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1. Introduction
Let G = (V ,E) be a simple graph with n vertices. The clique number ω(G) of G is the number of
vertices in a maximum clique in G. The stability number α(G) of G is the largest number of
pairwise non-adjacent vertices in G. In a graph G, the distance between two distinct vertices
x and y, denoted by d(x, y), is the length of a shortest path from x to y if it exists, otherwise
d(x, y)=∞. The diameter of a graph G is diam(G)= sup{d(x, y) | x and y are vertices of G}. The
girth of G, denoted by gr(G), is the length of the shortest cycle in G. The girth of G is ∞ if G
contains no cycle. The adjacency matrix of a graph G with n vertices, denoted by A(G)= [ai j]n×n,
is the matrix with ai j = 1, if (i, j) is an edge and ai j = 0, otherwise. Let λ1,λ2, . . . ,λn be the
eigenvalues of the adjacency matrix of G. The multiset of eigenvalues σA(G)= {λ(s1)

1 , . . . ,λ(sn)
n }

of A(G) is called the adjacency spectrum of G. We refer to Anderson et al. [2], Atiyah and
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MacDonald [3], and Godsil and Royle [7] for concepts in graphs from rings, ring theory and
graph theory, respectively.

The concept of a zero-divisor graph for a commutative ring was first introduced by Beck [5]
in 1988. Beck defined the zero-divisor graph of a ring R as a graph with vertex set R and two
distinct vertices x and y are adjacent if and only if xy= 0. Being motivated by Beck, in 1999,
Anderson and Livingston [1] defined the zero-divisor graph for a commutative ring R, denoted
by Γ(R), as a simple (undirected) graph, with vertex set Z∗(R), the set of nonzero zero-divisors
of R and two vertices x and y are adjacent if and only if xy = 0. Redmond [15], defined the
zero-divisor graph for a non-commutative ring R, denoted by Γ(R), as a simple graph with
vertex set Z∗(R) and two distinct vertices x and y are adjacent if and only if xy= 0 or yx = 0.
Patil and Waphare [12] introduced the zero-divisor graph for a ring R with involution ∗, denoted
by Γ∗(R), as a simple (undirected) graph with vertex set being all nonzero left zero-divisors in R
and x and y are adjacent if and only if xy∗ = 0. They studied the properties of Γ∗(R) for Rickart
∗-ring R and obtained sufficient conditions for the zero-divisor graph Γ∗(R) to be connected.
Kumbhar et al. [9] introduced the strong zero-divisor graph for a ring with involution. They
associated a simple undirected graph to a ∗-ring R, denoted by Γ∗s (R), whose vertex set is
V (Γ∗s (R))= {0 ̸= a ∈ R | rR(aR) ̸= {0}} and two distinct vertices a and b are adjacent if and only if
aRb∗ = 0. Beaugris et al. [4] introduced the weak zero-divisor graph of finite commutative rings
denoted by Ω(R). It is a graph with a vertex set consisting of nonzero elements u and v of a
ring R and such that the vertices u and v are adjacent if and only if (uv)n = 0 for some positive
integer n, and studied diameter, girth, center, and their domination number for Ω(R). In [10],
Lande and Khairnar introduced the generalized zero-divisor graph for a ∗-ring R, denoted by
Γ′(R), as a simple (undirected) graph with vertex set Z∗(R), and two distinct vertices x and y
are adjacent in Γ′(R) if and only if xn y∗ = 0 or ynx∗ = 0 for some positive integer n. The study
of zero-divisor graphs and the investigation of the spectra of zero-divisor graphs can be seen
in Cardoso et al. [6], Khairnar and Waphare [8], Magi et al. [11], Pirzada et al. [13, 14]. For
a positive integer n, Zn denotes the ring of integers modulo n. Magi et al. [11] obtained the
adjacency spectra of the graph Γ(Zp2q2) for distinct primes p, q. They found the girth, diameter,
clique number, and the stability number of Γ(Zp2q2). Pirzada et al. [14] determined the spectrum
of the zero-divisor graph Γ(ZpM qN ), where p and q are distinct primes and M, N are positive
integers.

Definition 1.1. The generalized zero-divisor graph of a commutative ring R, denoted by Γ′(R),
is a simple (undirected) graph with the vertex set Z∗(R) of nonzero zero-divisors in R and two
distinct vertices x and y are adjacent in Γ′(R) if xn y= 0 or xyn = 0, for some positive integer n.

For a commutative ring R, we observe that Γ(R) is a subgraph of Γ′(R). If Fi, i = 1,2 . . . ,n

are finite fields and R =
n⊕

i=1
Fi , then Γ′(R)=Γ(R).

Example 1.1. Let R =Z125. The zero-divisor graph Γ(R) is depicted in Figure 1. The generalized
zero-divisor graph Γ′(R) is isomorphic to the complete graph K24.
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Figure 1. Γ(R)

The following result gives a characterization for the completeness of the generalized zero-
divisor graph Γ′(Zn).

Theorem 1.1. The graph Γ′(Zn) is complete if and only if n = pr , where p is a prime and r is a
positive integer. Moreover, Γ′(Zpr )= Kpr−1−1.

Proof. Assume that Γ′(Zn) is a complete graph and n is not a power of a prime. Let p and q be
distinct primes that divide n. Let p < q. Then the vertices p and 2p are not adjacent in Γ′(Zn), a
contradiction to the fact that Γ′(Zn) is a complete graph. Thus, n = pr . Conversely, let n = pr , for
some prime p and positive integer r. Let x be any element in V (Γ′(Zn)). Then x = kpi , for some
integers k and i. Therefore, xr y = 0, for any y ∈ V (Γ′(Zn)). Thus, Γ′(Zn) is a complete graph.
Since all the non-units are zero-divisors in a finite ring, we have Γ′(Zpr )= Kpr−1−1.

Proposition 1.1. Let p and q be distinct primes. Then Γ′(Zpq)= Kp−1,q−1.

Proof. Observe that V (Γ′(Zpq)) = {q,2q, . . . , (p−1)q, p,2p, . . . , (q−1)p}. Let V1 = {q,2q, . . . , (p−
1)q} and V2 = {p,2p, . . . , (q−1)p} be a partition of V (Γ′(Zpq)). There is no edge between any two
vertices in V1 or any two vertices in V2. For any x ∈ V1 and y ∈ V2, we have xy = 0. Therefore,
every vertex from V1 is adjacent to every vertex in V2. Thus, Γ′(Zpq) is a complete bipartite
graph Kp−1,q−1.

The rest of the paper is organized as follows. In Section 2, we discuss the adjacency matrix
of Γ′(Zpαqβ) for distinct primes p, q, and integers α,β. We determine the multiplicities of the
eigenvalues 0 and −1 and give the matrix for the remaining eigenvalues. In Section 3, we obtain
the clique number, the stability number, diameter, and girth of Γ′(Zpαqβ).
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2. Adjacency Spectrum of Γ′(Zpαqβ)

Let p and q be distinct primes. In this section, we determine the adjacency matrix of Γ′(Zpαqβ),
where α and β are positive integers. Further, we determine the multiplicities of eigenvalues 0
and −1 for the adjacency matrix of Γ′(Zpαqβ).

Let φ(n) denote the Euler’s totient function, that is, the number of positive integers less than
n and relatively prime to n. Note that the number of nonzero zero-divisors of Zn is n−φ(n)−1,
that is, |Z∗(Zn)| = n−φ(n)−1. Let Td = {a ∈ Zn : (a,n) = d}, where (a,n) denotes the greatest
common divisor of a and n. Then the cardinality of Td is φ

( n
d
)

(see, Young [16]). The canonical
decomposition of an integer n > 1 is given by n = pk1

1 pk2
2 · · · pkr

r , where p1, p2, . . . , pr are distinct
primes and k1,k2, . . . ,kr are positive integers. We know that φ(n)= n

(
1− 1

p1

)(
1− 1

p2

) · · ·(1− 1
pr

)
.

We recall the following definition by Cardoso et al. [6].
Let G1,G2, . . . ,Gn be graphs and H be a graph of order n and vertex set {1,2, . . . ,n}.
The H-generalized join of the graphs G1,G2, . . . ,Gn is denoted by

∨
H

{G1,G2, . . . ,Gn}. It is a

graph obtained by replacing each vertex i of H with the graph G i and joining any two vertices
of G i and G j if and only if the vertices i and j are adjacent in H.
Let N be the set of all nonzero nilpotent elements in a commutative ring R. Let Γ1 be the induced
subgraph of Γ′(R) on the set of all non-nilpotent elements and K|N| be the complete graph on
|N| number of vertices.

In the following theorem, we determine the adjacency matrix of Γ′(Zpαqβ) for integers α> 1,
β> 1 and also we find its spectrum.

Theorem 2.1. Let p, q be distinct primes and α> 1,β> 1 be integers:

(a): The adjacency matrix of Γ′(Zpαqβ) is

A(Γ′(Zpαqβ))=


0n1,n1 0n1,n2 0n1,n3 1n1,n4 1n1,n5

0n2,n1 0n2,n2 1n2,n3 0n2,n4 1n2,n5

0n3,n1 1n3,n2 0n3,n3 1n3,n4 1n3,n5

1n4,n1 0n4,n2 1n4,n3 0n4,n4 1n4,n5

1n5,n1 1n5,n2 1n5,n3 1n5,n4 (1− I)n5,n5

 , (2.1)

where 0 is a matrix of all zeros, 1 is a matrix of all ones and I is an identity matrix.
(b): 0 and −1 are eigenvalues of A(Γ′(Zpαqβ)) with multiplicities pα−1qβ−1(p+ q−2)−4 and

pα−1qβ−1 −2, respectively.
(c): The remaining 5 eigenvalues are the eigenvalues of the matrix

M =


0 0 0

p
n1n4

p
n1n5

0 0
p

n2n3 0
p

n2n5
0

p
n2n3 0

p
n3n4

p
n3n5p

n1n4 0
p

n3n4 0
p

n4n5p
n1n5

p
n2n5

p
n3n5

p
n4n5 n5 −1

 . (2.2)

Proof. (a): Let p, q be distinct primes, α > 1,β > 1 be integers and n = pαqβ. We partition
the vertex set of Γ′(Zn) into five sets in terms of zero divisors of Zn. Let

X1 = {x ∈Zn : gcd(x,n)= pi, i = 1,2, . . . ,α−1},
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X2 = {x ∈Zn : gcd(x,n)= qi, i = 1,2, . . . ,β−1},
X3 = {x ∈Zn : gcd(x,n)= pα},
X4 = {x ∈Zn : gcd(x,n)= qβ},
X5 = {x ∈Zn \{0} : x = kpi q j, i = 1,2, . . . ,α, j = 1,2, . . . ,β}.

Note that X5 is the set of all nonzero nilpotent elements in Zpαqβ . Observe that all the sets
X1, X2, X3, X4, X5 are mutually disjoint. Thus,

P = {X1, X2, X3, X4, X5} (2.3)

forms a partition of the vertex set of Γ′(Zpαqβ).
Now, we find the cardinality of the sets X1, X2, X3, X4, X5. Assume that x ∈ X1. Then gcd(x,n)=
pi , for some i ∈ {1,2, . . . ,α−1}. The number of elements in X1 with gcd(x,n)= pi is

φ

(
pαqβ

pi

)
=φ(pα−i qβ)= pα−i−1qβ−1(p−1)(q−1)), for i = 1,2, . . . ,α−1.

Therefore,

n1 = |X1| =φ
(

pαqβ

p

)
+φ

(
pαqβ

p2

)
+·· ·+φ

(
pαqβ

pα−1

)
= pα−2qβ−1(p−1)(q−1)+ pα−3qβ−1(p−1)(q−1)+·· ·+ qβ−1(p−1)(q−1)

= qβ−1(p−1)(q−1)(pα−2 + pα−3 +·· ·+ p+1)

= qβ−1(p−1)(q−1)
(

pα−1 −1
p−1

)
= qβ−1(q−1)(pα−1 −1).

Similarly, if x ∈ X2, then gcd(x,n)= qi , for some i ∈ {1,2, . . . ,β−1}. So,

n2 = |X2| =φ
(

pαqβ

q

)
+φ

(
pαqβ

q2

)
+·· ·+φ

(
pαqβ

qβ−1

)
= pα−1(p−1)(qβ−1 −1).

If x ∈ X3, then gcd(x,n)= pα and so n3 = |X3| =φ
( pαqβ

pα
)= qβ−1(q−1).

Similarly, n4 = |X4| =φ
( pαqβ

qβ
)= pα−1(p−1).

Clearly, the number of multiples of pq in Zpαqβ is pα−1qβ−1. Therefore,

n5 = |X5| = pα−1qβ−1 −1 .

Since φ(pαqβ)= pα−1qβ−1(p−1)(q−1), therefore, the number of nonzero zero-divisors in

Zpαqβ = n−φ(n)−1

= pαqβ− pα−1qβ−1(p−1)(q−1)−1

= pα−1qβ−1(pq− (p−1)(q−1))−1

= pα−1qβ−1(p+ q−1)−1. (2.4)

Let P = {X1, X2, X3, X4, X5} be a partition of Zpαqβ . Let X ,Y ∈ P . If every element of X is
adjacent to every element of Y , we denote it as X ∼ Y . If no element of X is adjacent to any
element in Y , we denote it as X ≁Y . We have the following observations.
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(1): Since X5 is the set of all nonzero nilpotent elements, so each element in X5 is adjacent to
all the remaining vertices. Thus, X5 ∼ X1, X2, X3, X4, X5.

(2): Let a ∈ X1,b ∈ X4. Then there exist a positive integer m such that amb = 0. Also, for any
b ∈ X1 ∪ X2 ∪ X3 and for any positive integer k, akb ̸= 0 and bka ̸= 0. Therefore, every
element in X1 is adjacent to every element in X4 and no element of X1 is adjacent to any
element of X1, X2 and X3. Thus, X1 ∼ X4, X1 ≁ X1, X1 ≁ X2, X1 ≁ X3.

(3): Let a ∈ X2, b ∈ X3. Then there exist a positive integer m such that amb = 0. Also, for any
b ∈ X1 ∪ X2 ∪ X4 and for any positive integer k, akb ̸= 0 and bka ̸= 0. Therefore, every
element in X2 is adjacent to every element in X3 and no element of X2 is adjacent to any
element of X1, X2 and X4. So, X2 ∼ X3, X2 ≁ X1, X2 ≁ X2, X2 ≁ X4.

(4): Let a ∈ X3, b ∈ X2. Then there exist a positive integer m such that abm = 0. If b ∈ X4,
then ab = 0. Also, for any b ∈ X1 ∪ X3 and for any positive integer k, akb ̸= 0 and bka ̸= 0.
Therefore, every element in X3 is adjacent to every element in X2, X4 and no element of
X3 is adjacent to any element of X1 and X3. So, X3 ∼ X2, X3 ∼ X4, X3 ≁ X1, X3 ≁ X3.

(5): Let a ∈ X4, b ∈ X1. Then there exist a positive integer m such that amb = 0. If b ∈ X3,
then ab = 0. Also, for any b ∈ X2 ∪ X4 and for any positive integer k, akb ̸= 0 and bka ̸= 0.
Therefore, every element in X4 is adjacent to every element in X1, X3 and no element of
X4 is adjacent to any element of X2 and X4. Thus, X4 ∼ X1, X4 ∼ X3, X4 ≁ X2, X4 ≁ X4.

Since all the vertices of X1 are adjacent to all the vertices in X4, we get a block of ones
corresponding to the row X1 and the column X4. Also, no vertex of X1 is adjacent to any vertex
of X2, we get a block of zeros corresponding to the row X1 and the column X2. Similarly, we
get blocks of zeros and ones for the remaining vertices. For nilpotent elements, we have to
consider the diagonal entries as zero. Thus, corresponding to the row X5 and the column X5 we
get a block of 1− I , where 1 is a matrix of all ones and I is an identity matrix. Therefore, the
adjacency matrix of Γ′(Zpαqβ) with row and column headings X1, X2, X3, X4, X5 is

A(Γ′(Zpαqβ))=



X1 X2 X3 X4 X5
X1 0n1,n1 0n1,n2 0n1,n3 1n1,n4 1n1,n5

X2 0n2,n1 0n2,n2 1n2,n3 0n2,n4 1n2,n5

X3 0n3,n1 1n3,n2 0n3,n3 1n3,n4 1n3,n5

X4 1n4,n1 0n4,n2 1n4,n3 0n4,n4 1n4,n5

X5 1n5,n1 1n5,n2 1n5,n3 1n5,n4 (1− I)n5,n5

. (2.5)

(b): The adjacency matrix A(Γ′(Zpαqβ)) is given in equation (2.5). Since A(Γ′(Zpαqβ)) is a real
and symmetric matrix, the algebraic multiplicities and the geometric multiplicities of all the
eigenvalues are the same. By performing elementary row operations, the rank of the matrix
A(Γ′(Zpαqβ)) is less than its size pα−1qβ−1(p+ q−1)−1. Therefore, det A(Γ′(Zpαqβ))= 0. Hence
0 is an eigenvalue of A(Γ′(Zpαqβ)). The geometric multiplicity of an eigenvalue 0 is the nullity of
A(Γ′(Zpαqβ)). By performing elementary row transformations on A(Γ′(Zpαqβ)), the number of
zero rows in the transformed matrix

= |X1|+ |X2|+ |X3|+ |X4|−4

= qβ−1(q−1)(pα−1 −1)+ pα−1(p−1)(qβ−1 −1)+ qβ−1(q−1)+ pα−1(p−1)

= pα−1qβ−1(p+ q−2)−4.
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Therefore, the nullity of A(Γ′(Zpαqβ)) is pα−1qβ−1(p+ q−2)−4. Thus, the multiplicity of an
eigenvalue 0 is pα−1qβ−1(p+ q−2)−4.

The geometric multiplicity of an eigenvalue −1 is the nullity of the matrix A(Γ′(Zpαqβ))+ I .
By performing elementary row operations on A(Γ′(Zpαqβ))+ I , the number of zero rows in
the transformed matrix is |X5|−1= pα−1qβ−1 −1−1. Thus, −1 is an eigenvalue of A(Γ′(Zpαqβ))
with the multiplicity pα−1qβ−1 −2.

(c): From equation (2.5), we express Γ′(Zpαqβ) as a generalized join of graphs Γ1 and K|N| as
follows. Γ′(Zpαqβ)=Γ1

∨
K2

K|N|. This is because every nilpotent element is adjacent to every other

vertex. We express Γ′(Zpαqβ) as a generalized join of two graphs as depicted in Figure 2 and 3.

X1 X4

X2 X3

(a) Γ1(Zpαqβ) (b) K|N|

X5

K|N|

Figure 2

X1 X4

X2 X3

X5

K|N|

Figure 3. Γ′(Zpαqβ)

Also, we make use of the following result by Cardoso et al. [6].
Let G be a graph with vertices {1,2, . . . ,n} and G i be n pairwise disjoint r i-regular graphs of
order ni respectively. Then the adjacency spectrum of G =∨

{G1,G2, . . . ,Gn} is given by

σA(G)=
(

n⋃
i=1

(σA(G i)\{r i})

)⋃
σ(CA(G)),

where

CA(G)= (ci j)n×n =


r i, i = j,
pnin j, i j ∈ E(G),
0, otherwise.

(2.6)
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As |A(Γ′(Zpαqβ))| = pα−1qβ−1(p + q − 1) − 1 and the sum of the eigenvalues 0 and −1 is
pα−1qβ−1(p+ q−1)−6, therefore, there are 5 more eigenvalues of A(Γ′(Zpαqβ)). Since the sum
of all the eigenvalues is the trace of the matrix, so the sum of the remaining 5 eigenvalues is

pα−1qβ−1 −2. (2.7)

Using the above observations, equation (2.6) and the adjacency matrix A(Γ′(Zpαqβ)) given in
equation (2.5), the remaining 5 eigenvalues of A(Γ′(Zpαqβ)) are the eigenvalues of the matrix
M, where

M =


0 0 0

p
n1n4

p
n1n5

0 0
p

n2n3 0
p

n2n5
0

p
n2n3 0

p
n3n4

p
n3n5p

n1n4 0
p

n3n4 0
p

n4n5p
n1n5

p
n2n5

p
n3n5

p
n4n5 n5 −1

 . (2.8)

The order of A(Γ′(Zpαqβ)) is the sum of the number of rows of all five blocks. Thus, the order
of A(Γ′(Zpαqβ)) is m, where

m = n1 +n2 +n3 +n4 +n5

= qβ−1(q−1)(pα−1 −1)+ pα−1(p−1)(qβ−1 −1)+ qβ−1(q−1)+ pα−1(p−1)+ pα−1qβ−1 −1
= pα−1qβ−1(p+ q−1)−1.

Observe that this is the same as the number of nonzero zero-divisors given in equation (2.4).
As an illustration, we find the eigenvalues of the adjacency matrix of Γ′(Z72).

Example 2.1. Consider the ring Z72. Let p = 2, q = 3, α= 3, β= 2. Then n1 = 18, n2 = 8, n3 = 6,
n4 = 4, n5 = 11. The adjacency matrix of Γ′(Z72) is

A(Γ′(Z72))=


018,18 018,8 018,6 118,4 118,11
08,18 08,8 18,6 08,4 18,11
06,18 16,8 06,6 16,4 16,11
14,18 04,8 14,6 04,4 14,11
111,18 111,8 111,6 111,4 (1− I)11,11

 .

Here 0 is an eigenvalue of A(Γ′(Z72)) with multiplicity pα−1qβ−1(p + q − 2) − 4 = 32 and
−1 is an eigenvalue of A(Γ′(Z72)) with multiplicity pα−1qβ−1 − 2 = 10. By equation (2.8),
the remaining 5 eigenvalues of A(Γ′(Z72)) are the eigenvalues of the matrix M with sum
pα−1qβ−1 −2= 22.31 −2= 10 (by equation (2.7)), where

M =


0 0 0

p
72

p
191

0 0
p

48 0
p

88
0

p
48 0

p
24

p
66p

72 0
p

24 0
p

44p
191

p
88

p
66

p
44 10

 .

Using MAPLE software, we find the eigenvalues of M. The characteristic polynomial of M is

x5 −10x4 −533x3 − (−1440+24
p

191
p

2
p

11+16
p

22
p

3
p

66+8
p

6
p

11
p

66)x2

− (−32520+24
p

2
p

6
p

66
p

191+64
p

3
p

6
p

11
p

22)x

−34560−192
p

2
p

3
p

6
p

22
p

191+1152
p

191
p

2
p

11+1152
p

22
p

3
p

66,

 (2.9)
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and the eigenvalues of M are

−13.66143422, −9.163998769, −2.041694066, 5.530632118, 29.33649494.

Note that the sum of the five eigenvalues

−13.66143422, −9.163998769, −2.041694066, 5.530632118, 29.33649494 is 10.

The adjacency spectrum of A(Γ′(Z72)) is the multiset

{0(32),−1(10),−13.66143422(1),−9.163998769(1),−2.041694066(1),5.530632118(1),29.33649494(1)}.

Now Γ′(Zpq) is a complete bipartite graph Kp−1,q−1 with the vertex set V = X1∪ X2, where
X1 = {kp : k = 1,2, . . . , q−1} and X2 = {kq : k = 1,2, . . . , p−1}. Therefore, its adjacency spectrum
is a multiset

{0(p+q−4),
√

(p−1)(q−1)
(1)

,−
√

(p−1)(q−1)
(1)

}.

Now, we find the adjacency matrix for Γ′(Zpαq), for α> 1 and we also obtain its spectrum.

Theorem 2.2. Let p, q be distinct primes and α> 1 be an integer:

(a): The adjacency matrix of Γ′(Zpαq) is

A(Γ′(Zpαq))=
0n1,n1 1n1,n2 1n1,n3

1n2,n1 0n2,n2 1n2,n3

1n3,n1 1n3,n2 (1− I)n3,n3

 , (2.10)

where 0 is a matrix of all zeros, 1 is a matrix of all ones and I is an identity matrix.

(b): 0 and −1 are eigenvalues of Γ′(Zpαq) with multiplicities pα−1(p+ q−2)−2 and pα−1 −2,
respectively.

(c): The remaining 3 eigenvalues are the eigenvalues of the matrix

M =
 0

p
n1n2

p
n1n3p

n1n2 0
p

n2n3p
n1n3

p
n2n3 n3 −1

 . (2.11)

Proof. (a): Let m = pαq. We partition the vertex set of Γ′(Zpαq) into three sets in terms of zero
divisors of Zm. Let

X1 = {x ∈Zm : gcd(x,m)= pi, i = 1,2, . . . ,α},

X2 = {x ∈Zm : gcd(x,m)= q},

X3 = {x ∈Zm : x = kpi q, i = 1,2, . . . ,α−1, k = 1,2, . . . , q−1}.

Observe that X3 is the set of all nonzero nilpotent elements in Zpαq and all the sets X1, X2, X3

are mutually disjoint. Therefore,

P1 = {X1, X2, X3} (2.12)

forms a partition of the vertex set of Γ′(Zpαq).
Assume that x ∈ X1. Then gcd(x,m)= pi , for some i = 1,2, . . . ,α−1. The number of elements in
X1 with gcd(x,m)= pi is φ

( m
pi

)=φ( pαq
pi

)= pα−i−1(p−1)(q−1). Therefore,

n1 = |X1| =φ
(

pαq
p

)
+φ

(
pαq
p2

)
+·· ·+φ

(
pαq
pα

)
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= pα−2(p−1)(q−1)+ pα−3(p−1)(q−1)+·· ·+ (p−1)(q−1)+ (q−1)
= pα−1(q−1).

Let x ∈ X2. Then gcd(x,m)= q. Therefore, the number of elements in X2 is

n2 = |X2| =φ
(

pαq
q

)
= pα−1(p−1).

The number of multiples of pq in pαq is pα−1. Therefore, n3 = |X3| = pα−1−1. The number of
nonzero zero-divisors in Zpαq is |X1|+ |X2|+ |X3| = pα−1(p+ q−1)−1. Similar to the proof of
Theorem 2.1(a), we have the following observations:

X3 ∼ X1, X3 ∼ X2, X3 ∼ X3,
X1 ∼ X2, X1 ∼ X3, X1 ≁ X1,
X2 ∼ X1, X2 ∼ X3, X2 ≁ X2.

Therefore, the adjacency matrix of Γ′(Zpαq) with the row and the column headings X1, X2, X3 is

A(Γ′(Zpαq))=


X1 X2 X3

X1 0n1,n1 1n1,n2 1n1,n3

X2 1n2,n1 0n2,n2 1n2,n3

X3 1n3,n1 1n3,n2 (1− I)n3,n3

. (2.13)

(b): The adjacency matrix A(Γ′(Zpαq)) is given in equation (2.13). Similar to the proof of
Theorem 2.1(b), by performing elementary row transformations on A(Γ′(Zpαq)), the number of
zero rows in the transformed matrix is |X1|+ |X2|−2= pα−1(p+ q−2)−2.
The geometric multiplicity of an eigenvalue 0 is the nullity of A(Γ′(Zpαq)). Thus, the multiplicity
of an eigenvalue 0 is pα−1(p + q − 2) − 2. By performing elementary row operations on
A(Γ′(Zpαq))+ I , the number of zero rows in the transformed matrix is |X3| − 1 = pα−1 − 2.
The geometric multiplicity of an eigenvalue −1 is the nullity of the matrix A(Γ′(Zpαq))+ I .
Therefore, −1 is an eigenvalue of A(Γ′(Zpαq)) with the multiplicity pα−1 −2.

Note that we express Γ′(Zpαq) as a generalized join of two graphs as depicted in Figure 4.

X1

X2

X3

K|N|

Figure 4. Γ′(Zpαq)

Similar to Theorem 2.1(c), the remaining 3 eigenvalues are the eigenvalues of the matrix

M =
 0

p
n1n2

p
n1n3p

n1n2 0
p

n2n3p
n1n3

p
n2n3 n3 −1

 . (2.14)
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As an illustration, we find the eigenvalues of the adjacency matrix of Γ′(Z12).

Example 2.2. Let p = 2, q = 3, α= 2, n = pαq = 12. Then n1 = 4, n2 = 2, n3 = 1. The adjacency
matrix of Γ′(Z12) is

A(Γ′(Z12))=
0(4,4) 1(4,2) 1(4,1)

1(2,4) 0(2,2) 1(2,1)
1(1,4) 1(1,2) (1− I)(1,1)

 .

Here 0 is an eigenvalue of A(Γ′(Z12)) with multiplicity pα−1(p+ q−2)−2 = 4 and −1 is an
eigenvalue of A(Γ′(Z12)) with multiplicity pα−1−2= 0. The remaining 3 eigenvalues of A(Γ′(Z12))
are the eigenvalues of the matrix M with the sum pα−1 −2= 0, where

M =

 0
p

8 2p
8 0

p
2

2
p

2 0

 .

The characteristic polynomial of M is x3−14x−16, and the eigenvalues of M are −2.918522599,
−1.299664103, 4.218186702. Note that the sum of the three eigenvalues −2.918522599,
−1.299664103, 4.218186702 is 0.
Hence the adjacency spectrum of A(Γ′(Z12)) is the multiset

{0(4),−2.918522599(1),−1.299664103(1),4.218186702(1)}. (2.15)

We find the adjacency spectrum of A(Γ′(Z12)) directly using MAPLE software. Let {2,3,4,
6,8,9,10} be the vertex set of Γ′(Z12). The adjacency matrix of Γ′(Z12) with the row and column
headings 2,4,8,10,3,9,6 is

A(Γ′(Z12))=



0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
1 1 1 1 0 0 1
1 1 1 1 0 0 1
1 1 1 1 1 1 0


.

The characteristic polynomial of A(Γ′(Z12)) is x7 − 14x5 − 16x4 and its eigenvalues
are 0,0,0,0,−2.918522599,−1.299664103,4.218186702, which are same as obtained in
equation (2.15).

3. Some Basic Properties of the Generalized Zero-Divisor Graph Γ′(Zn)
First, we determine the clique number and the stability number of Γ′(Zpαqβ) for distinct primes
p, q, and integers α> 1, β> 1.

Theorem 3.1. Let p, q be distinct primes, and α > 1, β > 1 be integers. Then the clique
number of Γ′(Zpαqβ) is ω(Γ′(Zpαqβ)) = pα−1qβ−1 + 1 and the stability number α(Γ′(Zpαqβ)) =
qβ−1(q−1)(pα−1 −1)+ pα−1(p−1)(qβ−1 −1).

Proof. Let X1, X2, X3, X4, X5 be as in the proof of Theorem 2.1. From Figure 3, the subgraph
induced by the vertices in X5 and any one vertex from each of X1, X4 correspond to a
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complete subgraph of maximum order in A(Γ′(Zpαqβ)). Thus, the clique number of Γ′(Zpαqβ) is
ω(Γ′(Zpαqβ))= |X5|+2= pα−1qβ−1 +1.

For any a,b ∈ X1∪ X2, we have ab ̸= 0. Therefore, no two vertices of X1∪ X2 are adjacent in
Γ′(Zpαqβ). Thus, the stability number of Γ′(Zpαqβ) is

α(Γ′(Zpαqβ))= |X1|+ |X2|
= qβ−1(q−1)(pα−1 −1)+ pα−1(p−1)(qβ−1 −1).

For α= 2, β= 2 analogues to [11, Theorem 3.2], we get the clique number of Γ′(Zp2q2). From
[11, Theorem 3.3], the stability number of Γ(Zp2q2) is

α(Γ(Zp2q2))= p(q−1)(p+ q−1).

By Theorem 3.1, for α= 2, β= 2, the stability number of Γ′(Zp2q2) is

α(Γ′(Zp2q2))= (p+ q)(p−1)(q−1),

which is different from the stability number of Γ(Zp2q2). According to [11, Theorems 3.4 and 3.5],
gr(Γ(Zp2q2))= 3 and diam(Γ(Zp2q2))= 3. The following result gives the diameter and the girth of
Γ′(Zpαqβ).

Theorem 3.2. Let p, q be distinct primes and α> 1, β> 1 be integers. Then,

gr(Γ′(Zpαqβ))= 3 and diam(Γ′(Zpαqβ))= 2.

Proof. From the proof of Theorem 2.1, we have |X5| = pα−1qβ−1 −1 ≥ 3. If x, y, z ∈ X5, then
{x, y, z} form a clique in Γ′(Zpαqβ). Thus, gr(Γ′(Zpαqβ))= 3. If x, y are any two distinct nilpotent
elements, then d(x, y) = 1. If either x or y is nilpotent, then d(x, y) = 1. If both x, y are non-
nilpotent elements and if x, y are adjacent, then d(x, y) = 1. If both x, y are non-nilpotent
elements and suppose they are not adjacent, then x ↔ z ↔ y is a path, where z is a nilpotent
element. Therefore, d(x, y)= 2. Thus, diam(Γ′(Zpαqβ))= 2.

In the following theorem, we determine the clique number and the stability number of
Γ′(Zpαq), where p, q are distinct primes and α is a positive integer.

Theorem 3.3. Let p, q be distinct primes and α> 1 be an integer. Then the clique number of
Γ′(Zpαq) is ω(Γ′(Zpαq))= pα−1 +1 and the stability number is

α(Γ′(Zpαq))=max{pα−1(q−1), pα−1(p−1)}.

Proof. Assume that X1, X2, X3 are as in the proof of Theorem 2.2. From Figure 4, the subgraph
induced by the vertices in X3 and any one vertex from each of X1 and X2 corresponds to a
complete subgraph of maximum order of A(Γ′(Zpαq)). Thus, the clique number of Γ′(Zpαq) is
ω(Γ′(Zpαq))= |X3|+2= pα−1+1. Since no two vertices of X1 are adjacent and no two vertices of
X2 are adjacent in Γ′(Zpαq), the stability number

α(Γ′(Zpαq))=max{pα−1(q−1), pα−1(p−1)}.

Theorem 3.4. Let p, q be distinct primes and α> 1 be an integer. Then

gr(Γ′(Zpαq))= 3 and diam(Γ′(Zpαq))= 2.
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Proof. The proof is similar to the proof of Theorem 3.2.

4. Conclusion
We have determined the adjacency matrix and the eigenvalues of the generalized zero-divisor
graph of the ring Zpαqβ , for distinct primes p, q and positive integers α,β. Furthermore, we have
obtained the clique number, stability number, diameter, and girth of the generalized zero-divisor
graph of Zpαqβ .
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