

q loga
[ū(p)].

Similarly, we have proof of (ii) part of Theorem 3.1.

Theorem 3.2.

L2,a[u(x+ y)]= 1
(p− q) loga

[ū(q)− ū(p)]. (3.3)
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Proof. By Definition 2.3, we have

L2,a[u(x+ y)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)u(x+ y)dxdy

(Put x+ y= t, d y= dt, when y= 0, t = x and y=∞, t =∞)

=
∫ ∞

0
a−(p−q)x

[∫ ∞

x
a−qtu(t)dt

]
dx.

Using the change of order of integration, we have

=
∫ ∞

0

[∫ t

0
a−(p−q)xdx

]
a−qtu(t)dt

= 1
(p− q) loga

∫ ∞

0
[1−a−(p−q)t]a−qtu(t)dt

= 1
(p− q) loga

[ū(q)− ū(p)].

Theorem 3.3.

L2,a[u(x− y)]= 1
(p+ q) loga

[ū(p)+ ū(q)], when u is even. (3.4)

= 1
(p+ q) loga

[ū(p)− ū(q)], when u is odd. (3.5)

Proof. By Definition 2.3, we have

L2,a[u(x− y)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)u(x− y)dxdy

(Put x− y= t, d y=−dt, when y= 0, t = x and y=∞, t =−∞)

=
∫ ∞

0
a−px

[∫ x

−∞
a−q(x−t)u(t)dt

]
dx.

Using the change of order of integration, we have

=
∫ ∞

0
a−(p+q)x

[∫ 0

−∞
aqtu(t)dt

]
dx+

∫ ∞

t
a−(p+q)x

[∫ −∞

0
aqtu(t)dt

]
dx

= 1
(p+ q) loga

[∫ 0

−∞
aqtu(t)dt+

∫ ∞

0
a−ptu(t)dt

]
Put t =−θ, dt =−dθ, in the first integral

= 1
(p+ q) loga

[∫ 0

∞
aq(−θ)u(−θ)(−dθ)+

∫ ∞

0
a−ptu(t)dt

]
= 1

(p+ q) loga

[∫ ∞

0
aq(−θ)u(−θ)dθ+

∫ ∞

0
a−ptu(t)dt

]
;

L2,a[u(x− y)]= 1
(p+ q) loga

[ū(p)+ ū(q)], when u is even.

= 1
(p+ q) loga

[ū(p)− ū(q)], when u is odd.
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4. Modified Double Laplace Transform of Special Functions
Here we obtained the modified double Laplace transform of special functions included in the
following.

Theorem 4.1 (Unit Step Function).

L2,a[H(x−α, y−β)]= 1
pq(loga)2 a−(pα+qβ) , (4.1)

where H(x, y) is defined by equation (2.4) and pq(loga)2 > 0.

Proof. By Definition 2.3, we have

L2,a[H(x−α, y−β)]=
∫ ∞

α

∫ ∞

β
a−(px+qy)H(x−α, y−β)dxdy.

By Definition 2.4, we have

=
∫ ∞

α

∫ ∞

β
a−(px+qy) 1 dxdy

=
(∫ ∞

α
a−pxdx

)(∫ ∞

β
a−qyd y

)
= 1

pq(loga)2 a−(pα+qβ).

Theorem 4.2.

L2,a[u(x)H(x− y)]= 1
q loga

[ū(p)− ū(p+ q)]. (4.2)

Proof. By Definition 2.3, we have

L2,a[u(x)H(x− y)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)u(x)H(x− y)dxdy

=
∫ ∞

0
a−qy

[∫ ∞

0
a−pxu(x)H(x− y)dx

]
d y

=
∫ ∞

0
a−qy

[∫ ∞

y
a−pxu(x)dx

]
d y.

Using the change of order of integration, we have

=
∫ ∞

0
a−pxu(x)

[∫ x

0
a−qyd y

]
dx

= 1
q loga

∫ ∞

0
a−pxu(x)[1−a−qxd y]dx

= 1
q loga

[∫ ∞

0
a−pxu(x)dx−

∫ ∞

0
a−(p+q)xu(x)dx

]
= 1

q loga
[ū(p)− ū(p+ q)].

Theorem 4.3.

L2,a[u(x)H(y− x)]= 1
q loga

[ū(p+ q)]. (4.3)
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Theorem 4.4.

L2,a[u(x)H(x+ y)]= 1
q loga

[ū(p)]. (4.4)

Proof. By Definition 2.3, we have

L2,a[u(x)H(x+ y)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)u(x)H(x+ y)dxdy

=
∫ ∞

0

∫ ∞

0
a−(px+qy)u(x)dxdy

=
∫ ∞

0
a−qyd y

[∫ ∞

0
a−pxu(x)dx

]
= 1

q loga
[ū(p)].

Theorem 4.5.

L2,a[H(x− y)]= 1
p(p+ q)(loga)2 . (4.5)

Proof. By Definition 2.3, we have

L2,a[H(x− y)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)H(x− y)dxdy

=
∫ ∞

0

∫ ∞

0
a−(px+qy)dxdy.

Using the change of order of integration, we have

=
∫ ∞

0

[∫ x

0
a−px−qyd y

]
dx

= 1
q loga

∫ ∞

0
a−px[1−a−qx]dx

= 1
p(p+ q)(loga)2 .

Theorem 4.6. If U(x, y) be a periodic function of periods T and S (Definition 2.5), and
L2,a[U(x, y)] exists, then

L2,a[U(x, y)]= 1
[1−a−(pT+qS)]

∫ T

0

∫ S

0
a−(px+qy)U(x, y)dxdy, (4.6)

where (1−a−(pT+qS))> 0.

Proof. By Definition 2.3, we have

L2,a[U(x, y)]=
∫ ∞

0

∫ ∞

0
a−(px+qy)U(x, y)dxdy

=
∫ T

0

∫ S

0
a−(px+qy)U(x, y) dxdy+

∫ 2T

T

∫ 2S

S
a−(px+qy)U(x, y) dxdy

+
∫ 3T

2T

∫ 3S

2S
a−(px+qy)U(x, y) dxdy+ . . . .
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Put x = t+T , y= s+S in the second integral x = t+2T , y= s+2S in the third integral, we have

L2,a[U(x, y)]=
∫ T

0

∫ S

0
a−px−qyU(x, y) dxdy+

∫ T

0

∫ S

0
a−p(t+T)−q(s+S)U(t+T, s+S) dtds

+
∫ T

0

∫ S

0
a−p(t+2T)−q(s+2S)U(t+2T, s+2S) dtds+ . . . .

Since

U(t, s)=U(t+T, s+S)=U(t+2T, s+2S)= . . .

=
∫ T

0

∫ S

0
a−px−qyU(x, y) dxdy+a−(pT+qS)

∫ T

0

∫ S

0
a−pt−qsU(t, s) dtds

+a−2(pT+qS)
∫ T

0

∫ S

0
a−pt−qsU(t, s) dtds+ . . .

=
∫ T

0

∫ S

0
a−px−qyU(x, y) dxdy+a−(pT+qS)

∫ T

0

∫ S

0
a−px−qyU(x, y) dxdy

+a−2(pT+qS)
∫ T

0

∫ S

0
a−px−qyU(x, y) dxdy+ . . .

= [1+a−(pT+qS) +a−2(pT+qS) + . . .]
∫ T

0

∫ S

0
a−px−qyU(x, y) dxdy

= 1
[1−a−(pT+qS)]

∫ T

0

∫ S

0
a−(px+qy)U(x, y)dxdy.

Remark 4.1. Results of Debnath [10], see equations (36), (37), (38), (39), (40), (41), (42), (43)
and Theorem 3.2 are special cases of our results Theorem 3.1, Theorem 3.2, Theorem 3.3,
Theorem 4.2, Theorem 4.3, Theorem 4.4, Theorem 4.5 and Theorem 4.6 respectively with a = e.

Remark 4.2. If we put u(x)= 1, in Theorem 4.5, which is a special case of Theorem 4.2.

5. Illustrative Examples
Now we illustrate our results through the following examples.
5.1: Using Theorem 3.1, equation (3.1), we have

L2,a[cos2x]= p
q(p2 +4)loga

. (5.1)

5.2: Using Theorem 3.1, equation (3.2), we have

L2,a[sinh(3y)]= 3
p loga[q2(loga)2 −9]

. (5.2)

5.3: Using Theorem 4.2, equation (4.2), we have

L2,a[e2xH(x− y)]= 1
(p loga−2)[(p+ q) loga−2]

. (5.3)

5.4: Using Theorem 4.3, equation (4.3) and Theorem 2.1, we have

L2,a[e−3xH(y− x)]=− 1
q(p+ q+9)(loga)2 . (5.4)
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5.5: Using Theorem 4.4, equation (4.4), we have

L2,a[x2H(x+ y)]= 2
p3q loga

. (5.5)

5.6: Using Theorem 4.4, equation (4.4) and Theorem 2.2, we have

L2,a[sin3xH(x+ y)]= 3
(q loga)[p2(loga)2 +9]

. (5.6)

6. Concluding Remark
We developed new properties, theorems on modified double Laplace transform with suitable
examples. There is lot of scope to extend the theory further and its corresponding applications.
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