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1. Introduction
Let A be the class of analytic functions in the open unit disc U= {z : z ∈C and |z|} and normalized
by the conditions f (0)= 0 and f ′(0)= 1 which are of the form

f (z)= z+
∞∑

n=2
anzn, z ∈U. (1.1)

Consider a class S of univalent functions in U such that S is the subclass of class A.
The Köebe one-quarter theorem guarantees that every univalent function f has a disc of

radius 1
4 in it’s image. As a result, every univalent function f has an inverse f −1 satisfying
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f −1( f (z))= z, z ∈U and

f −1( f (w))= w,
(
|w| < r0( f ), r0( f )≥ 1

4

)
,

where

g(w)= f −1(w)= w−a2w2 + (2a2
2 −a3)w3 − (5a3

2 −5a2a3 +a4)w4 +·· · . (1.2)

If both f and f −1 are univalent in U, f is said to be biunivalent in U. The class of biunivalent
functions defined in the unit disc is denoted by σ. The Köebe function univalently maps the unit
disc U onto the entire complex plane minus an opening along the line from −1

4 to −∞. Therefore,
the Köebe function is not an element of σ. Hence the picture domain doesnot contain the unit
disc U. In 1985, Bieberbach conjecture was proved by Louis de Branges [5], which asserts that
for each S generated by the series (1.1), the following coefficient inequality is true

|an| ≤ n (n ∈N−1).

The set of positive integers is denoted by N. Lewin [9] was the first to introduce and study
the class of analytic bi-univalent functions, proving that |a2| ≤ 1.51. In [9] Lewin’s result was
refined to |a2| ≤

p
2. Bi-univalent function subclasses generated by strongly starlike, starlike

and convex functions were studied by Brannan and Clunie [2], and Pommerenke [16]. They
defined non-sharp estimates for the first two Taylor-Maclaurin coefficients |a2| and |a3|, and
presented bi-starlike and bi-convex functions.

For two functions f and g analytic in U, we say that the function f is subordinate to g in U

and write f (z)≺ g(z), if there exists a schwarz function ω, which is analytic in U with ω(0)= 0
and |ω(z)| < 1, such that f (z)= g(ω(z)), z ∈U.

Let λ be a real non-zero constant, the function which generates Gegenbauer polynomials is
given by Gλ(x, z)= 1

(1−2xz+z2)λ , where x ∈ [−1,1] and z ∈U.
Since Gλ is analytic in unit disc U for a fixed value of x, we can expand Gλ by Taylor’s series

expansion which gives

Gλ =
∞∑

n=0
vλn(x)zn, (1.3)

where vλn is Gegenbauer polynomials of degree n.
Gegenbauer polynomials can also be expanded by the relation,

vλn(x)= 1
n

[2x(n+λ−1)vλn−1(x)− (n+2λ−2)vλn−2(x). (1.4)

For the values of n, initial Gegenbauer polynomials can be written as:

vλ0 (x)= 1,

vλ1 (x)= 2λx,

vλ2 (x)= 2λ(1+λ)x2 −λ.

Generalized equation of (1.4) for 0< q ≤ p ≤ 1 is given by

vλ0 (x, s, p, q)= 1,

vλ1 (x, s, p, q)= 2(p+ q)x,
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vλ2 (x, s, p, q)= 1
2

[λ(1+λ)(p2 + q2)(p+ q)x2 +2λpqs],

which are known as (p, q)-Gegenbauer polynomials which become Chebyshev polynomials for
p = q =λ= 1 and Legendre polynomials for p = q = 1 and λ= 1

2 .

In present, work we define two new classes of bi-univalent functions with the help of (p, q)
Gegenbauer polynomials. To prove our results we use the following lemma.

Lemma 1.1 ([1]). If w(z)= c1z+ c2z2+ c3z3+. . . which is analytic on the unit disc U with w(0)=0
and |w(z)| ≤ 1 then |ci| ≤ 1, for all j ∈N.

First, we define a class of convex bi-univalent functions associated with (p, q) Gegenbauer
polynomials as below.

Definition 1.2. A function f ∈σ is said to be in the class Bc
λ
(p, q) if it satisfies the following

subordination for all z,w ∈U,

1+ z f ′′(z)
f ′(z)

≺Gλ
(p,q)(x, z) (1.5)

and

1+ wg′′(w)
g′(w)

≺Gλ
(p,q)(x,w), (1.6)

where x ∈ (1
2 ,1

]
, Gλ

(p,q) is the generating function of the (p, q)-Gegenbauer polynomials and
g(w)= f −1(w).

Next, we define the following class which consists of starlike bi-univalent functions
associated with (p, q)-Gegenbauer polynomials.

Definition 1.3. A function f ∈σ is said to be in the class B∗
λ
(p, q) if the following subordinations

hold for all z,w ∈U,
z f ′(z)
f (z)

≺Gλ
(p,q)(x, z) (1.7)

and
wg′(w)

g(w)
≺Gλ

(p,q)(x,w). (1.8)

Now we estimate the bounds of initial coefficients for the above two classes.

2. Main Results
Theorem 2.1. Let the function f ∈σ in the class Bc

λ
(x, s, p, q) then

|a2| ≤ 1p
2

|λ||p+ q|3/2|x|3/2√
(p+ q)((λ+1)p2 −λp+ ((λ+1)p−λ)q)x2 +2pqs

and

|a3| ≤ 2
13

∣∣∣∣ x(p+ q)[(p+ q)((λ+1)p2 −4λp+ q((λ+1)q−4λ))x2 +2pqs]λ
(p+ q)((λ+1)p2 −λp+ ((λ+1)p−λ)q)x2 +2pqs

∣∣∣∣.
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Proof. Let f ∈ Bc
λ
(p, q) then by definition, we have

1+ z f ′′(z)
f ′(z)

=Gλ
(p,q)(x, c(z)) (2.1)

and

1+ wg′′(w)
g′(w)

=Gλ
(p,q)(x,d(w)) (2.2)

for some functions c(z)= c1z+ c2z2+ c3z3+ . . . and d(w)= d1w+d2w2+ . . . which are anayltic on
the unit disk U with c(0)= d(0)= 0, |c(z)| < 1, |d(w)| < 1 (z,w ∈U). By virtue of the generating
function of the (p, q)-Gegenbauer polynomials Gλ

(p,q) defined already, the equations (2.1) and
(2.2) become,

1+ z f ′′(z)
f ′(z)

= vλ0 (x, s, p, q)+vλ1 (x, s, p, q)c(z)+vλ2 (x, s, p, q)c2(z)+ . . . (2.3)

and

1+ wg′′(w)
g′(w)

= vλ0 (x, s, p, q)+vλ1 (x, s, p, q)d(w)+vλ2 (x, s, p, q)d2(w)+ . . . . (2.4)

After some substitution and simplification, we have

1+2a2z+ (−4a2
2 +a3)z2 + (−6a2a3 +12a4 +2(4a2

2 −6a3)a2)z3 + . . .

= 1+vλ1 (x, s, p, q)c1z+ [vλ1 (x, s, p, q)c2 +vλ2 (x, s, p, q)c2
1]z2 + . . .

and

1−2a2w+ (8a2
2 −6a3)w2 + (−60a3

2 +60a2a3 −12a4 +2a2(6a2
2 −3a3)−2(−8a2

2 +6a3)a2)w3 + . . .

= 1+vλ1 (x, s, p, q)d1w+ [vλ1 (x, s, p, q)d2 +vλ2 (x, s, p, q)d2
1]w2 + . . . .

Equating coefficients, we get

2a2 = vλ1 (x, s, p, q)c1, (2.5)

6a3 −4a2
2 = vλ1 (x, s, p, q)c2 +vλ2 (x, s, p, q)c2

1, (2.6)

−2a2 = vλ1 (x, s, p, q)d1, (2.7)

8a2
2 −6a3 = vλ1 (x, s, p, q)d2 +vλ2 (x, s, p, q)d2

1. (2.8)

From (2.5) and (2.7), we have

c1 =−d1 and 8a2
2 = [vλ1 (x, s, p, q)]2(c2

1 +d2
1), (2.9)

by adding (2.6) and (2.8) we get

4a2
2 = vλ1 (x, s, p, q)(c2 +d2)+vλ2 (x, s, p, q)(c2

1 +d2
1). (2.10)

By substituting for c2
1 +d2

2 in (2.10), we get[
4− 8vλ2 (x, s, p, q)

vλ1

]
a2

2 = vλ1 (x, s, p, q)(c2 +d2).

By using Lemma 1.1 and after further simplification, we have

|a2| ≤ 1p
2

|λ| |p+ q|3/2|x|3/2√
(p+ q)((λ+1)p2 −λp+ ((λ+1)p−λ)q)x2 +2pqs

.
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From (2.6) and (2.8), we have

12a3 −12a2
2 = vλ1 (x, s, p, q)(c2 −d2)+vλ2 (x, s, p, q)(c2

1 −d2
1). (2.11)

After substituting a2
2 and simple calculations it follows that

|a3| ≤ 2
13

∣∣∣∣ x(p+ q)[(p+ q)((λ+1)p2 −4λp+ q((λ+1)q−4λ))x2 +2pqs]λ
(p+ q)((λ+1)p2 −λp+ ((λ+1)p−λ)q)x2 +2pqs

∣∣∣∣ .

By taking λ= 1, p = q = 1 in above theorem, we get the following corollary.

Corollary 2.2. Let the function f ∈σ given by (1.1) be in the class Bc(1). Then

|a2| ≤ 2x
p

x,

|a3| ≤ x2 + x
3

.

2.1 Fekete-Szegö Inequality for the Class Bc
λ

(x,s, p, q)
In study of coefficients of univalent analytic functions, Fekete-Szegö inequality is a very
interesting problem. In this section we find sharp bound of Fekete-Szegö inequality for the class
Bc
λ
(x, s, p, q) of bi-univalent functions.

Theorem 2.3. Let the function f (z) ∈σ be in the class Bc
λ
(x, s, p, q) then for some η ∈R,

|a3 −ηa2
2| = |vλ1 (x, s, p, q)|

∣∣∣∣(h− 1
12

)
d2 +

(
h+ 1

12

)
c2

∣∣∣∣
≤

{ |λ|(p+q)x
6 , |h(η)| ≤ 1

12 ,
2|λ|(p+ q)xh(η), |h(η)| ≥ 1

12 .

Proof. Let f ∈ Bλ
c (x, s, p, q) by using equation (2.10) and (2.11) for some η ∈R, we arrive at

a3 −ηa2
2 = (1−η)

[
[vλ1 (x, s, p, q)3(d2 + c2)]

4[vλ1 (x, s, p, q)]2 −8vλ2 (x, s, p, q)

]
+ vλ1 (x, s, p, q)

12
(c2 −d2).

After some simple calculation, we get

a3 −ηa2
2 = vλ1 (x, s, p, q)

[
h(η)d2 − d2

12
+h(η)c2 + c2

12

]
,

where h(η)= (1−η)(vλ1 (x,s,p,q))2

4(vλ1 (x,s,p,q))2−8vλ2 (x,s,p,q)
.

We have

|a3 −ηa2
2| = |vλ1 (x, s, p, q)|

∣∣∣∣(h− 1
12

)
d2 +

(
h+ 1

12

)
c2

∣∣∣∣
≤

{ |λ|(p+q)x
6 , |h(η)| ≤ 1

12 ,
2|λ|(p+ q)xh(η), |h(η)| ≥ 1

12 .

If we replace η= 1, p = q = 1 in Theorem 2.3, we get the following corollary.

Corollary 2.4. Let f be function such that f ∈σ given by (1.1) which belongs to the class Bc(α).
Then |a3 −a2

2| ≤ |α|x
2 .

The next theorem is about bounds of initial coefficients of the class B∗
λ
(x, s, p, q) of starlike

bi-univalent functions.
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Theorem 2.5. Let the function f ∈σ be in the class B∗
λ
(x, s, p, q) then

|a2| ≤
p

2|λ|(p+ q)x
√

(p+ q)x√
|[(λ+1)p2 −2λp+ ((λ+1)q−2λ)q](p+ q)x2 +2pqs|

and

|a3| ≤ 1
2
|xλ(1+2λ(p+ q)x)(p+ q)|.

Proof. Let f ∈ B∗
λ
(x, s, p, q), we have

z f ′(z)
f (z)

=Gλ
(p,q)(x, s, c(z))

and
wg′(w)

g(w)
=Gλ

(p,q)(x, s,d(w)),

where c(z) and d(w) are Schwartz functions such that c(0) = d(0) = 1, |c(z)| < 1, (z ∈ U) and
|c(z)| < 1, |d(w)| < 1, (w ∈U).

We can write the above equations as,
z f ′(z)
f (z)

= 1+vλ1 (x, s, p, q)c1z+ [vλ1 (x, s, p, q)c2 +vλ2 (x, s, p, q)c2
1]z2 + . . .

and
wg′(w)

g(w)
= 1+vλ1 (x, s, p, q)+ [vλ1 (x, s, p, q)d2 +vλ2 (x, s, p, q)d2

1]w2 + . . . .

By comparing coefficients we can write,

a2 = vλ1 (x, s, p, q)c1, (2.12)

2a3 −a2
2 = vλ1 (x, s, p, q)c2 +vλ2 (x, s, p, q)c2

1, (2.13)

−2a2 = vλ1 (x, s, p, q)d1, (2.14)

3a2
2 −2a3 = vλ1 (x, s, p, q)d2 +vλ2 (x, s, p, q)d2

1. (2.15)

From (2.11) and (2.13), we have

c1 =−d1 and 2a2
2 = [vλ1 (x, s, p, q)]2(c2

1 +d2
1). (2.16)

By adding (2.12) and (2.14), we get

2a2
2 = vλ1 (x, s, p, q)(c2 +d2)+vλ2 (x, s, p, q)(c2

1 +d2
1). (2.17)

By substituting (2.15) in (2.16), we get[
2− 2vλ2 (x, s, p, q)

vλ1 (x, s, p, q)2

]
a2

2 = vλ1 (x, s, p, q)(c2 +d2).

After applying lemma and some calculations we arrive at

|a2| ≤
p

2|λ|(p+ q)x
√

(p+ q)x√
|[(λ+1)p2 −2λp+ ((λ+1)q−2λ)q](p+ q)x2 +2pqs|

.

Next by subtracting (2.14) by (2.12), we get

4a3 −4a2
2 = vλ1 (x, s, p, q)(c2 −d2)+vλ2 (x, s, p, q)(c2

1 −d2
1).
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Since c1 =−d1, the above equation becomes

a3 = a2
2 +

vλ1 (x, s, p, q)
4

(c2 −d2). (2.18)

After using Lemma 1.1 with further simplification, we get

|a3| ≤ 1
2
|xλ(

1+2λ(p+ q)x
)
(p+ q)|.

By taking λ= 1, p = q = 1 in above theorem, we get the following corollary.

Corollary 2.6. Let the function f ∈σ given by (1.1) be in the class Bλ(1). Then

|a2| ≤ 2x
p

2x,

|a3| ≤ 4x2 + x.

Now we can find the sharp bounds of Fekete-Szegö functional a3 −ηa2
2 which is defined for

the class B∗
λ
(x, s, p, q).

2.2 Fekete-Szegö Inequality for the Class B∗
λ

(x,s, p, q)
Theorem 2.7. Let the function f ∈σ be in the class B∗

λ
(x, s, p, q). Then for η ∈R, we have

|a3 −ηa2
2| ≤

{
|λ|(p+ q)x, |h(η)| ≤ 1

4 ,
2|λ|(p+ q)x|h(η)|, |h(η)| ≥ 1

4 .

Proof. Let f ∈ B∗
λ
(x, s, p, q) then by using the equations (2.16) and (2.18) for some η ∈R, we get

a3 −ηa2
2 = (1−η)a2

2 +
vλ1 (x, s, p, q)

4
(c2 −d2)

= vλ1 (x, s, p, q)
[(

h(η)+ 1
4

)
c2 +

(
h(η)− 1

4

)
d2

]
,

where h(η)= (vλ1 (x,s,p,q))2(1−η)
2(vλ1 (x,s,p,q))2−2vλ1 (x,s,p,q)

, we have

|a3 −ηa2
2| ≤ |vλ1 (x, s, p, q)|

∣∣∣∣h(η)+ 1
4
+h(η)− 1

4

∣∣∣∣
≤

{
|λ|(p+ q)x, |h(η)| ≤ 1

4 ,
2|λ|(p+ q)x|h(η)|, |h(η)| ≥ 1

4 .

If we replace η= 1, p = q = 1 in Theorem 2.7, we get the following corollary.

Corollary 2.8. Let f be function such that f ∈σ given by (1.1) which belongs to the class Bc(α).
Then |a3 −a2

2| ≤ |α|x.

3. Conclusion
We have obtained initial bounds for two new subclasses of biunivalent functions and have
obtained bounds for Fekete-Szegö functional.
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