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Abstract. In this paper, thermal response for the propagation of waves in thin nanorod is studied with
the Timoshenko beam theory. The important role for vibrational analysis of the rod and characteristics
of the flexural waves is discussed. Numerical calculations are derived and the scattered relations
between the wavenumber and wave velocities are computed.
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1. Introduction
Nelson [8] discovered about the material behaviors, while beam theory analysis offers analytical
solutions but may be limited in complexities and nonlinearity. Elishakoff [4] establishes a
beam theory that includes rotary inertia, shear deformation, and shear correction factor is
commonly referred to as the Timoshenko-Ehrenfest beam theory. Wang et al. [10] explained
about transverse shear deformation and the scale effect that are important while dealing
with micro and nanobeams that are short and stubby, are both taken into account by
the nonlocal Timoshenko theory. Stephen and Puchegger [9] discussed about the hinged-
hinged end conditions and explained about the frequency of the beam theory which can be
factorized,resulting in consecutive spectrum of natural frequencies. Dong et al. [3] explained
about the shear correction factors that are calculated by equating the three-dimensional
elasticity theories with the two transverse forces that are concurrently applied to a cross-section.
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Huang [6] explained about the longitudinal vibrations in nanorod with internal long range
interactions. Aydogdu [1] explained that the classical (local) rod model greatly overestimates
the axial vibration frequencies by excluding the impact of small-length scale. Murmu and
Adhikari [7] developed the axial vibration of double-nanorod system significantly influenced by
nonlocal effects. Bahrami [2] explained about the reflection and transmission matrices of wave
power reflection in nanorod. Yang et al. [12] discussed about the nonlocal fluid theory in fluid
filled graphene tubule.

In this paper, the influence of thermal fields, on the propagation of flexural waves in graphene
nanorod is discussed. The analysis is conducted within the framework of continuum mechanics.
The dispersion curves obtained for the graphene nanorod with thermal effect is compared with
the existing literature that considers no thermal effect. This comparison serves to highlight
the accuracy and precision of findings. Overall, this paper contributes to the understanding of
flexural wave propagation in graphene nanorod by considering the influence of thermal fields,
providing valuable insights for researchers in the field.

2. Formulation of the Problem
Consider a graphene nanorod based on Timoshenko beam model that is subjected to shear force
and moment of bending. During the bending, the plane is perpendicular to the horizontal axis.
The relation between the moment of bending and curvature is as follows

∂y
∂x

= ψ

γo
, (1)

where y is a displacement to the centroidal plane, x is the axial coordinate, t is the time, ψ is
the effect of bending and γo is the shear effects.
The expressions for bending moment is given by

M
EI

= ∂ψ

∂x
, (2)

where M denotes moment of bending, E denotes Youngs Modulus and I is the moment of inertia.
Shear strain γ and shear modulus G are applied for expressing the shear force V at the cross
section, respectively as

V =G
∫

A
γdA ,

where A represents the cross sectional area. Since γo represents the centroidal axis for the
shear strain, then Gγo A is the shear force. The adjustment coefficient κ is introduced to balance
the equation and is given by

V = (Gγo A)κ

=⇒ V =GAκ
(
∂y
∂x

−ψ
)

(3)

Equation of motion in the vertical direction for the element is of the form

−V +
(
V + ∂V

∂x
dx

)
+ qdx = ρAdx

∂2 y
∂t2
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=⇒ ∂V
∂x

+ q = ρA
∂2 y
∂t2 (4)

where ρ be the element of mass density and q is the external force. Summing moments about
axis that is perpendicular to x, y-plane and passing through the element center, we get

1
2

V dx+ 1
2

(
V + ∂V

∂x
dx

)
dx+M−

(
M+ ∂M

∂x

)
dx = ρI

∂2ψ

∂t2 dx

=⇒ V − ∂M
∂x

= ρI
∂2ψ

∂t2 . (5)

Substituting the bending moment eqn. (2) and shear force eqn. (3) into eqns. (4) and (5), the
equations of the motion becomes

GAκ
(
∂ψ

∂x
− ∂2 y
∂x2

)
+ρA

∂2 y
∂t2 = q(x, t) , (6)

GAκ
(
∂y
∂x

−ψ
)
+EI

∂2ψ

∂x2 = ρI
∂2ψ

∂t2 . (7)

Due to thermal effects, the constant axial force q is given by

q =−EAαθ
∂2 y
∂x2 , (8)

where the temperature is θ and the thermal expansion is α. Substituting the eqns. (8) in (6),
the governing equations of the motion for Timoshenko beam theory of the graphene nanorod
becomes

=⇒ GAκ
(
∂ψ

∂x
− ∂2 y
∂x2

)
+ρA

∂2 y
∂t2 =−EAαθ

∂2 y
∂x2 (9)

=⇒ GAκ
(
∂y
∂x

−ψ
)
+EI

∂2ψ

∂x2 = ρI
∂2ψ

∂t2 (10)

In eqn. (9) and eqn. (10), if the thermal field terms are neglected the result matches with
Graff [5].

3. Solution of the Problem
Distribution of waves in graphene nanorod under a temperature is studied by considering
the harmonic wave in the infinite beam. Assuming the solutions in the form

y= B1ei(γx−ωt) , ψ= B2ei(γx−ωt) , (11)

where B1 and B2 are amplitudes, γ is the wavenumber and ω is the frequency. Substituting
the harmonic solution eqn. (11) in the equation of motion eqns. (9)-(10), we get

(GAκγ2 −ρAω2 −EAαθγ2)B1 + iGAκγB2 = 0 , (12)

iGAκγB1 − (GAκ+EIγ2 −ρIω2)B2 = 0 . (13)

Eqns. (12)-(13) can be written in the form of matrix,[
(GAκγ2 −ρAω2 −EAαθγ2) iGAκγ

iGAκγ −(GAκ+EIγ2 −ρIω2)

][
B1
B2

]
= [

0
]
. (14)

A trivial solution is obtained by solving the matrix given in eqn. (14), so as to achieve a
significant solution compare the coefficient of the determinant arrangement to nonexistent as
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follows∣∣∣∣GAκγ2 −ρAω2 −EAαθγ2) iGAκγ
iGAκγ −(GAκ+EIγ2 −ρIω2)

∣∣∣∣= [
0
]
. (15)

By solving the determinant given in eqn. (15), a fourth order frequency equation is obtained in
the form

(GκAγ2 −ρAω2 −EAαθγ2)(GAκ+EIγ2 −ρIω2)−G2A2κ2γ2 = 0

=⇒ EI
ρA

(
1− Eαθ

Gκ

)
γ4 − I

A

(
1+ E

Gκ
+ Eαθ

Gκ

)
γ2ω2 −ω2 + ρI

GκA
ω4 − Eαθγ2

ρ2 = 0 . (16)

Eqn. (16) represents the relationship between the frequency and wavenumber of the graphene
nanorod based on Timoshenko beam theory. Letting the wave propagation’s phase velocity c = ω

γ
,

the dispersive characteristics of the nanorod are analyzed.

4. Numerical Results
The frequency equation is derived using beam theory and parameters of the beam are taken
in the order from Yang et al. [11] as E = 1×1012 pa, ρ = 2.27×103 kg m−3, G = 0.4×1012 pa,
A = 3×10−19 m2, I = 1.78×10−38 m4, T = 10 K and α=−1.6×10−6 k−1.

Dispersion relation are drawn between the wave number and phase velocity of the graphene
nanorod with the effect thermal field and is shown in Figure 1. From Figure 1, it is observed
that the Timoshenko beam theory as function of wavenumber and phase velocity with the effect
of thermal field. Also it determines that when the wavenumber rises the phase velocity also
increases in certain period and then it flows down in same period without any disturbance in
the entire process.

Figure 1. Dispersion relation between wavenumber and phase velocity with temperature

Dispersion relation are drawn between the wave number and phase velocity of the graphene
nanorod exposed to distinct thermal field and is shown in Figure 2. From Figure 2, it is seen
that as the wave number rises the phase velocity increases at different temperature for higher
modes of vibration it represents the wave characteristics in nature.
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Figure 2. Dispersion relation between wavenumber and phase velocity with temperature for higher
modes

Figure 3. Dispersion relation between wavenumber and phase velocity with temperature for lower
modes

Figure 4. Dispersion curves between wavenumber and phase velocity
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Dispersion relation are drawn between the wave number and phase velocity of the graphene
nanorod exposed to distinct thermal field and is shown in Figure 3. From Figure 3, it is seen
that as the wave number rises the phase velocity also increases at different temperature for
higher modes of vibration. For different temperature it is determined as the wave number
increases the phase velocities increases.

Dispersion curves of graphene tubule in the absence of thermal effect is drawn and is
proven in Figure 4. From Figure 4, it is determined that the graphene nanorod increases the
wavenumber as the phase velocities increases also. Further, the dispersion curves of graphene
nanorod in the absence of external force matches the curves in Figure 4 of Graff [5]. This
demonstrates the existence of the current result.

5. Concluding Remarks
The scattered relations between the phase velocity and wavenumber is derived by finding the
solution in matrix form. Frequency equations for flexural modes of vibration are derived and
the numerical results are plotted in form of dispersion curves to study the characteristics of
propagation of waves. Also it drives reasoned that the phase velocity increases as wave number
climbs for any mode of vibrations.
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