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Abstract. In this paper, we study integrability, similarity reduction and obtaining abundant solutions
for the family fifth-order KdV equation. This equation expresses five different forms of the KdV
equation, each of these equations has different applications in many fields, including fluid mechanics,
ocean science and optics. We utilized Painlevé property for the governing equation to prove that
the equation possesses Painlevé test. Then, the symmetry method is used to study the similarity
reductions for the governing equation. Subsequently, we obtained a novel type of exact solutions for
family KdV fifth-order by using (G′/G)-expansion method. The obtained solutions included hyperbolic
and trigonometric functions. The solutions are also presented in 3D shapes to show their properties
contained kink wave, singular wave, anti-kink wave, periodic wave and solitary wave solution.
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1. Introduction
In recent years, one of the most important issues in the research field of mathematics and
physics is the construction of new exact solutions for nonlinear partial differential equations
(NLPDEs) and study of their physical nature. This is due to a variety of NLPDEs equations have
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been formed to explain many physical phenomena, such as fluid dynamic, optics, astrophysics,
oceans science, nanofluid, geophysics and among others which use the possibilities of NPDEs
(Gaber and Bekir [6], and Gaber et al. [10]).

Many mathematical methods have been presented for solving NLPDEs such as tan(φ/2)-
expansion method (Özkan and Yasar [15]), Kudryashov method (Gaber and Ahmad [8]), (G′/G)-
expansion method (Biswas et al. [3]), reproducing kernal method (Ahmad et al. [2]), direct
algebraic method (Lu et al. [12]), extended auxiliary equation mapping method (Seadawy et
al. [17]) and others, but the most general is the symmetry method (Gaber and Wazwaz [7],
Gaber and Shehata [9], and Zhao and He [19]). All traveling wave methods are special cases
from symmertry method. The importance of symmetry method is due to its ability to give a large
number of reductions to the same differential equation, which gives many physical explanations
for this equations,

∂u
∂t

+ ∂5u
∂x5 +h1u

∂3u
∂x3 +h2

∂u
∂x

∂2u
∂x2 +h3u2 ∂u

∂x
= 0, (1.1)

where u = u(x, t). This equation has attracted the attention of many researchers (Ahmad et al. [1]
and references therein), when h1 = 15, h2 = 15 and h3 = 45, eq. (1.1) reduced to Sawada-Kotera
(S-K) equation; h1 = 30, h2 = 30 and h3 = 180, eq. (1.1) reduced to the Caudrey-Dodd-Gibbon
(C-D-G) equation; h1 = 10, h2 = 30 and h3 = 30, eq. (1.1) reduced to the Lax equation; h1 = 10,
h2 = 20 and h3 = 30, eq. (1.1) reduced to nonlinear fifth order KdV equation and h1 = 10, h2 = 25
and h3 = 20, eq. (1.1) reduced to nonlinear fifth order Kaup–Keperschmidt (K-K) equation.

2. Painlevé Property
Studying the integrability of PDEs is one of the important aspects of obtaining exact solutions
for these equations. Therefore, the Painleve test is considered one of the methods to test the
integrability of PDEs. This method was developed by Weiss et al. [18].

In this section, using Weiss’s algorithm (Ahmad [5], Weiss et al. [18], and Ren et al. [16])
of singularity analysis to study the Painlevé property of eq. (1.1). For processing the Painlevé
singularity analysis, we use

u(x, t)=φs(x, t)
∞∑
j=0

u j(x, t)φ j(x, t), (2.1)

where v j ( j = 0,1,2, . . .) and φ = φ(x, t) are analytic function of the independent variable.
Substituting u ≃ u0φ

s in eq. (1.1) to obtain the leading order s and the expansion coefficients
u0, we get

s =−2, u0 = −4
3
φ2

x, for SK and KK equations,

s =−2, u0 = −2
3
φ2

x, for C-D-G equation,

s =−2, u0 = −6
5
φ2

x, for Lax equation,

s =−2, u0 = −3
2
φ2

x, for fifth order KdV equation.


(2.2)
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As we know that the resonance j =−2 coincides with the singular manifold φ(x, t)= 0. then
the earlier relation can be taken the expression

u(x, t)= u0φ
−2 +

∞∑
j=1

u jφ
j−2, j ≥ 1 . (2.3)

Substituting eq. (2.4) into eq. (1.1) and collecting terms of v j(x, y, z, t), we get

[( j−2)( j−3)( j−4)( j−5)( j−6)+h1(−24u0 +u0( j−2)( j−3)( j−4))

+h2(6u0( j−2)−2u0( j−2)( j−3))]u jφ
5
x

= F(u j−1, . . . ,u j,t, . . .). (2.4)

As a result, we obtain the resonance j, eq. (1.1) as follow
j =−1,6, for S-K, K-K and C-D-G equations,
j =−1,4,5,6,6, for Lax equation,
j =−1,6,8, for fifth order KdV equation.

 (2.5)

From studying the recursion relation we deduced that:

(i) The expansion coefficients u0 of φ−7 is found for all cases of eq. (1.1) as we obtained before.

(ii) The expansion coefficients u6 is arbitrary functions in S-K, K-K and C-D-G equations and
it is not including in the equations of resonances j = 1,6. By the same, u4, u5, u6 are
arbitrary functions for Lax equation at resonances j = 1,4,5,6 and u6, u8 are arbitrary
functions for fifth order KdV equation at resonances j = 1,6,8.

(iii) From this discussion, that all cases of family fifth order has the Painlevé property.

3. Symmetry Analysis
In this section, we applied symmetry analysis on family equations.

Firstly, we shall derive the similarity solutions using symmetry analysis (Gaber et al. [11],
and Olver [14]) under which eq. (1.1) is invariant in as follow:

Lie point symmetries

u∗ = u+εφ(x, t,u)+O(ε2), x∗ = x+εη(x, t,u)+O(ε2), t∗ = t+εζ(x, t,u)+O(ε2). (3.1)

If we put

∆= ∂u
∂t

+ ∂5u
∂x5 +h1u

∂3u
∂x3 +h2

∂u
∂x

∂2u
∂x2 +h3u2∂u

∂x
. (3.2)

Then, the invariance condition

Γ(3)(∆)= 0, (3.3)

where Γ(3) can be written in the form

Γ(3) = χ+φx ∂

∂ux
+φt ∂

∂ut
+φxx ∂

∂uxx
+φxxx ∂

∂uxxx
+φxxxxx ∂

∂uxxxxx
, (3.4)

where

χ= ζ
∂

∂t
+η ∂

∂x
+φ ∂

∂u
. (3.5)
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Substituting eq. (3.2) into eq. (3.3), we obtained the following equation

φt +φxxxxx +h1(φuxxx +uφxxx)+h2(φxuxx +uxφ
xx)+h3(2uφux +u2φx)= 0. (3.6)

Since the components φx,φxx, . . . take the form
φx = Dxφ−utDxζ−uxDxη,
φxx = Dxφ

x −utxDxζ−uxxDxη,
φxt = Dtφ

x −utxDtζ−uxxDtη.

 (3.7)

Substituting the values of φx,φxx, . . . from eq. (3.7) into eq. (3.6) and collecting the coefficient
of derivatives of u(x, t), and equaling it to zero. Solving these equations and obtaining
the infinitessimal, as follow

ζ= c1t+ c2, η= 1
5

c1 + c3, φ=−2
5

c1u. (3.8)

In order to study the group theoretic structure, the vector field operator V is written as:

V =V1(c1)+V2(c2)+V3(c3)+V4(c4), (3.9)

where

V1 = t
∂

∂t
+ 1

5
x
∂

∂x
− 2

5
u
∂

∂u
,

V2 = ∂

∂t
,

V3 = ∂

∂x
.


(3.10)

The commutator relations are given in Table 1. It is clear from Table 1 that the vector field V in
eq. (3.10) constitutes a finite dimensional Lie algebra.

Table 1

V1 V2 V3

V1 0 −V2 −1
5V3

V2 V2 0 0

V3
1
5V3 0 0

Furthermore, we can compute the adjoint representations of the vector fields

Adj(exp(εVi))V i =V i, i = 1,2,3, . . . ,

Adj(exp(εV2))V3 =V3,

Adj(exp(εV3))V2 =V2,

Adj(exp(εV1))V2 = e
1
5εV2,

Adj(exp(εV2))V1 =V1 − 1
5
εV2,

Adj(exp(εV1))V3 =V3,

Adj(exp(εV3))V1 = eεV1.
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Further, from the symmetries given in eq. (3.6) the following possibilities exist for the solution
of eq. (1.1),

(I) V1 +V2 +V3,

(II) V2 +V3.

4. Reductions and Exact Solutions
In order to obtain the invariant transformation in each of the above two cases we write
the characteristic equation in the form

dt
A(x, t,u)

= dx
B(x, t,u)

= du
φ(x, t,u)

. (4.1)

Case I: V1 +V2 +V3.
We have the following invariant ζ and the form of u

ξ= x+m2

(t+m1)
1
5

,

u = (t+m1)
−2
5 F(ξ),

 (4.2)

where m1 = c2
c1

and m2 = 3 c4
c1

.
Substituting eq. (4.2) into eq. (1.1), we have the following equation:

2
5

F + 1
5
ζF ′−F ′′′′′−h1FF ′′−h2F ′F ′′−h3F2F ′ = 0. (4.3)

The solution of this equations can be written in the form

F = a0 +a1ξ+a2ξ
2 +b1ξ

−1 +b2ξ
−2. (4.4)

Substituting eq. (4.4) into eq. (4.3), the solution of eq. (4.3) is expressed as:

F(ζ)= b2

ξ2 , b2 = 3
h3

(−h2 −2h1 +
√

h2
2 +4h2h1 +4h2

1 −40h3
)
. (4.5)

Case II: V2 +V3.
Corresponding to this case the associated similarity variable and similarity solutions are given
as ξ= x−wt, u = F(ξ), where w = c2

c3
.

The reduced system of ordinary differential equations is

wF −F ′′′′′−h1FF ′′−h2F ′F ′′−h3F2F ′ = 0= 0. (4.6)

By using G′
G -expansion method [13], for simplicity the solution takes the form [4]:

F(ζ)= a0 +a1
G′(ξ)
G(ξ)

+a2

(
G′(ξ)
G(ξ)

)2

, (4.7)

where G(ξ) is satisfied second order auxiliary equations

G′′(ξ)+λG′(ξ)+µG(ξ)= 0 . (4.8)

Substituting eq. (4.7) into eq. (4.6), equating the coefficients of all powers of G′
G to zero yields

a set of algebraic equations for a0, a1, a2. By aid MAPLE software we solve these algebraic
equations, we get:
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Result 4.1.

a0 = 1
12

Qk2(λ2 +8µ), a1 =Qk2λ2, a2 =Qk2,

Q = 3
h3

(−2h1 −h2 +
√

4h2
1 +4h1h2 +h2

2 −40h3
)
,

w = k5

24
(λ4Qh2 +35λ4 −8λ2µQh2 −288λ2µ+16µ2Qh2 +566µ2).


(4.9)

Substituting eq. (4.9) into eq. (4.7) and eq. (4.5) with based eq. (4.8), we obtained the general
travelling wave solutions of eq. (1.1), as follow:

Case 1: The exact solitary of Caudrey-Dodd-Gibbon equation when h1 = 30, h2 = 30, h3 = 180,
λ2 < 4µ,

u(x, t)= 1
12

Qk2(λ2 +8µ)+ 1
2

Qk2λ2
√
λ2 −4µ

(−A sin
(1

2

√
λ2 −4µ

)
ξ+Bcos

(1
2

√
λ2 −4µ

)
ξ

A cos
(1

2

√
λ2 −4µ

)
ξ+Bsin

(1
2

√
λ2 −4µ

)
ξ

)

+ 1
2

Qk2
√
λ2 −4µ

(−A sin
(1

2

√
λ2 −4µ

)
ξ+Bcos

(1
2

√
λ2 −4µ

)
ξ

A cos
(1

2

√
λ2 −4µ

)
ξ+Bsin

(1
2

√
λ2 −4µ

)
ξ

)2

, (4.10)

where ξ = x−wt.

Case 2: The wave solution of Lax equation where h1 = 10, h2 = 30, h3 = 30, and λ2 > 4µ,

u(x, t)= 1
12

Qk2(λ2 +8µ)+ 1
2

Qk2λ2
√
λ2 −4µ

(
A cosh

(1
2

√
λ2 −4µ

)
ξ+Bsinh

(1
2

√
λ2 −4µ

)
ξ

A sinh(1
2

√
λ2 −4µ)ξ+Bcosh(1

2

√
λ2 −4µ)ξ

)

+Qk2
√
λ2 −4µ

(
A cosh(1

2

√
λ2 −4µ)ξ+Bsinh

(1
2

√
λ2 −4µ

)
ξ

A sinh
(1

2

√
λ2 −4µ

)
ξ+Bcosh

(1
2

√
λ2 −4µ

)
ξ

)2

. (4.11)

Figure 1. Solitary wave solution of eq. (4.10)
for C-D-G equation

Figure 2. Singular wave solution of eq. (4.11)
for Lax equation
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Case 3: The single wave solution for nonlinear fifth order KdV equation at h1 = 10, h2 = 20,
h3 = 30, A ̸= 0, B = 0 and λ2 > 4µ,

u(x, t)= 1
12

Qk2(λ2 +8µ)+Qk2λ2
(
λtanh

λ

2
ξ+d−λ

)
+Qk2

(
λtanh

λ

2
ξ+d−λ

)2
, (4.12)

where ξ= x−wt.

Case 4: The travelling wave solution of Kaup–Keperschmidt equation where h1 = 10, h2 = 25,
h3 = 20, A ̸= 0, B = 0 and λ2 < 4µ,

u(x, t)= 1
12

Qk2(λ2 +8µ)+Qk2λ2
(
λcoth

λ

2
ξ+d−λ

)
+Qk2

(
λcoth

λ

2
ξ+d−λ

)2
. (4.13)

Figure 3. Single wave solution of eq. (4.12) for
Lax equation

Figure 4. Kink wave solution of eq. (4.13) for
K-K equation

Result 4.2.

a0 = 1
kh1(h1 +h2)

(√√√√[
k6(15h2

1λ
4 −120h2

1λ
2µ+240µ2h2

1 −10h1h2λ
4

+80h1µh2λ
2 −160h1µ

2h2)−k(10h2
1w−10h1wh2)

]

−5k3h1λ
2 −40k3µh1

)
,

a1 = −60k2λ

h1 +h2
, a2 = −60k2

h1 +h2
, h3 = 1

10
h1(h1 +h2).


(4.14)

Substituting eq. (4.14) into eq. (4.7) and eq. (4.5) with based eq. (4.8), the general travelling
wave solutions of eq. (1.1), are created.

Case 1: The periodic solution of nonlinear fifth order KdV equation at h1 = 10, h2 = 20, h3 = 30
and λ2 < 4µ,

u(x, t)= a0 + 1
2
−60k2λ

h1 +h2

√
λ2 −4µ

(−A sin
(1

2

√
λ2 −4µ

)
ξ+Bcos

(1
2

√
λ2 −4µ

)
ξ

A cos
(1

2

√
λ2 −4µ

)
ξ+Bsin

(1
2

√
λ2 −4µ

)
ξ

)

+ 1
2
−60k2

h1 +h2

√
λ2 −4µ

(−A sin
(1

2

√
λ2 −4µ

)
ξ+Bcos

(1
2

√
λ2 −4µ

)
ξ

A cos
(1

2

√
λ2 −4µ

)
ξ+Bsin

(1
2

√
λ2 −4µ

)
ξ

)2

, (4.15)

where ξ= x−wt.

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 1231–1240, 2024



1238 Painlevé Analysis, Lie Symmetries and Abundant Wave Solutions. . . : A. A. Gaber and D. M. Mostafa

Case 2: The anti-kink wave solution of Caudrey-Dodd-Gibbon equation when h1 = 30, h2 = 30,
h3 = 180, A = 0, B ̸= 0 and λ2 > 4µ,

u(x, t)= a0 + −60k2λ

h1 +h2

(
λtanh

λ

2
ξ+d−λ

)
+ −60k2

h1 +h2

(
λtanh

λ

2
ξ+d−λ

)2
, (4.16)

where ξ = x−wt.

Case 3: The Solitary wave solution of Sawada-Kotera equation where h1 = 5, h2 = 15, h3 = 45,
A ̸= 0, B = 0 and λ2 < 4µ,

u(x, t)= 1
12

Qk2(λ2 +8µ)+Qk2λ2
(
λcoth

λ

2
ξ+d−λ

)
+Qk2

(
λcoth

λ

2
ξ+d−λ

)2
. (4.17)

where ξ= x−wt.

Figure 5. Single wave solution of eq. (4.12) for
Lax equation

Figure 6. Kink wave solution of eq. (4.13) for
K-K equation

Figure 7. Kink wave solution of eq. (4.13) for
K-K equation
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5. Conclusion
In this investigation, we study the integrability for fifth order KdV equations and obtained the
integrability condition for each of them at different resonance. The governing equations have
passed Painleve property. On the other hand, we have used the symmetry method to reduce the
governing partial differential equations to two various types of ordinary differential equations.
Finally, by using the G′/G-expansion method, we have found a novel wave solutions for the fifth
order KdV equations. The behavior of the solutions are shown through 3-D garphs.
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