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1. Introduction
Over the years, theories have been developed to address a wide range of uncertainty. These
updated theories are implemented and improved as inadequacies are identified, allowing for
the formation of fresh frameworks to solve complicated uncertainty. Probability theory stands
as a pivotal theory in examining stochastic phenomena. In 1965, the concept of the Fuzzy set
was introduced by Zadeh [16], representing an extension of the classical notion of set. Fuzzy
sets have proven to be a valuable instrument in addressing ambiguity. The Intuitionistic Fuzzy
Matrix (IFM) extends the fuzzy matrix proposed by Thomason [14] and has proven beneficial
in various domains including decision-making, relational equations, and clustering analysis.
Consequently, a new concept known as the intuitionistic fuzzy set was developed, developed
by Atanassov [1]. Hashimoto [6] has examined the problem of decomposing fuzzy rectangular
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matrices and has demonstrated certain properties associated with this decomposition. Fuzzy
matrix theory was developed by Kim and Roush [8] as an extension of Boolean matrix theory.

The structures of intuitionistic fuzzy relations were studied by Bustince and Burillo [3]. The
intuitionistic fuzzy matrix was defined by Pal et al. [13]. The discussion on the period of power of
square intuitionistic fuzzy matrices is extensively covered, including various results concerning
equivalence IFMs, as examined by Jeong and Park [7]. Generalized intuitionistic fuzzy matrices
were studied by Bhowmik and Pal [2]. An attempt was made by Mondal and Pal [10] to study
the similarity relations, invertibility, and eigenvalues of intuitionistic fuzzy matrices. Lee and
Jeong [9] investigated how a transitive intuitionistic fuzzy matrix can be decomposed into a sum
of nilpotent and symmetric IFM. The decomposition process of an intuitionistic fuzzy matrix
into a product consisting of idempotent IFM and rectangular IFM was explored by Murugadas
and Lalitha [11]. A promising research direction was opened when Atanassov [1] introduced
modal operators, previously considered meaningless in fuzzy set theory.

Bipolar Intuitionistic Fuzzy Sets (BIFSs) were introduced by Ezhilmaran and Sankar [5],
who elucidated their operations and defined bipolar intuitionistic fuzzy relations. The Bipolar
Pythagorean Fuzzy Matrix (BPyFM) and some of its novel operations were defined by
Chinnadurai et al. [4] using bipolar pythagorean fuzzy set theory. A decomposition of an
intuitionistic fuzzy matrix was obtained by Muthuraji et al. [12] using the new decomposition
operator and modal operator. The necessary and sufficient conditions for a transitive and
c-transitive closure matrix are examined in terms of modal operators. Moreover, further results
are investigated utilizing modal operators for BPyFM under max-min composition, accompanied
by discussions on similarity relations and idempotency. Ultimately, a decomposition of a BPyFM
is accomplished using modal operators through the introduction of a new composition operator,
with some properties of this new operator substantiated.

2. Preliminaries
Some fundamental definitions and results are recalled for subsequent utilization.

Definition 2.1 ([13]). An Intuitionistic Fuzzy Matrix (IFM) is a matrix of ordered pair
X = (〈xµi j, xγi j〉) of non-negative real number satisfying 0≤ xµi j + xγi j ≤ 1, for all i, j.

Definition 2.2 ([13]). An IFM J = (〈1,0〉) for all entries is known as the universal matrix and
an IFM O = (〈0,1〉) for all entries is known as zero matrix. Denote the set of all IFMs of order
m×n by Fmn and square matrix of order n by Fn. The identity IFM I = (〈δµi j,δ

γ

i j〉) is defined by
〈δµi j,δ

γ

i j〉 = 〈1,0〉 if i = j and 〈δµi j,δ
γ

i j〉 = 〈0,1〉 if i ̸= j.

Definition 2.3 ([1]). Let 〈xµ, xγ〉,〈yµ, yγ〉 ∈ IFS. Then

〈xµ, xγ〉← 〈yµ, yγ〉 =
{
〈1,0〉, if 〈xµ, xγ〉 ≥ 〈yµ, yγ〉,
〈xµ, xγ〉, if 〈xµ, xγ〉 ≤ 〈yµ, yγ〉.

Definition 2.4 ([12]). Let X = (〈xµi j, xγi j〉)m×n and Y = (〈yµi j, yγi j〉)n×p are IFMs. Then

XY =
(〈

n∑
k=1

(xµik yµk j),
n∏

k=1
(xγik + yγk j)

〉)
.
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Also, X2 = X X , X k = X k−1X for max-min composition and X [2] = X X , X k = X k−1X for min-max
composition.

Definition 2.5 ([12]). For any IFM X ∈ Fn,
(i) X is reflexive if and only if X ≥ In,

(ii) X is symmetric if and only if X = X T ,

(iii) X is transitive if and only if X ≥ X2,

(iv) X is idempotent if and only if X = X2,

(v) X is irreflexive if 〈xµii, xγii〉 = 〈0,1〉, for all i = j,

(vi) X is c-transitive if X ≤ X [2].

Definition 2.6 ([15]). An IFM X is said to be an intuitionistic fuzzy equivalence matrix if it
satisfy reflexive, symmetry and transitivity.

Definition 2.7 ([12]). For an IFM X , □X = 〈xµi j,1− xµi j〉 and ♢X = 〈1− xγi j, xγi j〉.

Definition 2.8 ([12]). Let X ∈ IFM, the transitive closure and c-transitive closure of X is
defined by X∞ = X ∨ X2 ∨ X3 ∨ . . .∨ X n and X∞ = X c ∧ (X c)[2] ∧ (X c)[3] ∧ . . .∧ (X c)[n].

Definition 2.9 ([12]). For any two element 〈xµ, xγ〉,〈yµ, yγ〉 ∈ IFS we introduce the operation
‘∧m ’ as 〈xµ, xγ〉∧m 〈yµ, yγ〉 = 〈min(xµ, yµ),min(xγ, yγ)〉.

Lemma 2.10 ([12]). 1−
n∏

k=1
(xµik + yµk j)=

n∑
k=1

(1− xµik)(1− yµk j), for all i, j, xµik, yµk j ∈ [0,1].

Lemma 2.11 ([12]). 1−
n∑

k=1
xµik yµk j =

n∏
k=1

(1− xµik)+ (1− yµk j), for all i, j, xµik, yµk j ∈ [0,1].

Lemma 2.12 ([12]). If X∞ is the transitive closure of X , then the transitive closure of □X
is □X∞.

Proof. For X = (〈xµi j, xγi j〉),Y = (〈yµi j, yγi j〉),

XY =
(〈

n∑
k=1

(xµik yµk j),
n∏

k=1
(xγik + yγk j)

〉)
,(〈

n∑
k=1

(xµik yµk j),
n∏

k=1
(xγik + yγk j)

〉)
=

{
〈1,0〉, if i = j,
〈yµ, yγ〉, if i ̸= j .

Thus XY = Y ⇒ X X ≤ XY = Y , that is, X2 ≤ Y . Continuing in this way, we have X3 ≤ Y ,
X4 ≤Y , . . . and also X ∨ X2 ∨ X3 ∨ . . .∨ X n ≤Y and hence X∞ ≤Y .

Lemma 2.13 ([12]). For an IFM X , the following inequalities are true
(i) □X∞ = (□X )∞,

(ii) ♢X∞ = (♢X )∞,

(iii) ♢X∞ = (♢X )∞.
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Definition 2.14 ([4]). A Bipolar Pythagorean Fuzzy Matrix (BPyFM) of size r × s is A =
[(xµi jn, xµi jp, xγi jn, xγi jp)], where xµi jn, xµi jp, xγi jn, xγi jp ∈ [−1,1] are positive and negative membership
values of the element xµi j, xγi j ,

0≤ (xµi jp)2 + (xγi jp)2 ≤ 1, −1≤−[(xµi jn)2 + (xγi jn)2]≤ 0.

Definition 2.15 ([4]). Let A and B are two BPyFMs of same size, then we write A ≥ B, if
(xµi jp)≥ (yµi jp), (xγi jp)≤ (yγi jp), (xµi jn)≥ (yµi jn) and (xγi jn)≤ (yγi jn), for all i, j.

3. More Properties of Modal Operators in Bipolar Pythagorean
Fuzzy Matrix

New results on modal operators under max-min composition are explored in this section.
Additionally, properties such as reflexivity, symmetry, transitivity, and idempotency of necessity
and possibility are discussed.

Definition 3.1. Let X be a BPyFM. Then,
(i) the necessity operation of X is defined as

□X = [〈xµi jn,
√

1− (xµi jn)2〉,〈xµi jp,
√

1− (xµi jp)2〉],

(ii) the possibility operation of X is defined as

♢X = [〈
√

1− (xγi jn)2, xγi jn〉,〈
√

1− (xγi jp)2, xγi jp〉].

Definition 3.2. Let X = 〈xµi jn, xµi jp, xγi jn, xγi jp〉, Y = 〈yµi jn, yµi jp, yγi jn, yγi jp〉 ∈BPyFM. Then,

X ←Y =
{
〈−1,1,0,0〉, if X ≥Y ,
〈xµi jn, xµi jp, xγi jn, xγi jp〉, if X ≤Y .

Here, X ≥Y , xµi jn ≥ yµi jn, xµi jp ≥ yµi jp , xγi jn ≤ yγi jn, xγi jp ≤ yγi jp .

Theorem 3.3. Let X and Y be two BPyFMs, then

□(X ←Y )=□X ←□Y . (3.1)

Proof. Case (i): If X ≥Y , then

□(〈xµi jn, xµi jp, xγi jn, xγi jp〉← 〈yµi jn, yµi jp, yγi jn, yγi jp〉)=□〈−1,1,0,0〉 = 〈−1,1,0,0〉. (3.2)

Since, X ≥Y , xµi jn ≥ yµi jn, xµi jp ≥ yµi jp , xγi jn ≤ yγi jn and xγi jp ≤ yγi jp .
Therefore,√

1− (xµi jn)2 ≤
√

1− (yµi jn)2,√
1− (xµi jp)2 ≤

√
1− (yµi jp)2,

(xµi jn, xµi jp,
√

1− (xµi jn)2,
√

1− (xµi jp)2)≥ (yµi jn, yµi jp,
√

1− (yµi jn)2,
√

1− (yµi jp)2).

Implies

□(xµi jn, xµi jp, xγi jn, xγi jp)≥□(yµi jn, yµi jp, yγi jn, yγi jp).
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Thus

□(〈xµi jn, xµi jp, xγi jn, xγi jp〉)←□(〈yµi jn, yµi jp, yγi jn, yγi jp〉)= 〈−1,1,0,0〉. (3.3)

From equation (3.2) and equation (3.3), equation (3.1) holds.

Case (ii): If X ≤Y , then

□(〈xµi jn, xµi jp, xγi jn, xγi jp〉← 〈yµi jn, yµi jp, yγi jn, yγi jp〉)
=□〈xµi jn, xµi jp, xγi jn, xγi jp〉

= (xµi jn, xµi jp,
√

1− (xµi jn)2,
√

1− (xµi jp)2), (3.4)

□(xµi jn, xµi jp, xγi jn, xγi jp)←□(yµi jn, yµi jp, yγi jn, yγi jp)

= (xµi jn, xµi jp,
√

1− (xµi jn)2,
√

1− (xµi jp)2)← (yµi jn, yµi jp,
√

1− (yµi jn)2,
√

1− (yµi jp)2)

= (xµi jn, xµi jp,
√

1− (xµi jn)2,
√

1− (xµi jp)2). (3.5)

From equation (3.4) and equation (3.5), equation (3.1) holds.

Theorem 3.4. Let X and Y be two BPyFMs, then

♢(X ←Y )=♢X ←♢Y . (3.6)

Proof. Case (i): If X ≥Y , then

♢(〈xµi jn, xµi jp, xγi jn, xγi jp〉← 〈yµi jn, yµi jp, yγi jn, yγi jp〉)=♢〈−1,1,0,0〉 = 〈−1,1,0,0〉. (3.7)

Since, X ≥Y , xµi jn ≥ yµi jn, xµi jp ≥ yµi jp , xγi jn ≤ yγi jn and xγi jp ≤ yγi jp .
Therefore,√

1− (xγi jn)2 ≥
√

1− (yγi jn)2,
√

1− (xγi jp)2 ≥
√

1− (yγi jp)2,

(
√

1− (xγi jn)2,
√

1− (xγi jp)2, xγi jn, xγi jp)≥ (
√

1− (yγi jn)2,
√

1− (yγi jp)2, yγi jn, yγi jp).

So,

♢(xµi jn, xµi jp, xγi jn, xγi jp)≥♢(yµi jn, yµi jp, yγi jn, yγi jp).

Thus

♢(〈xµi jn, xµi jp, xγi jn, xγi jp〉)←♢(〈yµi jn, yµi jp, yγi jn, yγi jp〉)= 〈−1,1,0,0〉. (3.8)

From equation (3.7) and equation (3.8), equation (3.6) holds.

Case (ii): If X ≤Y , then

♢(〈xµi jn, xµi jp, xγi jn, xγi jp〉← 〈yµi jn, yµi jp, yγi jn, yγi jp〉)=♢〈xµi jn, xµi jp, xγi jn, xγi jp〉

= (
√

1− (xγi jn)2,
√

1− (xγi jp)2, xγi jn, xγi jp), (3.9)

♢(xµi jn, xµi jp, xγi jn, xγi jp)←♢(yµi jn, yµi jp, yγi jn, yγi jp)

= (
√

1− (xγi jn)2,
√

1− (xγi jp)2, xγi jn, xγi jp)← (
√

1− (yγi jn)2,
√

1− (yγi jp)2, yγi jn, yγi jp)

= (
√

1− (xγi jn)2,
√

1− (xγi jp)2, xγi jn, xγi jp). (3.10)

From equation (3.9) and equation (3.10), equation (3.6) holds.
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Theorem 3.5. X is reflexive matrix if and only if □X is reflexive matrix.

Proof. X is reflexive matrix

⇔ X ≥ I
⇔〈xµi jn, xµi jp, xγi jn, xγi jp〉 ≥ 〈δµi jn,δµi jp,δγi jn,δγi jp〉, for all i, j

⇔ (xµi jn, xµi jp,
√

1− (xµi jn)2,
√

1− (xµi jp)2)≥ (δµi jn,δµi jp,
√

1− (δµi jn)2,
√

1− (δµi jp)2)

⇔□X ≥□I ⇔□X is reflexive.

The proof of the following theorem is obvious from Theorem 3.5.

Theorem 3.6. X is reflexive matrix if and only if ♢X is reflexive matrix.

Theorem 3.7. X is reflexive if and only if □X c is irreflexive.

Proof. It is obvious that if X is reflexive if and only if X c is irreflexive and so □X c is irreflexive.
Similarly, ♢X c is irreflexive if and only if X is reflexive.

Theorem 3.8. X is symmetric matrix if and only if □X is symmetric matrix.

Proof. X is symmetric

⇔ X = X T

⇔〈xµi jn, xµi jp, xγi jn, xγi jp〉 = 〈xµjin, xµjip, xγjin, xγjip〉
⇔ (xµi jn, xµi jp,

√
1− (xµi jn)2

√
1− (xµi jp)2)= (xµjin, xµjip,

√
1− (xµjin)2

√
1− (xµjip)2)

⇔□X = (□X )T .

Thus X is symmetric matrix if and only if □X is symmetric matrix.

The proof of the following theorem is obvious from Theorem 3.8.

Theorem 3.9. X is symmetric matrix if and only if ♢X is symmetric matrix.

Theorem 3.10. X is transitive matrix if and only if □X is transitive matrix.

Proof. X is transitive

⇔ X ≥ X2

⇔〈xµi jn, xµi jp, xγi jn, xγi jp〉 =
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),

n∏
k=1

(
√

(xγikn)2 + (yγk jn)2),
n∏

k=1
(
√

(xγikp)2 + (yγk jp)2)
)
, for all i, j

〈xµi jn, xµi jp〉 ≥
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp)
)
,

〈xγi jn, xγi jp〉 ≤
( n∏

k=1
(
√

(xγikn)2 + (yγk jn)2),
n∏

k=1
(
√

(xγikp)2 + (yγk jp)2)
)

⇔ (xµi jn, xµi jn,
√

1− (xµi jn)2,
√

1− (xµi jp)2)≥
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),

√
1−

n∑
k=1

(xµikn yµk jn)2,

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 829–843, 2024



Decomposition of Bipolar Pythagorean Fuzzy Matrices: S. Sriram and K. Sivaranjani 835

√
1−

n∑
k=1

(xµikp yµk jp)2
)

=
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),

n∏
k=1

(
√

1− (xµikn)2 +
√

1− (xµk jn)2),

n∏
k=1

(
√

1− (xµikp)2 +
√

1− (xµk jp)2)
)

(by Lemma 2.11)

⇔□X ≥□X2.

Thus X is transitive matrix if and only if □X is transitive matrix.

The proof of the following theorem is obvious from Theorem 3.10.

Theorem 3.11. X is transitive matrix if and only if ♢X is transitive matrix.

Theorem 3.12. X is idempotent matrix if and only if □X is idempotent matrix.

Proof. X is idempotent

⇔ X = X2

⇔〈xµi jn, xµi jp, xγi jn, xγi jp〉 =
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),

n∏
k=1

(
√

(xµikn)2 + (xµk jn)2),
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2)
)

for all i, j

⇔ (xµi jn, xµi jp,
√

1− (xµi jn)2,
√

1− (xµi jp)2)=
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),√
1−

n∑
k=1

(xµikn yµk jn)2,

√
1−

n∑
k=1

(xµikp yµk jp)2
)

=
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),

n∏
k=1

(
√

1− (xµikn)2+
√

1− (xµk jn)2),

n∏
k=1

(
√

1− (xµikp)2+
√

1− (xµk jp)2)
)

(by Lemma 2.11)

⇔□X =□X2.

Thus X is idempotent matrix if and only if □X is idempotent matrix.

The proof of the following theorem is obvious from Theorem 3.12.

Theorem 3.13. X is idempotent matrix if and only if ♢X is idempotent matrix.

Remark 3.14. If X is a bipolar Pythagorean fuzzy equivalence matrix then □X and ♢X are
also bipolar Pythagorean fuzzy equivalence matrix.
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4. Transitive Closure and c-Transitive Closures on Bipolar Pythagorean
Fuzzy Matrix

In this section, an investigation is underway to explore the necessary and sufficient conditions
for transitive closure and c-transitive closure matrices, utilizing modal operators.

Theorem 4.1. Let X be a BPyFM, X∞ = (X∞)c .

Proof. By Definition 2.9,

(X∞)c = (X ∨ X2 ∨ X3 ∨ . . .∨ X n)c

= X c ∧ (X2)c ∧ (X3)c ∧ . . .∧ (X n)c.

Let us prove,

(X2)c = (X c)[2],

X2 =
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),
n∏

k=1
(
√

(xγikn)2 + (yγk jn)2),
n∏

k=1
(
√

(xγikp)2 + (yγk jp)2)
)
,

(X2)c =
( n∏

k=1
(
√

(xγikn)2 + (yγk jn)2),
n∏

k=1
(
√

(xγikp)2 + (yγk jp)2),
n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp)
)
. (4.1)

Also, X c = 〈xγikn, xγikp, xµikn, xµikp〉 gives by the definition of X [2],

(X c)[2] =
( n∏

k=1
(
√

(xγikn)2 + (yγk jn)2),
n∏

k=1
(
√

(xγikp)2 + (yγk jp)2),
n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp)
)
. (4.2)

Thus by equation (4.1) and equation (4.2), (X2)c = (X c)[2], so in general (X n)c = (X c)[n].
By the definition,

(X∞)c = (X ∨ X2 ∨ X3 ∨ . . .∨ X n)c

= X c ∧ (X2)c ∧ (X3)c ∧ . . . (X n)c

= X c ∧ (X c)[2] ∧ (X c)[3] ∧ . . .∧ (X c)[n]

= X∞.

The proof of the following lemma is obvious from the definition of transitive and c-transitive.

Theorem 4.2. X is transitive if and only if X c is c-transitive and so □X c is c-transitive.

Theorem 4.3. If X is reflexive, then
(i) X T is reflexive,

(ii) X ∨Y is reflexive,

(iii) X ∧Y is reflexive if and only if Y is reflexive.

Proof. (i) and (ii) are obvious from the definition of reflexive.

(iii): If Y is not reflexive, then

〈yµk jn, yµk jp, yγk jn, yγk jp〉 ̸= 〈−1,1,0,0〉,
for at least one i, that is

〈yµk jn, yµk jp, yγk jn, yγk jp〉 < 〈−1,1,0,0〉.
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Thus

〈xµk jn, xµk jp, xγk jn, xγk jp〉∧〈yµk jn, yµk jp, yγk jn, yγk jp〉 < 〈−1,1,0,0〉.
Therefore, Y is reflexive is necessary, the sufficient part is trivial.

Theorem 4.4. If X and Y be two BPyFMs, where X is reflexive and symmetric, Y is reflexive,
symmetric and transitive and X ≤Y , then X∞ ≤Y .

Proof. For X = 〈xµk jn, xµk jp, xγk jn, xγk jp〉, Y = 〈yµk jn, yµk jp, yγk jn, yγk jp〉,

XY =
( n∑

k=1
(xµikn yµk jn),

n∑
k=1

(xµikp yµk jp),
n∏

k=1
(
√

(xγikn)2 + (yγk jn)2),
n∏

k=1
(
√

(xγikp)2 + (yγk jp)2)
)

=
{
〈−1,1,0,0〉, if i = j,
〈yµk jn, yµk jp, yγk jn, yγk jp〉, if i ̸= j

Thus XY = Y ⇒ X X ≤ XY = Y that is X2 ≤ Y . Continuing in this way, we have X3 ≤ Y ,
X4 ≤Y . . . and also X ∨ X2 ∨ X3 ∨ . . .∨ X n ≤Y and hence X∞ ≤Y .

The proof of the following theorem is obvious from Lemma 2.11.

Theorem 4.5. If X∞ is the transitive closure of X , then the transitive closure of □X is □X∞.

Theorem 4.6. Let X be a BPyFM, [(□X )c]∞ = [(□X )∞]c.

Proof. As we know (□X )c =♢X c ,

[(□X )c]∞ = [♢X c]∞ =♢X c ∨ (♢X c)2 ∨ (♢X c)3 ∨ . . .∨ (♢X c)n

(♢X c)2 =
( n∑

k=1
(
√

1− (xµikn)2)(
√

1− (xµk jn)2),
n∑

k=1
(
√

1− (xµikp)2)(
√

1− (xµk jp)2),

n∏
k=1

(
√

(xµikn)2 + (xµk jn)2),
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2)
)

(by Lemma 2.10)

=
(
1−

n∏
k=1

(
√

(xµikn)2 + (xµk jn)2),1−
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2),

n∏
k=1

(
√

(xµikn)2 + (xµk jn)2),
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2)
)
. (4.3)

By definition

X [2] =
( n∏

k=1
(
√

(xµikn)2 + (xµk jn)2),
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2),
n∑

k=1
(xµiknxµk jn),

n∑
k=1

(xµikpxµk jp)
)

and so

□X [2] =
( n∏

k=1
(
√

(xµikn)2 + (xµk jn)2),
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2),

1−
n∏

k=1
(
√

(xµikn)2 + (xµk jn)2),1−
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2)
)

which yields

(□X [2])c =
(
1−

n∏
k=1

(
√

(xµikn)2 + (xµk jn)2),1−
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2),
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n∏
k=1

(
√

(xµikn)2 + (xµk jn)2),
n∏

k=1
(
√

(xµikp)2 + (xµk jp)2)
)
. (4.4)

From equation (4.3) and equation (4.4), we get, therefore (♢X c)2 = (□X [2])c, so in general
(♢X c)n = (□X [n])c ,

[(□X )c]∞ = [♢X c]∞

=♢X c ∨ (♢X c)2 ∨ (♢X c)3 ∨ . . .∨ (♢X c)n

= (□X )c ∨ (□X [2])c ∨ (□X [3])c ∨ . . .∨ (□X [n])c

= (□X ∧□X [2] ∧□X [3] ∧ . . .∧□X [n])c

= (□X∞)c.

The proof of the following theorem is obvious from Theorem 4.7.

Theorem 4.7. Let X be a BPyFM, [(♢X )∞]c = [(♢X )c]∞.

5. Decomposition of BPyFM Using a New Composition Operator in
Terms of Modal Operators

In this section, a new composition operator denoted by ‘∧m ’ is introduced, with a discussion
of its algebraic properties. Finally, a decomposition of a BPyFM is achieved using the new
composition operator and modal operators.

Definition 5.1. For any two element 〈xµn, xµp, xγn, xγp〉,〈yµn, yµp, yγn, yγp〉 ∈ BP yFSs we introduce the
operation ‘∧m ’ as

〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉 = 〈min(xµn, yµn),min(xµp, yµp),min(xγn, yγn),min(xγp, yγp)〉.

The proof of the following theorem is obvious from the definition.

Theorem 5.2. The operation ∧m is commutative on BPyFSs.

Theorem 5.3. The operation ∧m is associative on BPyFSs.

Proof. Consider any three elements on BPyFSs as 〈xµn, xµp, xγn, xγp〉, 〈yµn, yµp, yγn, yγp〉, 〈zµn, zµp, zγn, zγp〉.
To prove ∧m is associative it is enough to prove:

{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉
= 〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}.

Case (1): If 〈xµn, xµp, xγn, xγp〉 ≥ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≥ 〈zµn, zµp, zγn, zγp〉,
{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉 = 〈yµn, yµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉.

Subcase (1.1): If 〈yµn, yµp, yγn, yγp〉 ≤ 〈zµn, zµp, zγn, zγp〉 then

〈yµn, yµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉 = 〈yµn, yµp, xγn, xγp〉.
Also,

〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}= 〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, zγn, zγp〉
= 〈yµn, yµp, xγn, xγp〉.
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Subcase (1.2): If 〈yµn, yµp, yγn, yγp〉 ≥ 〈zµn, zµp, zγn, zγp〉 then

〈yµn, yµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉 = 〈zµn, zµp, xγn, xγp〉.
Also,

〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}= 〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, yγn, yγp〉
= 〈zµn, zµp, xγn, xγp〉.

In this case ∧m is associative.

Case (2): If 〈xµn, xµp, xγn, xγp〉 ≤ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≤ 〈zµn, zµp, zγn, zγp〉,
{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉 = 〈xµn, xµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉.

Subcase (2.1): If 〈yµn, yµp, yγn, yγp〉 ≤ 〈zµn, zµp, zγn, zγp〉 then

{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉
= 〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}= 〈xµn, xµp, zγn, zγp〉.

Subcase (2.2): If 〈yµn, yµp, yγn, yγp〉 ≥ 〈zµn, zµp, zγn, zγp〉 then

{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉
= 〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}= 〈xµn, xµp, yγn, yγp〉.

In this case also ∧m is associative.

Case (3): If 〈xµn, xµp, xγn, xγp〉 ≤ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≥ 〈zµn, zµp, zγn, zγp〉, then, we have

〈zµn, zµp, zγn, zγp〉 ≤ 〈yµn, yµp, yγn, yγp〉.
Now

{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉
= 〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}= 〈zµn, zµp, yγn, yγp〉.

Case (4) If 〈xµn, xµp, xγn, xγp〉 ≥ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≤ 〈zµn, zµp, zγn, zγp〉, then, we have

〈yµn, yµp, yγn, yγp〉 ≤ 〈zµn, zµp, zγn, zγp〉
and

{〈xµn, xµp, xγn, xγp〉∧m 〈yµn, yµp, yγn, yγp〉}∧m 〈zµn, zµp, zγn, zγp〉
= 〈xµn, xµp, xγn, xγp〉∧m {〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉}= 〈yµn, yµp, zγn, zγp〉.

Hence ∧m is associative.

Theorem 5.4. (i) The operation ∧m is right distributive over addition in BPyFSs.

(ii) The operation ∧m is left distributive over addition in BPyFSs.

Proof. (i): For any 〈xµn, xµp, xγn, xγp〉,〈yµn, yµp, yγn, yγp〉,〈zµn, zµp, zγn, zγp〉 ∈BPyFS,

〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉
= 〈max(xµn, yµn),max(xµp, yµp),min(xγn, yγn),min(xγp, yγp)〉∧m 〈zµn, zµp, zγn, zγp〉
= 〈min{max(xµn, yµn), zµn},min{max(xµp, yµp), zµp},min{min(xγn, yγn), zγn},min{min(xγp, yγp), zγp}〉.

(5.1)
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Case (1): If 〈xµn, xµp, xγn, xγp〉 ≥ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≥ 〈zµn, zµp, zγn, zγp〉.
Then, the right-hand side of equation (5.1) is 〈zµn, zµp, zγn, zγp〉.
Now consider

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)

= 〈zµn, zµp, xγn, xγp〉+
{
〈zµn, zµp, yγn, yγp〉, if 〈zµn, zµp, zγn, zγp〉 ≤ 〈yµn, yµp, yγn, yγp〉,
〈yµn, yµp, zγn, zγp〉, if 〈yµn, yµp, yγn, yγp〉 ≤ 〈zµn, zµp, zγn, zγp〉,

= 〈zµn, zµp, xγn, xγp〉 (5.2)

In this case, it is distributive.

Case (2): If 〈xµn, xµp, xγn, xγp〉 ≤ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≤ 〈zµn, zµp, zγn, zγp〉.
Then, the left-hand side of equation (5.1) reduce to 〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉.
Subcase (2.1): If 〈zµn, zµp, zγn, zγp〉 ≤ 〈yµn, yµp, yγn, yγp〉, then

〈zµn, zµp, zγn, zγp〉∧m 〈yµn, yµp, yγn, yγp〉 = 〈zµn, zµp, yγn, yγp〉.
Now

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈xµn, xµp, zγn, zγp〉+〈zµn, zµp, yγn, yγp〉 = 〈zµn, zµp, yγn, yγp〉.

Thus distributive holds.

Subcase (2.2): If 〈zµn, zµp, zγn, zγp〉 ≥ 〈yµn, yµp, yγn, yγp〉.
Then the left-hand side of equation (5.2) becomes 〈yµn, yµp, zγn, zγp〉 and right-hand side of
equation (5.2) becomes

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈xµn, xµp, zγn, zγp〉+〈yµn, yµp, zγn, zγp〉 = 〈yµn, yµp, zγn, zγp〉.

Thus, it is distributive in this case also.

Case (3): If 〈yµn, yµp, yγn, yγp〉 ≤ 〈xµn, xµp, xγn, xγp〉 ≤ 〈zµn, zµp, zγn, zγp〉, then, the left-hand side becomes,

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉
= 〈xµn, xµp, zγn, zγp〉.

Also,

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈xµn, xµp, zγn, zγp〉+〈yµn, yµp, zγn, zγp〉 = 〈xµn, xµp, zγn, zγp〉.

Thus, it is distributive in this case too.

Case (4): If 〈yµn, yµp, yγn, yγp〉 ≥ 〈xµn, xµp, xγn, xγp〉 ≥ 〈zµn, zµp, zγn, zγp〉, then, the left-hand side reduces to

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉
= 〈zµn, zµp, yγn, yγp〉

and

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈zµn, zµp, xγn, xγp〉+〈zµn, zµp, yγn, yγp〉 = 〈zµn, zµp, yγn, yγp〉.

Thus distributive holds for all cases.
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(ii): The proof of (ii) is similar to (i).

Theorem 5.5. (i) The operation ∧m is right distributive over multiplication in BPyFSs.

(ii) The operation ∧m is left distributive over multiplication in BPyFSs.

Proof. (i) Here it is enough to prove

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉
= (〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉).

Case (1): If 〈xµn, xµp, xγn, xγp〉 ≥ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≥ 〈zµn, zµp, zγn, zγp〉, then

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉.
Subcase (1.1): Suppose 〈yµn, yµp, yγn, yγp〉 ≥ 〈zµn, zµp, zγn, zγp〉,

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈zµn, zµp, yγn, yγp〉
and

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈zµn, zµp, xγn, xγp〉+〈zµn, zµp, yγn, yγp〉 = 〈zµn, zµp, yγn, yγp〉.

Subcase (1.2): Suppose 〈yµn, yµp, yγn, yγp〉 ≤ 〈zµn, zµp, zγn, zγp〉,
(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈yµn, yµp, zγn, zγp〉

and

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈zµn, zµp, xγn, xγp〉+〈yµn, yµp, zγn, zγp〉 = 〈yµn, yµp, zγn, zγp〉.

In this case it is is distributive.

Case (2): If 〈xµn, xµp, xγn, xγp〉 ≤ 〈yµn, yµp, yγn, yγp〉 and 〈xµn, xµp, xγn, xγp〉 ≤ 〈zµn, zµp, zγn, zγp〉, then the left-hand
side of distributive property reduces to 〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉 = 〈xµn, xµp, zγn, zγp〉.
Subcase (2.1): If 〈zµn, zµp, zγn, zγp〉 ≤ 〈yµn, yµp, yγn, yγp〉, then the right-hand side becomes
〈xµn, xµp, zγn, zγp〉+〈zµn, zµp, yγn, yγp〉 = 〈xµn, xµp, zγn, zγp〉.
Subcase (2.2): If 〈zµn, zµp, zγn, zγp〉 ≥ 〈yµn, yµp, yγn, yγp〉, then the right-hand side becomes
〈xµn, xµp, zγn, zγp〉+〈yµn, yµp, zγn, zγp〉 = 〈xµn, xµp, zγn, zγp〉.
Hence distributivity holds.

Case (3): If 〈xµn, xµp, xγn, xγp〉 ≥ 〈yµn, yµp, yγn, yγp〉 but 〈xµn, xµp, xγn, xγp〉 ≤ 〈zµn, zµp, zγn, zγp〉, then, we have
〈yµn, yµp, yγn, yγp〉 ≤ 〈zµn, zµp, zγn, zγp〉. Now

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈yµn, yµp, zγn, zγp〉.
Also,

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈xµn, xµp, zγn, zγp〉+〈yµn, yµp, zγn, zγp〉 = 〈yµn, yµp, zγn, zγp〉.
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Case (4): If 〈xµn, xµp, xγn, xγp〉 ≤ 〈yµn, yµp, yγn, yγp〉 but 〈xµn, xµp, xγn, xγp〉 ≥ 〈zµn, zµp, zγn, zγp〉, then, we have
〈yµn, yµp, yγn, yγp〉 ≥ 〈zµn, zµp, zγn, zγp〉. Now

(〈xµn, xµp, xγn, xγp〉+〈yµn, yµp, yγn, yγp〉)∧m 〈zµn, zµp, zγn, zγp〉 = 〈zµn, zµp, xγn, xγp〉.
Also,

(〈xµn, xµp, xγn, xγp〉∧m 〈zµn, zµp, zγn, zγp〉)+ (〈yµn, yµp, yγn, yγp〉∧m 〈zµn, zµp, zγn, zγp〉)
= 〈zµn, zµp, xγn, xγp〉+〈zµn, zµp, yγn, yγp〉 = 〈zµn, zµp, xγn, xγp〉.

Hence in all the above cases ∧m is right distributive.

(ii): The proof of (ii) is similar to (i).

Definition 5.6. For any two elements 〈xµn, xµp, xγn, xγp〉,〈yµn, yµp, yγn, yγp〉 ∈ BPyFS, we define
the inequality ‘⪯’ as 〈xµn, xµp, xγn, xγp〉 ⪯ 〈yµn, yµp, yγn, yγp〉 means xµn ≤ yµn, xµp ≤ yµp, xγn ≤ yγn, xγp ≤ yγp .

Remark 5.7. The elements in the set {〈yµn, yµp, yγn, yγp〉 ∈BPyFS | 〈xµn, xµp, xγn, xγp〉 ⪯ 〈yµn, yµp, yγn, yγp〉}
are identity element of 〈xµn, xµp, xγn, xγp〉 with respect to ∧m, that is, we have multiplied identity
element.

Remark 5.8. Any IFM X can be decomposed into two bipolar Pythagorean fuzzy matrices □X
and ♢X by means of ∧m, that is, X = (□X )∧m (♢X ).

Remark 5.9. For any two BPyFMs X and Y , (X ∨Y )∧m (X ∧Y )= (X ∧m Y ).

6. Conclusion
New results on modal operators under max-min composition were explored. Additionally,
properties such as reflexivity, symmetry, transitivity, and idempotency of necessity and
possibility were discussed. An investigation was conducted to explore the necessary and
sufficient conditions for transitive closure and c-transitive closure matrices, utilizing modal
operators. Furthermore, a new composition operator denoted by ‘∧m ’ was introduced, with a
detailed discussion of its algebraic properties. Finally, a decomposition of a BPyFM was achieved
using the new composition operator and modal operators.
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