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1. Introduction
In 1922, Banach [1] introduced the Banach contraction principle. Banach contraction principle
plays an important role in modern analysis and is an important tool for solving existence
problem in various field of science. It is the first principle to get a fixed point for a self-map on a
complete metric space. Many researchers had generalized the Banach contraction principle.

In 2002, Branciari [3] introduced the concept of integral type contractive mapping and
generalized the concept of Banach contraction Principle. In 2010, Khojasteh et al. [5] used
the Branciari integral type contractive mapping for the cone metric space and proved some
fixed-point theorems.
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On the other hand, in 2012 Samet et al. [8] introduced a very interesting notion of α′-ψ-
contractions via α′-admissible mapping in complete metric space. In 2014, Karapinar et al. [4]
used the concept of α′-ψ-contractive type mappings of integral type and proved some fixed-point
theorem of such type of mapping in complete metric space.

In 2014, Ma et al. [6] established the notion of C∗-algebra valued metric spaces and proved
some fixed-point theorems for contractive and expansive type mapping.

Throughout this paper, we suppose that A is a unital C∗-algebra with a unit IA . Set
Ah = {x ∈ A : x = x∗}. We call an element x ∈ A a positive element, denote it by x ≽ θ. Using
positive elements, one can define a partial ordering ≼ on Ah as follows: x ≼ y if and only if
y− x≽ θ, where θ means the zero element in A. Now A+ = {x ∈A : x≽ θ} and |x| = (x∗x)

1
2 .

2. Preliminaries
In this section, we shall give some basic definitions which will be used in sequel.

Definition 2.1 ([6]). Let X be a non-empty set. Suppose the mapping d : X × X →A satisfies:
(i) θ≼ d(x, y), for all x, y ∈ X and d(x, y)= θ⇐⇒ x = y;

(ii) d(x, y)= d(y, x), for all x, y ∈ X ;

(iii) d(x, y)≼ d(x, z)+d(z, y), for all x, y, z ∈ X .
Then d is called C∗-algebra valued metric on X and (X ,A,d) is called C∗-algebra valued metric
space.

Definition 2.2 ([6]). Let (X ,A,d) be a C∗-algebra valued metric space. Let {xn} be a sequence
in X then

(i) {xn} is said to be Cauchy if for all θ ≼ c, there is N ∈ N such that for all n,m ≥ N ,
d(xn, xm)≼ c.

(ii) {xn} is said to be converges to x if for all θ ≼ c, there is N ∈ N such that for all n ≥ N ,
d(xn, x)≼ c.

(iii) (X ,A,d) is a complete C∗-algebra valued metric space if every Cauchy sequence is
convergent in X .

Definition 2.3 ([6]). Suppose that (X ,A,d) is a complete C∗-algebra valued metric space. We
call a mapping f : X → X is a C∗-algebra valued contractive mapping on X , if there exists an
a ∈A with ∥a∥ < 1 such that d( f x, f y)≼ a∗d(x, y)a, for all x, y ∈ X .

Definition 2.4 ([8]). Let f : X → X be a self map and α : X × X → [0,∞). Then f is called
α′-admissible if

α(x, y)≥ 1 =⇒ α( f x, f y)≥ 1, for all x, y ∈ X .

Definition 2.5 ([7]). Let X be a non-empty set and αA : X × X → (A+)′ be a function. We say
that the self map f is αA-admissible if for all (x, y) ∈ X × X , αA(x, y)≽ IA =⇒αA( f x, f y)≽ IA
where IA is the unit of A.

Let ΨA be the set of positive functions ψA : A+ → A+ satisfying the following conditions:
(i) ψA(a) is continuous and non-decreasing,
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(ii) ψA(a)= 0 iff a = 0, and

(iii)
∞∑

n=1
ψn

A(a)<∞, lim
n→∞ψ

n
A(a)= 0, for each a ≻ 0 where ψn

A is the nth-iterate of ψA .

Definition 2.6 ([2]). Let N ∈N. We say that α is N-transitive (on X ) if

x0, x1, . . . , xN+1 ∈ X : α(xi, xi+1)≽ IA, for all i ∈ {0,1, . . . , N}=⇒α(x0, xN+1)≽ IA.

In particular, we say that α is transitive if it is 1-transitive, that is,

x, y, z ∈ X : α(x, y)≽ IA and α(y, z)≽ IA =⇒α(x, z)≽ IA.

3. Main Results
In this section, we shall prove some fixed-point results for the generalized integral type
contractions in C∗-algebra valued metric space.

Definition 3.1. Let (X ,A,dA) be a C∗-algebra valued-metric space and f : X → X be a given
mapping. We say that f is an αA-ψA-contractive mapping of integral type 1 if there exist two
functions αA : X × X → (A+)′ and ψA ∈ΨA such that for each x, y ∈ X and ∥a∥ ≺ IA ,

αA(x, y)
∫ dA( f x, f y)0

ϕ(t)dt≼ a∗ψA

(∫ M(x,y)

0
ϕ(t)dt

)
a, (3.1)

where ϕ ∈Φ and

M(x, y)=max
{

dA(x, y),dA(x, f x),dA(y, f y),
1
2

[dA(x, f y)+dA(y, f x)]
}

.

Theorem 3.2. Let (X ,A,dA) be a complete C∗-algebra valued metric space and αA : X × X →
(A+)′ be a transitive mapping. Suppose that f : X → X generalized αA -ψA -contractive mapping
of integral type 1 and satisfies the following conditions:

(i) f is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, f x0)≽ IA ;

(iii) f is continuous.
Then f has a fixed point.

Proof. Let x0 be an arbitrary point of X such that αA(x0, f x0)≽ IA . We construct an iterative
sequence {xn} in X in the following way:

xn+1 = f xn, for all n ≥ 0.

Due to fact that f is αA-admissible, we find that

αA(x0, x1)=αA(x0, f x0)≽ IA =⇒ αA( f x0, f x1)=αA(x1, x2)≽ IA. (3.2)

Iteratively, we obtain that

αA(xn, xn+1)≽ IA.

By applying inequality (3.1) for

x = xn−1 and y= xn,

αA(xn−1, xn)
∫ dA( f xn−1, f xn)

0
ϕ(t)dt≼ a∗ψA

(∫ M(xn−1,xn)

0
ϕ(t)dt

)
a,
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where

M(xn−1, xn)=max
{

dA(xn−1, xn),dA(xn−1, xn),dA(xn, xn+1),
dA(xn−1, xn+1)+dA(xn, xn)

2

}
≤max{dA(xn−1, xn),dA(xn, xn+1)}. (3.3)

By using (3.3) and regarding the properties of the function ψA ,∫ dA(xn,xn+1)

0
ϕ(t)dt =

∫ dA( f xn−1, f xn)

0
ϕ(t)dt

≼αA(xn−1, xn)
∫ dA( f xn−1, f xn)

0
ϕ(t)dt

≼ a∗ψA

(∫ dA(xn−1,xn)

0
ϕ(t)dt,

∫ dA(xn,xn+1)

0
ϕ(t)dt

)
a. (3.4)

Case 1: If M(xn−1, xn)= dA(xn, xn+1), then we have∫ dA(xn,xn+1)

0
ϕ(t)dt≼ a∗ψA

(∫ dA(xn,xn+1)

0
ϕ(t)dt

)
a

≺ a∗
(∫ dA(xn,xn+1)

0
ϕ(t)dt

)
a.

Applying norm on both sides, we get∥∥∥∥∫ dA(xn,xn+1)

0
ϕ(t)dt

∥∥∥∥≺
∥∥∥∥∫ dA(xn,xn+1)

0
ϕ(t)dt

∥∥∥∥ ,

a contradiction.

Case 2: If M(xn−1, xn)= dA(xn−1, xn), then we have∫ dA(xn,xn+1)

0
ϕ(t)dt≼ a∗ψA

(∫ dA(xn−1,xn)

0
ϕ(t)dt

)
a. (3.5)

By using mathematical induction, we get∫ dA(xn,xn+1)

0
ϕ(t)dt≼ (a∗ψA)n

(∫ dA(x0,x1)

0
ϕ(t)dt

)
an. (3.6)

Letting n →∞ in above inequality and taking the property of ψA on the account, we find that∫ dA(xn,xn+1)

0
ϕ(t)dt = θ

=⇒
∥∥∥∥∫ dA(xn,xn+1)

0
ϕ(t)dt

∥∥∥∥→ 0

=⇒ dA(xn, xn+1)→ θ or ∥dA(xn, xn+1)∥→ 0 as n →∞ (3.7)

For n > m and by triangular inequality and sub additive property in C∗-algebra valued metric
space, we get∫ dA( f xn, f xm)

0
ϕ(t)dt≼αA(xn, xm)

∫ dA( f xn, f xm)

0
ϕ(t)dt

≼ a∗ψA

(∫ M(xn,xm)

0
ϕ(t)dt

)
a,

where

M(xn, xm)=max
{

dA(xn, xm),dA(xn, xn+1),dA(xm, xm+1),
dA(xn, xm+1)+dA(xm, xn+1)

2

}
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≼max
{

dA(xn, xm),
dA(xn, xm+1)+dA(xm, xn+1)

2

}
. (3.8)

Now
dA(xn, xm+1)+dA(xm, xn+1)

2
≼ dA(xn, xm),

thus

M(xn, xm)= dA(xn, xm).

Therefore, we have∫ dA( f xn, f xm)

0
ϕ(t)dt≼αA(xn, xm)

∫ dA( f xn, f xm)

0
ϕ(t)dt

≼ a∗ψA

(∫ dA(xn,xm)

0
ϕ(t)dt

)
a

≼ a∗ψA

(∫ dA(xn,xn+1)+dA(xn+1,xn+2)+···+dA(xm−1,xm)

0
ϕ(t)dt

)
a

≼ a∗ψA

[∫ dA(xn,xn+1)

0
ϕ(t)dt+·· ·+

∫ dA(xm−1,xm)

0
ϕ(t)dt

]
a

≼ {(a∗ψA)nan + (a∗ψA)n+1an+1 +·· ·+ (a∗ψA)mam}
∫ dA(x0,x1)

0
ϕ(t)dt

≼
∑ m∑

i=n
|ai|2(ψA)i

∫ dA(x0,x1)

0
ϕ(t)dt

≼

∥∥∥∥∥ m∑
i=n

|ai|2(ψA)i
∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥∥ IA

≼

∥∥∥∥∥ m∑
i=n

|ai|2(ψA)i

∥∥∥∥∥
∥∥∥∥∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥ IA

≼
m∑

i=n
∥a∥2i

∥∥∥∥∥ m∑
i=n

ψi
A

∥∥∥∥∥
∥∥∥∥∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥ IA

⋞
∥a∥2m

1−∥a∥

∥∥∥∥∥ m∑
i=n

ψi
A

∥∥∥∥∥
∥∥∥∥∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥ IA.

Thus ∫ dA( f xn, f xm)

0
ϕ(t)dt → θ as m,n →∞ (3.9)

which implies that

lim
m,n→∞∥dA( f xn, f xm)∥ = 0. (3.10)

Thus {xn} is a Cauchy sequence in X . Since X is Complete. Hence {xn} converges to x ∈ X .

lim
n→∞xn = x. (3.11)

From the continuity of f , it follows that xn+1 = f xn → f x as n →∞.
By continuity of this limit, we have f x = x, that is, x is a fixed point of f .
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Definition 3.3. Let (X ,A,dA) be a C∗-algebra valued metric space and f : X → X be a given
mapping. We say that f is an αA-ψA-contractive mapping of integral type 2 if there exist two
functions αA : X × X → (A+)′ and ψA ∈ΨA such that for each x, y ∈ X and ∥a∥ ≺ IA ,

αA(x, y)
∫ dA( f x, f y)

0
ϕ(t)dt≼ a∗ψA

(∫ M(x,y)

0
ϕ(t)dt

)
a, (3.12)

where ϕ ∈Φ and

M(x, y)=max
{

dA(x, y),
1
2

[dA(x, f x)+dA(y, f y)],
1
2

[dA(x, f y)+dA(y, f x)]
}

.

Theorem 3.4. Let (X ,A,dA) be a complete C∗-algebra valued metric space and αA : X × X →
(A+)′ be a transitive mapping. Suppose that f : X → X generalized αA -ψA -contractive mapping
of integral type 2 and satisfies the following conditions:

(i) f is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, f x0)≽ IA ;

(iii) f is continuous.
Then f has a fixed point.

Proof. Let x0 be an arbitrary point of X such that αA(x0, f x0)≽ IA . We construct an iterative
sequence {xn} in X in the following way:

xn+1 = f xn, for all n ≥ 0.

Due to fact that f is αA-admissible, we find that

αA(x0, x1)=αA(x0, f x0)≽ IA =⇒ αA( f x0, f x1)=αA(x1, x2)≽ IA. (3.13)

Iteratively, we obtain that

αA(xn, xn+1)≽ IA.

By applying inequality (3.12) with

x = xn−1 and y= xn,

αA(xn−1, xn)
∫ dA( f xn−1, f xn)

0
ϕ(t)dt≼ a∗ψA

(∫ M(xn−1,xn)

0
ϕ(t)dt

)
a, (3.14)

where

M(xn−1, xn)=max
{

dA(xn−1, xn),
dA(xn−1, xn)+dA(xn, xn+1)

2
,
dA(xn−1, xn+1)+dA(xn, xn)

2

}
≤max{dA(xn−1, xn),dA(xn, xn+1)}.

Now
dA(xn−1, xn)+dA(xn, xn+1)

2
≤ dA(xn−1, xn+1)+dA(xn+1, xn)+dA(xn, xn+1)

2

= dA(xn−1, xn+1)+2dA(xn, xn+1)
2

≤ dA(xn, xn+1).

By using (3.14) and regarding the properties of the function ψA ,∫ dA(xn,xn+1)

0
ϕ(t)dt =

∫ dA( f xn−1, f xn)

0
ϕ(t)dt
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≼αA(xn−1, xn)
∫ dA( f xn−1, f xn)

0
ϕ(t)dt

≼ a∗ψA

(∫ dA(xn−1,xn)

0
ϕ(t)dt,

∫ dA(xn,xn+1)

0
ϕ(t)dt

)
a. (3.15)

Case 1: If M(xn−1, xn)= dA(xn, xn+1), then we have∫ dA(xn,xn+1)

0
ϕ(t)dt≼ a∗ψA

(∫ dA(xn,xn+1)

0
ϕ(t)dt

)
a

≺ a∗
(∫ dA(xn,xn+1)

0
ϕ(t)dt

)
a.

Applying norm on both sides, we get∥∥∥∥∫ dA(xn,xn+1)

0
ϕ(t)dt

∥∥∥∥≺
∥∥∥∥∫ dA(xn,xn+1)

0
ϕ(t)dt

∥∥∥∥
a contradiction.

Case 2: If M(xn−1, xn)= dA(xn−1, xn), then we have∫ dA(xn,xn+1)

0
ϕ(t)dt≼ a∗ψA

(∫ dA(xn−1,xn)

0
ϕ(t)dt

)
a. (3.16)

By using mathematical induction, we get∫ dA(xn,xn+1)

0
ϕ(t)dt≼ (a∗ψA)n

(∫ dA(x0,x1)

0
ϕ(t)dt

)
an. (3.17)

Letting n →∞ in above inequality and taking the property of ψA on the account, we find that∫ dA(xn,xn+1)

0
ϕ(t)dt = θ

=⇒
∥∥∥∥∫ dA(xn,xn+1)

0
ϕ(t)dt

∥∥∥∥→ 0 (3.18)

=⇒ dA(xn, xn+1)→ 0 as n →∞ (3.19)

For n > m and by triangular inequality and sub additive property in C∗-algebra valued metric
space, we get∫ dA( f xn, f xm)

0
ϕ(t)dt≼αA(xn, xm)

∫ dA( f xn, f xm)

0
ϕ(t)dt

≼ a∗ψA

(∫ M(xn,xm)

0
ϕ(t)dt

)
a,

where

M(xn, xm)=max
{

dA(xn, xm),dA(xn, xn+1),dA(xm, xm+1),
dA(xn, xm+1)+dA(xm, xn+1)

2

}
≤max

{
dA(xn, xm),

dA(xn, xm+1)+dA(xm, xn+1)
2

}
(3.20)

Now
dA(xn, xm+1)+dA(xm, xn+1)

2
≤ dA(xn, xm),

thus

M(xn, xm)= dA(xn, xm).
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Therefore, we have∫ dA( f xn, f xm)

0
ϕ(t)dt≼αA(xn, xm)

∫ dA( f xn, f xm)

0
ϕ(t)dt

≼ a∗ψA

(∫ dA(xn,xm)

0
ϕ(t)dt

)
a

≼ a∗ψA

(∫ dA(xn,xn+1)+dA(xn+1,xn+2)+···+dA(xm−1,xm)

0
ϕ(t)dt

)
a

≼ a∗ψA

[∫ dA(xn,xn+1)

0
ϕ(t)dt+·· ·+

∫ dA(xm−1,xm)

0
ϕ(t)dt

]
a

≼ {(a∗ψA)nan + (a∗ψA)n+1an+1 +·· ·+ (a∗ψA)mam}
∫ dA(x0,x1)

0
ϕ(t)dt

≼
m∑

i=n
|ai|2(ψA)i

∫ dA(x0,x1)

0
ϕ(t)dt

≼

∥∥∥∥∥ m∑
i=n

|ai|2(ψA)i
∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥∥ IA

≼
m∑

i=n
|ai|2(ψA)i

∥∥∥∥∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥ IA

≼
m∑

i=n
∥a∥2i

∥∥∥∥∥ m∑
i=n

ψi
A

∥∥∥∥∥
∥∥∥∥∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥ IA

⋞
∥a∥2m

1−∥a∥

∥∥∥∥∥ m∑
i=n

ψi
A

∥∥∥∥∥
∥∥∥∥∫ dA(x0,x1)

0
ϕ(t)dt

∥∥∥∥ IA. (3.21)

Thus, ∫ dA( f xn, f xm)

0
ϕ(t)dt → θ as m,n →∞,

which implies that

lim
m,n→∞∥dA( f xn, f xm)∥ = 0. (3.22)

Thus {xn} is a Cauchy sequence in X . Since X is Complete. Hence {xn} converges to x ∈ X .
Therefore,

lim
n→∞xn = x. (3.23)

From the continuity of f , it follows that xn+1 = f xn → f x as n →∞.
By continuity of this limit, we have f x = x, that is, x is a fixed point of f .

Corollary 3.5. Let (X ,A,dA) be a complete C∗-algebra valued metric space and αA : X × X →
(A+)′ be a transitive mapping. Suppose that f : X → X generalized αA -ψA -contractive mapping
of integral type and satisfies the following conditions:

(i) f is αA-admissible;

(ii) there exists x0 ∈ X such that αA(x0, f x0)≽ IA ;

(iii) f is continuous.
Then f has a fixed point.
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Proof. By putting M(x, y)= dA(x, y) in Theorem 3.2, we get the required result.
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