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1. Introduction
Linear differential operators play a crucial role in geometric function theory, which is a branch
of mathematics that studies the properties of functions and their mappings in geometric
settings. In particular, linear differential operators are used to study the properties of conformal
mappings, quasi-conformal mappings, and other types of mappings between Riemann surfaces
and other geometric objects.

Linear operators are used to study various properties of functions and mappings, such as
their regularity, smoothness, and geometric properties like curvature and conformality.
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Let U= {z ∈C : |z| < 1} be the open unit disk and A denote the class of analytic functions of
the form

f (z)= z+
∞∑
j=2

a j z j (1.1)

which are analytic in the open unit disk U and normalized by f (0)= f ′(0)−1= 0.
The class A is closed under convolution or Hadamard product

( f ∗ g)(z)= z+
∞∑
j=2

a jb j z j, z ∈U, (1.2)

where f is given by (1.1) and g(z)= z+
∞∑
j=2

b j z j .

Using the idea of convolution, now we introduce a linear operator ASδλ,q :A→A defined by

ASδλ,q f (z)= [(1−λ)[1+ ( j−1)δ]n +λφ(a, c)]∗ f (z).

For functions f ∈A of the form (1.1), we have

ASδλ,q f (z)= z+
∞∑
j=2

Bδ
λ(a, c, j,n; q)a j z j, (1.3)

where

Bδ
λ(a, c, j,n; q)=

[
[1+ ( j−1)δ]n(1−λ)+λ (a) j−1

(c) j−1

]
q

,

n ∈N0, λ≥ 0, δ≥ 0 and a, c ∈R\Z.
Here (a) j is the Pochhammer symbol defined in terms of the Gamma function by,

(a) j = Γ(a+ j)
Γ(a)

=
{

1, for j = 0,
a(a+1)(a+2) · · · (a+ j−1), for j ∈N.

For a different parametric values of q → 1−, λ = 0, we get the Al-Oboudi differential
operator [2].

For a different parametric values of q → 1−, λ= 1, we get the Carlson-Shaffer operator [3].
For a different parametric values of λ= 0, we get the differential operator studied by Dileep

and Rajeev [6].
For q → 1− and δ= 1 we get operator studied by Dileep and Latha [4].
Now using the linear operator ASδλ,q we define the class Sα

λ,δ(a, c,n; q) consisting functions
of the form (1.1) satisfying the condition:

ℜ
{

z(ASδλ,q f (z))′

ASδλ,q f (z)
−α

}
≥

∣∣∣∣∣ z(ASδλ,q f (z))′

ASδλ,q f (z)
−1

∣∣∣∣∣ , 0≤α< 1. (1.4)

Silverman [15] defined the class V(θ j) as the class of all functions in A such that arga j = θ j ,
for all j. If further there exists a real number t such that θ j + ( j−1)t ≡ π (mod2π), then f is
said to be in the class V(θ j, t). The union of V(θ j, t) taken over all possible sequences {θ j} and all
possible real numbers t is denoted by V.

Further, we define VSαλ,δ(a, c,n; q)= Sα
λ,δ(a, c,n; q)∩V.
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Definition 1.1. A function f ∈V of the form (1.1) is in VS
α,β
λ,δ (a, c,n; q) if f satisfies the analytic

condition

ℜ
{

z(ASδλ,q f (z))′

ASδλ,q f (z)

}
≥β

∣∣∣∣∣ z(ASδλ,q f (z))′

ASδλ,q f (z)
−1

∣∣∣∣∣+α, (1.5)

where α,β≥ 0 and z ∈U.

Theses classes stem essentially from the classes studied earlier by Vijaya and
Murugusundaramoorthy [17].

In the next section, we shall make a systematic study of the class VSαλ,δ(a, c,n; q).

2. Main Results
Theorem 2.1. A function f of the form (1.1) is in VSαλ,δ(a, c,n; q) if and only if

∞∑
j=2

(2 j−1−α)Bδ
λ(a, c, j,n; q)|a j| ≤ 1−α. (2.1)

Proof. From (1.4), it suffices to show that∣∣∣∣∣ z(ASδλ,q f (z))′

ASδλ,q f (z)
−1

∣∣∣∣∣≤ℜ
{

z(ASδλ,q f (z))′

ASδλ,q f (z)
−α

}
,

i.e., ∣∣∣∣∣ z(ASδλ,q f (z))′

ASδλ,q f (z)
−1

∣∣∣∣∣−ℜ
{

z(ASδλ,q f (z))′

ASδλ,q f (z)
−1

}
≤ 2

∣∣∣∣∣ z(ASδλ,q f (z))′

ASδλ,q f (z)
−1

∣∣∣∣∣
≤ 2

∞∑
j=2

( j−1)Bδ
λ
(a, c, j,n; q)|a j| |z| j−1

1−
∞∑
j=2

Bδ
λ
(a, c, j,n; q)|a j| |z| j−1

.

Now the last expression is bounded by (1−α) if
∞∑
j=2

(2 j−1−α)Bδ
λ(a, c, j,n; q)|a j| ≤ 1−α.

Conversely, if f ∈VSαλ,δ(a, c,n; q) then by definition,∣∣∣∣∣∣∣∣∣
z+

∞∑
j=2

jBδ
λ
(a, c, j,n; q)a j z j

z+
∞∑
j=2

Bδ
λ
(a, c, j,n; q)a j z j

−1

∣∣∣∣∣∣∣∣∣≤ℜ


z+

∞∑
j=2

jBδ
λ
(a, c, j,n; q)a j z j

z+
∞∑
j=2

Bδ
λ
(a, c, j,n; q)a j z j

−α

 ,

i.e., ∣∣∣∣∣∣∣∣∣
∞∑
j=2

( j−1)Bδ
λ
(a, c, j,n; q)a j z j−1

1+
∞∑
j=2

Bδ
λ
(a, c, j,n; q)a j z j−1

∣∣∣∣∣∣∣∣∣≤ℜ


(1−α)+

∞∑
j=2

( j−α)Bδ
λ
(a, c, j,n; q)a j z j−1

1+
∞∑
j=2

Bδ
λ
(a, c, j,n; q)a j z j−1

 .
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Since f ∈ V and f lies in V(θ j, t) for some sequence θ j and a real number t such that
θ j + ( j−1)t ≡π (mod2π) set z = reit in the above inequality:∣∣∣∣∣∣∣∣∣

∞∑
j=2

( j−1)Bδ
λ
(a, c, j,n; q)a jr j−1

1−
∞∑
j=2

Bδ
λ
(a, c, j,n; q)a jr j−1

∣∣∣∣∣∣∣∣∣≤ℜ


(1−α)−

∞∑
j=2

( j−α)Bδ
λ
(a, c, j,n; q)a jr j−1

1−
∞∑
j=2

Bδ
λ
(a, c, j,n; q)a jr j−1

 .

Letting r → 1, leads the desired inequality
∞∑
j=2

(2 j−1−α)Bδ
λ(a, c, j,n; q)|a j| ≤ 1−α.

Corollary 2.2. If f ∈VSαλ,δ(a, c,n; q) then

|a j| ≤ 1−α
(2 j−1−α)Bδ

λ
(a, c, j,n; q)

, for j ≥ 2.

The sharpness follows for the function

f (z)= z+
∞∑
j=2

(1−α)
(2 j−1−α)Bδ

λ
(a, c, j,n; q)

, for j ≥ 2, z ∈U.

Similar to the proof of Theorem 2.1 we get the following result:

Theorem 2.3. A function f of the form (1.1), belongs to VS
α,β
λ,δ (a, c,n; q) if and only if

∞∑
j=2

E jBδ
λ(a, c, j,n; q)|a j| ≤ 1−α, (2.2)

where E j =β( j−1)+ j−α.

The result obtained in our next theorem unifies the radii results concerning close-to-
convexity, starlikeness etc.

Theorem 2.4. Let f ∈VS
α,β
λ,δ (a, c,n; q). Then

∣∣∣ f ∗Φ
f ∗Ψ −1

∣∣∣ < 1−η, in |z| < r with Φ(z) = z+
∞∑
j=2

γ j z j

and Ψ(z) = z+
∞∑
j=2

µ j z j , are analytic in U with the conditions γ j,µ j ≥ 0, γ j ≥ µ j , for j ≥ 2 and

f (z)∗Ψ(z) ̸= 0, where

r = inf
j

[
E jBδ

λ
(a, c, j,n; q)(1−δ)

(1−α)[(γ j −µ j)+µ j(1−η)]

] 1
j−1

, j ≥ 2. (2.3)

Proof. Consider,

∣∣∣∣ f ∗Φ
f ∗Ψ −1

∣∣∣∣=
∣∣∣∣∣∣∣∣∣
z−

∞∑
j=2

γ ja j z j

z−
∞∑
j=2

µ ja j z j
−1

∣∣∣∣∣∣∣∣∣≤
∣∣∣∣∣∣∣∣∣
z−

∞∑
j=2

γ ja j z j−z+
∞∑
j=2

µ ja j z j

z−
∞∑
j=2

µ ja j z j

∣∣∣∣∣∣∣∣∣≤
∞∑
j=2

a j[γ j−µ j]|z| j−1

1−
∞∑
j=2

µ ja j|z| j−1
<1−η, (2.4)

∞∑
j=2

a j[(γ j −µ j)+ (1−η)µ j]≤ 1−η, (|z| < r; 0≤ η< 1), (2.5)
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where r is given by (2.3). From Theorem 2.3, (2.5) will be true if,
[(γ j −µ j)+ (1−η)µ j]

1−η |z| j−1 ≤ E jBδ
λ
(a, c, j,n; q)(1−η)

(1−α)[(γ j −µ j)+µ j(1−η)]
,

that is, if

|z| =
[

E jBδ
λ
(a, c, j,n; q)(1−η)

(1−α)[(γ j −µ j)+µ j(1−η)]

] 1
j−1

. (2.6)

As corollaries to the above theorem we get the following results:

By choosing Φ(z)= z
(1−z)2 and Ψ(z)= z, we have

Corollary 2.5. Let the function f defined by (1.1) is in VS
α,β
λ,δ (a, c,n; q). Then f is close-to-convex

of order η (0≤ η< 1), hence univalent in the disc |z| < r1, where

r1 = inf
j

[
E jBδ

λ
(a, c, j,n; q)(1−η)

(1−α) j

] 1
j−1

, j ≥ 2. (2.7)

The result is sharp.

For Φ(z)= z
(1−z)2 and Ψ(z)= z

1−z , we have

Corollary 2.6. Let the function f defined by (1.1) belongs to VS
α,β
λ,δ (a, c,n; q). Then f is starlike

of order η (0≤ η< 1), hence univalent in the disc |z| < r2, where

r2 = inf
j

[
E jBδ

λ
(a, c, j,n; q)(1−η)

(1−α)( j−η)

] 1
j−1

, j ≥ 2. (2.8)

The result is sharp.

If Φ(z)= z+z2

(1−z)3 and Ψ(z)= z
(1−z)2 , then we have

Corollary 2.7. Let the function f be defined by (1.1) belongs to VS
α,β
λ,δ (a, c,n; q). Then f is convex

of order η (0≤ η< 1), hence univalent in the disc |z| < r3, where

r3 ≤ inf
j

[
E jBδ

λ
(a, c, j,n)(1−η)

j(1−α)( j−η)

] 1
j−1

, j ≥ 2. (2.9)

The result is sharp.

Using the coefficient inequality proved above we can easily prove the following growth and
distortion theorems.

Theorem 2.8. Let f of the form (1.1) to be in VS
α,β
λ,δ (a, c,n; q). Then

r− 1−α
E2Bδ

λ
(a, c,2,n; q)

r2 ≤ | f (z)| ≤ r+ 1−α
E2Bδ

λ
(a, c,2,n; q)

r2, and

1− 2(1−α)
E jBδ

λ
(a, c,2,n; q)

r ≤ | f ′
(z)| ≤ 1+ 2(1−α)

E2Bδ
λ
(a, c,2,n; q)

r.

The result is sharp.
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Proof. Let f of the form (1.1) belongs to VS
α,β
λ,δ (a, c,n; q),

| f (z)| =
∣∣∣∣∣z+ ∞∑

j=2
a j z j

∣∣∣∣∣≤ |z|+ |z|2
∞∑
j=2

|a j|,

since f ∈VSα,β
λ,δ (a, c,n; q) and by Theorem 2.3, we have

E2Bδ
λ(a, c,2,n; q)

∞∑
j=2

|a j| ≤
∞∑
j=2

E jBδ
λ(a, c, j,n; q)|a j| ≤ 1−α.

Thus

| f (z)| ≤ |z|+ 1−α
E2Bδ

λ
(a, c,2,n; q)

|z|2,

i.e.,

| f (z)| ≤ r+ 1−α
E2Bδ

λ
(a, c,2,n; q)

r2 .

Similarly, we get

| f (z)| ≥ r− 1−α
E2Bδ

λ
(a, c,2,n; q)

r2.

On the other hand

f ′(z)= 1+
∞∑
j=2

ja j z j−1,

and

| f ′(z)| = 1+
∞∑
j=2

j|a j||z| j−1 ≤ 1+|z|
∞∑
j=2

j|a j|.

Since f ∈VSα,β
λ,δ (a, c,n; q).

Then, by Theorem 2.3 we have
∞∑
j=2

j|a j| ≤ 2(1−α)
E2Bδ

λ
(a, c,2,n; q)

.

Thus

| f ′(z)| ≤ 1+ 2(1−α)
E2Bδ

λ
(a, c,2,n; q)

r.

Similarly, we get

| f ′(z)| ≥ 1− 2(1−α)
E2Bδ

λ
(2,n; q)

r.

This completes the result.

Theorem 2.9. A function f of the form (1.1) belongs to VS
α,β
λ,δ (a, c,n; q), with arga j = θ j , where

[θ j + ( j−1)t]=π (mod 2π). Define f1(z)= z and

f2(z)= z+ 1−α
E jBδ

λ
(a, c, j,n; q)

eiθ j z j, j ≥ 2, z ∈U.

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 791–799, 2024



Applications of Linear Differential Operator on Varying Arguments: S. Annapoorna and L. Dileep 797

Then f ∈VSα,β
λ,δ (a, c,n; q) if and only if f expressed in the form

f (z)=
∞∑
j=2

µ j f j(z),

where µ j ≥ 0 and
∞∑
j=2

µ j = 1.

Proof. If f (z)=
∞∑
j=2

µ j f j(z) with
∞∑
j=2

µ j = 1 and µ j ≥ 0, then

∞∑
j=2

EmBδ
λ(a, c, j,n; q)

(1−α)
E jBδ

λ
(a, c, j,n; q)

µ j =
∞∑
j=2

µ j(1−α)= (1−µ1)(1−α)≥ 1−α.

Hence f ∈VSα,β
λ,δ (a, c,n; q).

Conversely, let the function f defined by (1.1) be in the class VS
α,β
λ,δ (a, c,n; q), since

|a j| ≤ 1−α
E jBδ

λ
(a, c, j,n; q)

, j = 2,3, · · · .

We may set µ j = E jBδ
λ
(a,c, j,n;q)|a| j

1−α , j ≥ 2 and µ1 = 1−
∞∑
j=2

µ j .

Then f (z)=
∞∑
j=1

λ j f j(z), this completes the proof.

Lemma 2.10 ([8]). If for the functions f and g are analytic in U with g ≺ f , then for k > 0 and
0< r < 1,∫ 2π

0
|g(reiθ)|kdθ ≤

∫ 2π

0
| f (reiθ)|kdθ,

In [14] Silverman found that the function f2(z)= z− z2

2 is often extremal over the family T.
He applied this function to resolve the integral means inequality, conjectured in [12] and settled
in [13], such that∫ 2π

0
| f (reiθ)|kdθ ≤

∫ 2π

0
| f2(reiθ)|kdθ,

for all f ∈V, k > 0 and 0< r < 1.
In [13], Silverman also proved his conjecture for the subclasses T∗(β) and C(β) of T .

Theorem 2.11. Let f of the form (1.1) belongs to VS
α,β
λ,δ (a, c,n; q) and f2 is defined by f2(z) =

z− (1−α)
E2Bδ

λ
(a,c,2,n;q)

z2 then for z = reiθ , 0< r < 1, we have∫ 2π

0
| f (z)|kdθ ≤

∫ 2π

0
| f2(z)|kdθ (2.10)

Proof. For f (z)= z−
∞∑
j=2

|a j|z j , eq. (2.10) is equivalent to proving that

∫ 2π

0

∣∣∣∣∣1− ∞∑
j=2

|a j|z j−1

∣∣∣∣∣
k

dθ ≤
∫ 2π

0

∣∣∣∣∣1− (1−α)
E2Bδ

λ
(a, c,2,n; q)

z

∣∣∣∣∣
k

dθ .
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By Lemma 2.10 it suffices to show that

1−
∞∑
j=2

|a j|z j−1 ≺ 1− 1−α
E2Bδ

λ
(a, c,2,n; q)

z .

Setting

1−
∞∑
j=2

|a j|z j−1 = 1− 1−α
E2Bδ

λ
(a, c,2,n; q)

ω(z)

and using (2.2) we obtain

ω(z)=
∣∣∣∣∣ ∞∑

j=2

E2Bδ
λ
(a, c, j,n; q)

1−α |a j|z j−1

∣∣∣∣∣
≤ |z|

∞∑
j=2

E2Bδ
λ
(a, c, j,n; q)

1−α |a j|

≤ |z|.
This completes the proof.

In Theorems 2.4, 2.8, 2.9, and 2.11 if we substitute β= 1, then we get the results for the class
VSαλ,δ(a, c,n; q).
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