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1. Introduction
Fractional calculus has been introduced to describe traditional differentiation and integration
of an arbitrary order. The term fractional derivative was first coined by Johann Bernoulli and
Benjamin in the early 16th century and its theory has been developed by Lagrange and Laplace
in 18th century. N. H. Abel was the one who implemented the theory of fractional calculus to
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solve integral equations (Valério et al. [26]). Meanwhile, G. F. B. Riemann established fractional
integration. The properties obtained by them created curiosity among the mathematicians and
made them to turn their sights on fractional derivatives. The non-local property of fractional
calculus makes it an essential component in providing accurate modelling of physical phenomena
and thus find its applications in science and engineering field like elasticity, biomathematics,
bioengineering, plasma physics, control systems, fluid and quantum mechanics, optics and
so on (Jadhav et al. [11], and Sun et al. [25]). Consequently, the advancement of methods
for solving those fractional equations has become essential and thus various analytical and
numerical techniques for finding solutions of such equations have been proposed in literature.
The fractional Laplace transform method (Liang et al. [17]), Green’s function method of fractional
integration (Odibat and Momani [22]), matrix method (Shloof et al. [24]), the method of
orthogonal polynomials (Pu and Fasondini [23]), Adomian decomposition method (Mohammed
et al. [20]), homotopy perturbation method (HPM) (Javeed et al. [12]), variational iteration
method (VPM) (Elbeleze et al. [7]), homotopy analysis method (Ganjiani [9]) are worth to be
mentioned. Moreover, hybrid techniques combining decomposition method and iterative method
along with integral transforms like Laplace (LDM) (Bhargava et al. [3]), Sumudu transform
method (Alomari [1]), Elzaki transform method (Kadhim and Gateataher [14]), Kamal transform
method (Johansyah et al. [13]), Mohand transforms (Dubey et al. [6]) have also been developed.
Among the existing methods, the series approximation based methods are considered to be the
simplest method for solving fractional differential equations as it avoids many complications
such as assumptions and restrictions on variables, choice of multipliers and convolution of
functions in obtaining the solutions.

In this paper, we utilize an iterative method of finding the approximate series solution of
non-linear time fractional differential equations and systems, where the scheme of evaluation
is based on the reduction of the given fractional differential equation to a functional equation of
the form u = f +L(u)+N(u), by using the properties of fractional derivatives and integrations,
then the reduced equation is approximated by a series of functions generated using DGJM
(Daftardar-Gejji and Jafari [5]) iterative scheme. Solutions are given in the form of infinite
series, and if the exact solution exists, the acquired series may converge to its closed form.
In numerical applications, the truncated series can be applied to concrete problems for which
the exact solution is not known.

The rest of the paper is structured as follows: The preliminary components on fractional
derivatives are presented in Section 2 followed by an iterative scheme of finding approximate
solution of non-linear time fractional differential equations and the system in Section 3.
In Section 4, series solution of certain nonlinear differential equations and its systems, of
fractional order, are illustrated along with graphs to present the strength and efficiency of the
proposed scheme. Finally, conclusions are given in Section 5.

2. Preliminaries
Definition 2.1. The Caputo time-fractional derivative (Balachandran [2]) of order 0 < α≤ 1
taken over a real-valued function Φ(x̃, t̃) is defined as

∂αΦ

∂t̃α
= I1−α

t

(
∂Φ

∂t̃

)
.

Definition 2.2. The Riemann-Liouville time fractional integral (Balachandran [2]) of order
α> 0 of a real-valued function Φ(x̃, t̃) is defined as

∂−αΦ
∂t̃−α

= Iαt Φ(x̃, t̃)= 1
Γ(α)

∫ t

0
(t̃− s̃)(α−1)Φ(x̃, t̃) ds̃.
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Definition 2.3. The Mittag-Leffler function (Li and Hu [16]) of order α> 0 of a complex valued
function w is defined as

Eα(w)=
∞∑

k=0

wk

Γ(kα+1)
, Re(α)> 0.

Theorem 2.1. If g is a continuously differentiable function, g ∈ Cn[a,b], n ∈N and if α denotes
the order of fractional derivative, then for n−1< al pha < n, (Mistry [18])

Iαt

[
dαg(t)

dtα

]
= g(t)−

n−1∑
k=0

g(k)(0)
k!

tk.

3. Methodology
Let us consider the non-linear time fractional differential equation of the form

∂αΦ

∂t̃α
+L[Φ(x̃, t̃)]+N[Φ(x̃, t̃)]= H(x̃, t̃), 0<α≤ 1, x̃ ∈R, t̃ > 0, (3.1)

Φ(x̃,0)= g(x̃), (3.2)

where L and N denotes the linear and non-linear operators respectively and α denotes the
fractional order of derivative taken in Caputo’s sense.

To solve eqn. (3.1)-(3.2), we propose an iterative scheme based on a new algorithm of DGJ
method (Kumar et al. [15]) for solving functional equation u = f +N(u).

To get the functional equation form of eqn. (3.1), we apply ∂−α
∂t̃−α on both sides and thus, by

using Definition 2.1 and by substituting initial condition (3.2) we get

Φ(x̃, t̃)= h(x̃, t̃)+L∗[Φ(x̃, t̃)]+N∗[Φ(x̃, t̃)]. (3.3)

Here, h(x̃, t̃) represents the homogeneous terms obtained after integration and substitution of
initial conditions given and

L∗[Φ(x̃, t̃)]= Iαt L[Φ(x̃, t̃)], N∗[Φ(x̃, t̃)]= Iαt N[Φ(x̃, t̃)].

For instance, let us assume that Φ(x̃, t̃) in eqn. (3.3) can be approximated by an infinite
series

Φ(x̃, t̃)=
∞∑

r=0
Φr(x̃, t̃), (3.4)

then from eqn. (3.3) and (3.4), we get
Φ0(x̃, t̃)= h(x̃, t̃),

1∑
r=0
Φr(x̃, t̃)= h(x̃, t̃)+L∗[Φ0(x̃, t̃)]+N∗[Φ0(x̃, t̃)],

2∑
r=0
Φr(x̃, t̃)= h(x̃, t̃)+L∗[(Φ0(x̃, t̃)+Φ1(x̃, t̃)]+N∗[(Φ0(x̃, t̃)+Φ1(x̃, t̃)],

...
k∑

r=0
Φr(x̃, t̃)= h(x̃, t̃)+L∗[(Φ0(x̃, t̃)+Φ1(x̃, t̃)+ . . .Φk−1(x̃, t̃)]

+N∗[(Φ0(x̃, t̃)+Φ1(x̃, t̃)+ . . .Φk−1(x̃, t̃)],
...



(3.5)
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Let us represent the series approximation with first (k+1) terms by vk, that is,

vk =
k∑

r=0
Φr(x̃, t̃). (3.6)

Hence, by combining eqn. (3.5) and (3.6), we get the simplest iterative scheme of finding solution
as follows:

v0 =Φ0(x̃, t̃)= h(x̃, t̃),

vk =
k∑

r=0
Φr(x̃, t̃)= h(x̃, t̃)+L∗[vk−1]+N∗[vk−1], for k ≥ 1.

 (3.7)

As, k →∞, vk →Φ(x̃, t̃), which is the required solution of equation (3.1).

Theorem 3.1 (Condition for convergence). If L∗, N∗ given in eqn. (3.3) are continuously
differentiable functions defined on the Banach space B, whose derivatives are bounded by
the values

∥DL∗∥ = max
∥Φ∥=1

∥DL∗(Φ(x̃, t̃))∥ ≤ ML,

∥DN∗∥ = max
∥Φ∥=1

∥DN∗(Φ(x̃, t̃))∥ ≤ MN ,

then the sequence of iterated values vk in (3.7) converges uniformly to the solution function
Φ(x̃, t̃), as k →∞, whenever 0< M = (ML +MN)< 1.

Proof. Consider,

∥vk∥ =
∥∥∥∥∥v0 +

k−1∑
n=0

(vn+1 −vn)

∥∥∥∥∥
≤ ∥v0∥+

k−1∑
n=0

∥(vn+1 −vn)∥.

By mean value theorem for Banach spaces B (Ciarlet [4]),

∥vn+1 −vn∥ = ∥(L∗[vn]−L∗[vn−1])+ (N∗[vn]−N∗[vn−1])∥
≤ ∥DL∗∥∥vn −vn−1∥+∥DN∗∥∥vn −vn−1∥
≤ (ML +MN)∥vn −vn−1∥, ∀ n = 0,1, · · · ,k−1.

Let M = (ML +MN) with 0< M < 1.
Then,

∥vn+1 −vn∥ ≤ M∥vn −vn−1∥
≤ Mn∥v1 −v0∥,

=⇒ ∥vk∥ ≤ ∥v0∥+
k−1∑
n=0

Mn∥v1 −v0∥

As k →∞, the series
∞∑

n=0
Mn∥v1 −v0∥ converges and by Weistrass M-test, the iterated values vk

in (3.7) converges uniformly to the solution Φ(x̃, t̃) given in (3.3).

Note. The condition mentioned in Theorem 3.1 is only sufficient for the convergence of the
method.
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3.1 For the System of Fractional Differential Equations
Suppose that, we have a system of m fractional differential equations

Fi(Φi(x̃, t̃))= Hi(x̃, t̃), 1≤ i ≤ m. (3.8)

To find the set of approximate solutions {Φi} for the system (3.8), the iterative scheme (3.7) will
be modified as:

vi0 =Φi0(x̃, t̃)= hi(x̃, t̃),

vik =
k∑

r=0
Φir(x̃, t̃)= hi(x̃, t̃)+L∗

i [vik−1]+N∗
i [vik−1], for k ≥ 1,

 (3.9)

where hi(x̃, t̃), N∗
i and L∗

i denotes the homogeneous term, non-linear and linear differential
operators, respectively, obtained from the functional equation form

Φi(x̃, t̃)= hi(x̃, t̃)+L∗
i [Φ1,Φ2, · · · ,Φm]+N∗

i [Φ1,Φ2, · · · ,Φm], (3.10)

corresponding to the ith differential equation of the given system (3.8).

4. Applications
This section covers examples that demonstrate the method of solving nonlinear time fractional
differential equations using iterative scheme proposed in Section 3.

4.1 Fractional Partial Differential Equations
Example 4.1. Consider the time fractional Heat equation,

∂au
∂ta − ∂2u

∂x2 = 0, 0< a ≤ 1, 0< x <π, (4.1)

u(x,0)= sin(x). (4.2)

Integrating both sides of eqn. (4.1) with respect to t and substituting (4.2), we get

u = sin(x)+ 1
Γ(a)

∫ t

0
(t− s)(a−1) ∂

2u
∂x2 ds.

Using iterative scheme (3.7),

v0 = u0(x, t)= sin(x),

v1 = u0(x, t)+u1(x, t)= v0 +L∗[v0]= sin(x)− ta sin(x)
Γ(a+1)

= sin(x)
(
1− ta

Γ(a+1)

)
,

v2 = u0(x, t)+u1(x, t)+u2(x, t)= v0 +L∗[v1]= sin(x)− ta sin(x)
Γ(a+1)

+ t2a sin(x)
Γ(2a+1)

= sin(x)
(
1− ta

Γ(a+1)
+ t2a

Γ(2a+1)

)
,

...

As k →∞, the series vk converges to the infinite series sin(x)
( ∞∑

k=0

(−t)ka

Γ(ka+1)

)
. Hence, the closed-

form solution of given differential equation (4.1)-(4.2) is u(x, t) = sin(x)Ea(−t), where Ea(·)
denotes the Mittag-Leffler function of order a.

Example 4.2. Consider the nonlinear time fractional Focker-Planck equation,
∂au
∂ta − ∂2u2

∂x2 + ∂

∂x

(
4u2

x
− xu

3

)
= 0, t > 0, x ∈R, 0< a ≤ 1, (4.3)
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u(x,0)= x2. (4.4)

Integrating both sides of eqn. (4.3) with respect to t and substituting (4.4) we get,

u = x2 + 1
Γ(a)

∫ t

0
(t− s)a−1 ∂

∂x

( xu
3

)
ds+ 1

Γ(a)

∫ t

0
(t− s)a−1

(
∂2u2

∂x2 − ∂

∂x

(
4u2

x

))
ds.

Using iterative scheme (3.7),

v0 = u0(x, t)= x2,

v1 = v0 +L∗[v0]+N∗[v0]= x2 + x2ta

Γ(a+1)
,

v2 = v0 +L∗[v1]+N∗[v1]= x2 + x2ta

Γ(a+1)
+ x2t2a

Γ(2a+1)
,

v3 = v0 +L∗[v2]+N∗[v2]= x2 + x2ta

Γ(a+1)
+ x2t2a

Γ(2a+1)
+ x2t3a

Γ(3a+1)
,

...

This series vk converges to the infinite series x2
( ∞∑

k=0

tka

Γ(ka+1)

)
, which is similar to the one

given in Example 4.3 of the article [19], where Mofarreh et al. use HPM combined with Elzaki
transform to solve Focker-Planck equation.

Hence, the solution of eqn. (4.3)-(4.4) is u(x, t)= x2Ea(t). A graphical simulation of solution
curves obtained for different order of derivatives a = {0.25,0.5,0.75,1} is given in Figure 1.
The figure shows a natural flow of surface that converge to the exact solution with an increase
in order of derivative, demonstrating the efficiency of our method.

a=0.25

a=0.5

a=0.75

a=1

Figure 1. Approximate solution for different order of derivatives of the eqn. (4.3)-(4.4)

Example 4.3. Consider the nonlinear time fractional Burger’s equation,
∂au
∂ta − ∂2u

∂x2 +u
∂u
∂x

= 0, 0< a ≤ 1, (4.5)

u(x,0)= x. (4.6)
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The exact solution of eqn.(4.5)-(4.6) for a = 1 is u = x
1+t .

Integrating both sides of eqn. (4.5) with respect to t and substituting (4.6) we get,

u = x+ 1
Γ(a)

∫ t

0
(t− s)a−1∂

2u
∂x2 ds− 1

Γ(a)

∫ t

0
(t− s)a−1u

∂u
∂x

ds.

Using iterative scheme (3.7),

v0 = u0(x, t)= x,

v1 = v0 +L∗[v0]+N∗[v0]= x− xta

Γ(a+1)
,

v2 = v0 +L∗[v1]+N∗[v1]= x− xta

Γ(a+1)
+ 2xt2a

Γ(2a+1)
− 4axt3aΓ

(
a+ 1

2

)
p
πΓ(a+1)Γ(3a+1)

,

v3 = v0 +L∗[v2]+N∗[v2]

= x− xta

Γ(a+1)
+ 2xt2a

Γ(2a+1)
− 2xt3a (

2aΓ(a)2 +Γ(2a)
)

3Γ(3a)Γ(a+1)2 + xt4a (
2Γ(2a)2 +3Γ(a)Γ(3a)

)
2Γ(2a)Γ(4a)Γ(a+1)2 +·· · ,

...

The obtained result is exactly same as the one proposed by Horan et al. [10] using LDM, and for
a = 1, we have

v0 = x,
v1 = x(1− t),

v2 = x− tx+ t2x− t3x
3

= x(1− t+ t2 +·· · ),

v3 = x− tx+ t2x− t3x+ 2t4x
3

− t5x
3

+ t6x
9

− t7x
63

= x(1− t+ t2 − t3 +·· · ).
Hence for a = 1, we have, u(x, t) = lim

k→∞
vk = x

1+t , which is the exact solution of eqn. (4.5)-(4.6).

Graphical simulation of approximate solution v3 is plotted for different order of derivatives
a = {0.25,0.5,0.75,1} in Figure 2. Moreover, the flow of curve at a fixed position x = 5 is also
depicted between the time interval 0< t < 10 for different order of derivatives a.

a=0.25

a=0.5

a=0.75

a=1

(a)

2 4 6 8 10
t

-10000

-8000

-6000

-4000

-2000

iterated u[x,t]

a=0.25

a=0.5

a=0.75

a=1

(b)

Figure 2. Approximate solution (a) 3D, (b) 2D for different order of derivatives of the eqn. (4.5)-(4.6)

Example 4.4. Consider the time fractional Klien-Gordan equation,
∂au
∂ta − ∂2u

∂x2 +u = 2sin(x), 1< a ≤ 2, (4.7)
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u(x,0)= sin(x), ut(x,0)= 1 . (4.8)

The exact solution of eqn. (4.7)-(4.8) for a = 1 is u = sin(x)+sin(t).
Integrating both sides of eqn. (4.7) with respect to t and substituting (4.8) we get,

u = sin(x)+ t+ 1
Γ(a)

∫ t

0
(t− s)a−1

[
2sin(x)+ ∂2u

∂x2 −u
]

ds.

Using iterative scheme (3.7),

v0 = u0(x, t)= t+sin(x),

v1 = v0 +L∗[v0]= t− ta+1

Γ(a+2)
+sin(x),

v2 = v0 +L∗[v1]= t− ta+1

Γ(a+2)
+ t2a+1

Γ(2a+2)
+sin(x),

v3 = v0 +L∗[v2]= t− ta+1

Γ(a+2)
+ t2a+1

Γ(2a+2)
− t3a+1

Γ(3a+2)
+ t4a+1

Γ(4a+2)
− t5a+1

Γ(5a+2)
+sin(x),

...

We see that for a = 2, the series vk converges to the exact solution u(x, t) = sin(x)+ sin(t), as
k →∞ and closely match with the one obtained by Mohyud-Din and Yildirim [21] via VIM.

(a) Approximate solution for a = 1.5 and a = 1.75

(b) Approximate and the exact solution for a = 2

Figure 3. Graphical simulation of Approximate solution and exact solution for the eqn. (4.7)-(4.8)
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Graphical simulation of approximate solution v3 for different order of derivatives a =
{1.5,1.75,2} and the exact solution for a = 2 is depicted in Figure 3. From figure, we find that as
the order of derivative increases, the solution set tends to have the same structure as the exact
one, which demonstrates the effectiveness of the proposed technique.

Example 4.5. Consider the nonlinear time fractional Korteweg-de-Vries (KdV) equation,
∂au
∂ta + ∂3u

∂x3 −6u
∂u
∂x

= 0, 0< a ≤ 1, (4.9)

u(x,0)= 6x. (4.10)

The exact solution of eqn. (4.9)-(4.10) for a = 1 is u = 6x
1−36t .

Integrating both sides of eqn. (4.9) with respect to t and substituting (4.10) we get,

u = x− 1
Γ(a)

∫ t

0
(t− s)a−1∂

3u
∂x3 ds+ 1

Γ(a)

∫ t

0
(t− s)a−1

[
6u

∂u
∂x

]
ds.

Using iterative scheme (3.7),

v0 = u0(x, t)= 6x,

v1 = v0 +L∗[v0]+N∗[v0]= 6x+ 216xta

Γ(a+1)
,

v2 = v0 +L∗[v1]+N∗[v1]= 6x+ 216xta

Γ(a+1)
+ 15552xt2a

Γ(2a+1)
+ 2187 22a+7xt3aΓ

(
a+ 1

2

)
p
πΓ(a+1)Γ(3a+1)

,

v3 = v0 +L∗[v2]+N∗[v2]

= 6x+ 216xta

Γ(a+1)
+ 15552xt2a

Γ(2a+1)
+93312xt3a

(
4aΓ

(
a+ 1

2

)
p
πa2Γ(a)Γ(3a)

+ 12
Γ(3a+1)

)

+ 10077696xt4a(Γ(2a+1)2 +2Γ(a+1)Γ(3a+1))
aΓ(2a)Γ(a+1)2Γ(4a+1)

+ 59049 22a+13xt5a (
34aΓ(3a)Γ

(
2a+ 1

2

)
Γ(a+1)2 +2Γ(4a)Γ

(
a+ 1

2

)
Γ(2a+1)

)
p
πΓ(3a)Γ(a+1)2Γ(2a+1)Γ(5a+1)

+ 14511882240xt6aΓ(5a)
a3Γ(a)2Γ(3a)Γ(6a)

+ 4782969 210a+15xt7aΓ
(
a+ 1

2

)2
Γ

(
3a+ 1

2

)
π

3
2 a3Γ(a)2Γ(3a)Γ(7a+1)

,

...

For a = 1, we have

v0 = 6x,
v1 = 6x+216tx = 6x(1+36t),

v2 = 6x+216tx+7776t2x+279936t3x = 6x(1+36t+ (36t)2 +·· · ),
v3 = 6x+216tx+7776t2x+279936t3x+6718464t4x+120932352t5x+1451188224t6x

= 6x(1+36t+ (36t)2 + (36t)3 +·· · ).
Hence for a = 1, we have, u(x, t) = lim

k→∞
vk = 6x

1−36t , which is same as the exact solution of

eqn. (4.9)-(4.10). Graphical simulation of approximate solution v3 is plotted for different order
of derivatives a = {0.25,0.5,0.75,1} in Figure 4. The 2D plot of solution curve in time 0< t < 10
at fixed x = 5 for different values of a shows that the curve approaches to its exact structure
with increase in the order of derivative.
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a=0.25

a=0.5

a=0.75

a=1

(a)

2 4 6 8 10
t

5.0×1015

1.0×1016

1.5×1016

2.0×1016

iterated u[x,t]

a=0.25

a=0.5

a=0.75

a=1

(b)

Figure 4. Approximate solution (a) 3D, (b) 2D for different order of derivatives of the eqn. (4.9)-(4.10)

4.2 System of Fractional Differential Equations
Example 4.6. Consider the system of Drinfeld-Sokolov-Wilson equation,

∂aφ1
∂ta +3φ2

∂φ2
∂x = 0, 0< a ≤ 1,

∂aφ2
∂ta +2∂3φ2

∂x3 +φ2
∂φ1
∂x +2φ1

∂φ2
∂x = 0, 0< a ≤ 1,

 (4.11)

φ1(x,0)= 3c
2 sech2

(√
c
2 x

)
,

φ2(x,0)= csech
(√

c
2 x

)
.

 (4.12)

The exact solution of system (4.11)-(4.12) for a = 1 is

φ1(x, t)= 3c
2

sech2
(√

c
2

(x− ct)
)
,

φ2(x, t)= csech
(√

c
2

(x− ct)
)
.

On integrating both sides of eqn. (4.11) with respect to t and using initial conditions (4.12), we
get

φ1(x, t)= 3c
2

sech2
(√

c
2

x
)
− 1
Γ(a)

∫ t

0
(t− s)a−1

[
3φ2

∂φ2

∂x

]
ds,

φ2(x, t)= csech
(√

c
2

x
)
− 1
Γ(a)

∫ t

0
(t− s)a−1

[
2
∂3φ2

∂x3

]
ds

− 1
Γ(a)

∫ t

0
(t− s)a−1

[
φ2

∂φ1

∂x
+2φ1

∂φ2

∂x

]
ds.

Using iterative scheme (3.9),

v10 =φ10(x, t)= h∗
1(x, t)= 3c

2
sech2

(√
c
2

x
)
,

v20 =φ20(x, t)= h∗
2(x, t)= csech

(√
c
2

x
)
,

v11 =φ10 +φ11 = h∗
1 +L∗

1(v10,v20)+N∗
1 (v10,v20)= 3c

2
sech2

(√
c
2

x
)
+

3c
5
2 ta tanh

(p
cxp
2

)
sech2

(p
cxp
2

)
p

2Γ(a+1)
,
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v21 =φ20 +φ21 = h∗
2 +L∗

2(v10,v20)+N∗
2 (v10,v20)= csech

(√
c
2

x
)
+

c
5
2 ta tanh

(p
cxp
2

)
sech

(p
cxp
2

)
p

2Γ(a+1)
,

v12 =φ10+φ11+φ12=h∗
1+L∗

1(v11,v21)+N∗
1 (v11,v21)= 3c

2
sech2

(√
c
2

x
)
+

3c
5
2 ta tanh

(p
cxp
2

)
sech2

(p
cxp
2

)
p

2Γ(a+1)

+ 3
2

c4t2a sech4
(p

cxp
2

)22a− 3
2 c

3
2 taΓ

(
a+ 1

2

)(
sinh(

p
2
p

cx)−4tanh
(p

cxp
2

))
p
πΓ(a+1)Γ(3a+1)

+ cosh(
p

2
p

cx)−2
Γ(2a+1)

,

v22 =φ20 +φ21 +φ22 = h∗
2 +L∗

2(v11,v21)+N∗
2 (v11,v21)= csech

(√
c
2

x
)
+

c
5
2 ta tanh

(p
cxp
2

)
sech

(p
cxp
2

)
p

2Γ(a+1)

+
c4t2a sech3

(p
cxp
2

)(3
p

2c
3
2 taΓ(2a+1)2

(
sinh

(
3
p

cxp
2

)
−6sinh

(p
cxp
2

))
sech3

(p
cxp
2

)
Γ(a+1)2Γ(3a+1) +cosh

(p
2
p

cx
)−3

)
4Γ(2a+1)

,

...

-10 -5 5 10
x

0.05

0.10

0.15

ϕ_1[x,t]

a=0.25

a=0.5

a=0.75

a=1

-10 -5 5 10
x

0.04

0.06

0.08

0.10

ϕ_2[x,t]

a=0.25

a=0.5

a=0.75

a=1

Figure 5. Approximate solution at t = 0.5, c = 0.1 and for different values of a for the eqn. (4.11)-(4.12)

0

5.0× 10-7

1.0× 10-6

1.5× 10-6

2.0× 10-6

Absolute error for ϕ_1[x,t]

Absolute error for ϕ_2[x,t]

Figure 6. Absolute errors of φ1 and φ2 for c = 0.1, a = 1 of the eqn. (4.11)-(4.12)

The approximate solution of the system and exact solutions are plotted in Figure 7 along
with the absolute errors in Figure 6. Also, the solution curves at fixed time t = 0.5 and for
constant c = 0.1 is plotted between −10< x < 10 for different values of a in Figure 5. The exact
and approximated values are listed in Table 1 and from the absolute error, we observe that
the solution obtained with few iterative steps have closer approximation to the exact solution
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of the system. Furthermore, the same system is analysed by Ganie et al. [8] through Aboodh
transform method. A close resemblance seen between the results obtained using the respective
techniques shows the reliability of the proposed method.

Table 1. Solution obtained at time t = 0.5, c = 0.1, a = 1 for the eqn. (4.11)-(4.12)

x φ1(x, t) Exact φ1 φ2(x, t) Exact φ2 Absolute error of φ1 Absolute error of φ2

0 0.1498310 0.1498310 0.0999438 0.0999438 0.0000000 0.0000000

0.1 0.1499810 0.1499810 0.0999935 0.0999938 0.0000000 0.0000003

0.2 0.1499820 0.1499810 0.0999934 0.0999938 0.0000010 0.0000004

0.3 0.1498320 0.1498310 0.0999432 0.0999438 0.0000010 0.0000006

0.4 0.1495330 0.1495320 0.0998432 0.0998440 0.0000010 0.0000008

0.5 0.1490860 0.1490850 0.0996936 0.0996945 0.0000010 0.0000009

0.6 0.1484930 0.1484910 0.0994949 0.0994959 0.0000020 0.0000010

0.7 0.1477550 0.1477540 0.0992473 0.0992485 0.0000010 0.0000012

0.8 0.1468770 0.1468750 0.0989517 0.0989530 0.0000020 0.0000013

0.9 0.1458610 0.1458590 0.0986087 0.0986100 0.0000020 0.0000013

1 0.1447110 0.1447090 0.0982191 0.0982205 0.0000020 0.0000014

(a) Approximate and the exact solution φ1 for c = 0.1, a = 1

(b) Approximate and the exact solution φ2 for c = 0.1, a = 1

Figure 7. Graphical simulation of (a) φ1, and (b) φ2 of the eqn. (4.11)-(4.12)
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Example 4.7. Consider the coupled Jaulent-Miodek equations,
∂aφ1
∂ta + ∂3φ1

∂x3 + 3
2φ2

∂3φ2
∂x3 + 9

2
∂φ2
∂x

∂2φ2
∂x2 − 3

2φ
2
2
∂φ1
∂x −6φ1φ2

∂φ2
∂x −6φ1

∂φ1
∂x = 0, 0< a ≤ 1,

∂aφ2
∂ta + ∂3φ2

∂x3 −6φ2
∂φ1
∂x −6φ1

∂φ2
∂x − 15

2 φ
2
2
∂φ2
∂x = 0, 0< a ≤ 1,

 (4.13)

φ1(x,0)= c2

8

(
1−4sech2 ( cx

2

))
,

φ2(x,0)= csech
( cx

2

)
.

}
(4.14)

0.2 0.4 0.6 0.8 1.0
t

-0.0860

-0.0855

-0.0850

-0.0845

-0.0840

ϕ_1[1,t]

a=0.25

a=0.5

a=0.75

a=1

0.2 0.4 0.6 0.8 1.0
t

0.480

0.481

0.482

0.483

0.484

0.485
ϕ_2[1,t]

a=0.25

a=0.5

a=0.75

a=1

Figure 8. Approximate solution at c = 0.5, x = 1 and for different values of a for the eqn. (4.13)-(4.14)

The exact solution of system (4.13)-(4.14) for a = 1 is

φ1(x, t)= c2

8

(
1−4sech2

(
c
2

(
c2t
2

+ x
)))

,

φ2(x, t)= csech
(

c
2

(
c2t
2

+ x
))

.

On integrating both sides of eqn. (4.13) with respect to t and using initial conditions (4.14), we
get

φ1(x, t)= c2

8

(
1−4sech2

( cx
2

))
− 1
Γ(a)

∫ t

0
(t− s)a−1

[
∂3φ1

∂x3

]
ds

+ 1
Γ(a)

∫ t

0
(t− s)a−1

[
3
2
φ2

2
∂φ1

∂x
+6φ1φ2

∂φ2

∂x
+6φ1

∂φ1

∂x
− 3

2
φ2

∂3φ2

∂x3 − 9
2
∂φ2

∂x
∂2φ2

∂x2

]
ds,

φ2(x, t)= csech
( cx

2

)
− 1
Γ(a)

∫ t

0
(t− s)a−1

[
∂3φ2

∂x3

]
ds

+ 1
Γ(a)

∫ t

0
(t− s)a−1

[
6φ2

∂φ1

∂x
+6φ1

∂φ2

∂x
+ 15

2
φ2

2
∂φ2

∂x

]
ds.

Using iterative scheme (3.9),

v10 =φ10(x, t)= h∗
1(x, t)= c2

8

(
1−4sech2

( cx
2

))
,

v20 =φ20(x, t)= h∗
2(x, t)= csech

( cx
2

)
,

v11 =φ10 +φ11 = h∗
1 +L∗

1(v10,v20)+N∗
1 (v10,v20)

= c2

8

(
1−4sech2

( cx
2

))
+ c5ta tanh

( cx
2

)
sech2 ( cx

2

)
4Γ(a+1)

,
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v21 =φ20 +φ21 = h∗
2 +L∗

2(v10,v20)+N∗
2 (v10,v20)= csech

( cx
2

)
− c4ta tanh

( cx
2

)
sech

( cx
2

)
4Γ(a+1)

,

v12 =φ10 +φ11 +φ12 = h∗
1 +L∗

2(v11,v21)+N∗
2 (v11,v21)

= c2

8

(
1−4sech2

( cx
2

))
+ c5ta tanh

( cx
2

)
sech2 ( cx

2

)
4Γ(a+1)

− c8t2a(cosh(cx)−2)sech4 ( cx
2

)
16Γ(2a+1)

+ 3c11t3aΓ(2a+1)(85sinh(cx)−20sinh(2cx)+sinh(3cx))sech8 ( cx
2

)
4096Γ(a+1)2Γ(3a+1)

− 3c14t4aΓ(3a+1)(3cosh(cx)−8)tanh2 ( cx
2

)
sech6 ( cx

2

)
256Γ(a+1)3Γ(4a+1)

,

v22 =φ20 +φ21 +φ22 = h∗
2 +L∗

2(v11,v21)+N∗
2 (v11,v21)

= csech
( cx

2

)
− c4ta tanh

( cx
2

)
sech

( cx
2

)
4Γ(a+1)

+ c7t2a(cosh(cx)−3)sech3 ( cx
2

)
32Γ(2a+1)

− 3c10t3aΓ(2a+1)(3cosh(cx)−7)tanh
( cx

2

)
sech5 ( cx

2

)
128Γ(a+1)2Γ(3a+1)

+ 15c13t4aΓ(3a+1)(cosh(cx)−3)tanh2 ( cx
2

)
sech5 ( cx

2

)
512Γ(a+1)3Γ(4a+1)

,

...

Table 2. Solution obtained for c = 0.5, a = 1 of the eqn. (4.13)-(4.14)

x t φ1(x, t) Exact φ1 φ2(x, t) Exact φ2 Absolute error of φ1 Absolute error of φ2

0.2

0.2 −0.0933553 −0.0933553 0.4992100 0.4992100 0.0000000 0.0000000

0.4 −0.0932629 −0.0932630 0.4990250 0.4990250 0.0000001 0.0000000

0.6 −0.0931608 −0.0931610 0.4988210 0.4988210 0.0000002 0.0000000

0.8 −0.0930489 −0.0930495 0.4985970 0.4985970 0.0000006 0.0000000

1 −0.0929273 −0.0929284 0.4983550 0.4983540 0.0000011 0.0000010

0.4

0.2 −0.0923494 −0.0923494 0.4971910 0.4971910 0.0000000 0.0000000

0.4 −0.0921811 −0.0921812 0.4968530 0.4968530 0.0000001 0.0000000

0.6 −0.0920033 −0.0920037 0.4964960 0.4964950 0.0000004 0.0000010

0.8 −0.0918159 −0.0918170 0.4961200 0.4961190 0.0000011 0.0000010

1 −0.0916190 −0.0916212 0.4957260 0.4957240 0.0000022 0.0000020

0.6

0.2 −0.0907472 −0.0907472 0.4939580 0.4939580 0.0000000 0.0000000

0.4 −0.0905063 −0.0905065 0.4934700 0.4934700 0.0000002 0.0000000

0.6 −0.0902563 −0.0902569 0.4929650 0.4929640 0.0000006 0.0000010

0.8 −0.0899971 −0.0899987 0.4924410 0.4924400 0.0000016 0.0000010

1 −0.0897288 −0.0897318 0.4919000 0.4918980 0.0000030 0.0000020

Figure 8 shows the solution curves for fixed x = 1, c = 0.5 in the time span 0< t < 10 with
different order of derivative and the graphical simulation of approximate solutions φ1(x, t)
and φ2(x, t), exact solution are depicted in Figure 9 along with absolute errors. The respective
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solution values are listed in the table 2 for different inputs (x, t). Moreover, the obtained results
nearly correspond to the one obtained using q-homotopy analysis transformation method dealt
by Vereesha [27], and our method involves less computational effort.

(a) Approximate and the exact solution φ1 for c = 0.5, a = 1

(b) Approximate and the exact solution φ2 for c = 0.5, a = 1

(c) Absolute errors of φ1 and φ2 for c = 0.5, a = 1

Figure 9. Graphical simulation of (a) φ1, and (b) φ2 of the eqn. (4.13)-(4.14)

5. Conclusion
An iterative technique for finding an approximate solution of fractional differential equations
(FDEs) has been established and effectively applied to find the solution of non-linear time
fractional partial differential equations and systems. Besides, being a direct approach to
solve various FDEs, the scheme guarantees the accuracy of generating results, and only
a few iterations are required to converge to the exact solution of the problems analysed.
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Furthermore, by comparing the results obtained with those obtained using few methods present
in the literature, it is clear that the proposed method is extremely efficient and easy to apply to
many different types of FDEs.
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