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Abstract. This paper reports the findings of a novel four-dimensional autonomous quadratic
hyperchaotic system characterized by three nonlinear terms. This system is developed by introducing
nonlinear state feedback into the second equation of the three-dimensional Yang chaotic system.
A comprehensive dynamical study follows the presentation of the mathematical model. The study
includes dissipation and symmetry, stability of equilibrium points, and dynamic behaviors such as
the Lyapunov exponent spectrum, bifurcation diagram, Poincaré maps, and orbits. The Poincaré-
Andronov-Hopf bifurcation theorem and center manifold theory are used in local bifurcation analysis
to investigate pitchfork and Hopf bifurcation at zero equilibrium points. Numerical simulations have
confirmed the mathematical discoveries.
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1. Introduction
Chaos is often observed in nature and is a challenging dynamic event in nonlinear systems.
Scholars from various areas and fields have shown significant interest in chaos theory and its
applications (Biban et al. [2], and Yang et al. [18]). The Lorenz attractor [8] is an important
scientific discovery that provided a foundation for the emerging theory in the field of chaos
science, as it is the first classical chaotic attractor of chaos. The whole development of chaos
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science is associated with the study of Lorenz-type systems. Hyperchaos, in comparison to chaos,
is frequently regarded as a chaotic dynamical system characterized by having two or more
positive Lyapunov exponents (LEs), which may increase the nonlinear system’s instability and
unpredictability. Thus, it is more beneficial to develop a novel hyperchaotic system with unique
dynamical characteristics.

Since 4D autonomous systems are the lowest dimension at which hyperchaos may occur
in an autonomous system, as we all know, 4D autonomous systems are the focus of most
hyperchaos research and applications. In 1979, Rossler [11] identified and examined the
revolutionary hyperchaotic system. Later investigations led to the discovery and study of several
four-dimensional hyperchaotic systems, such as the hyperchaotic Lü system (Chen et al. [4]),
the hyperchaotic Chua system (Rech and Albuquerque [10]), the hyperchaotic Chen system
(Yuxia et al. [21]), the hyperchaotic Lorenz system (Al-Khedhairi et al. [1]), and the hyperchaotic
Jia system [5], particularly four-dimensional hyperchaotic Lorenz-type systems (Chen and
Yang [3], and Li et al. [6]). Hyperchaotic systems show a higher potential for use in encrypted
communications (Yu et al. [20]), nonlinear circuits (Yilmaz et al. [19]), image encryption (Xu et
al. [15]), and a variety of other fields compared with classical chaos systems.

Research on the bifurcation of fixed points in chaotic systems, such as pitchfork, Hopf,
and homoclinic bifurcations, has been the focus of many studies in the last few years (Liu et
al. [7], and Yan et al. [16]). Particularly, important types of static and dynamic bifurcations
at equilibrium points include pitchfork and Hopf bifurcations. It is beneficial for real-world
applications to fully investigate these bifurcations because they provide further understanding
of the dynamic development of nonlinear systems. However, such bifurcation analyses in
hyperchaotic systems have been less studied due to their higher dimensionality and increased
complexity. Studying the bifurcation events in hyperchaotic systems therefore offers an
important and relevant field of research.

The rest of the sections in this paper are presented as follows: Section 2 introduces the new
hyperchaotic system and its significant dynamical features. Section 3 investigates the analysis
of the Hopf and pitchfork bifurcations in the new hyperchaotic system using the center manifold
theorem, bifurcation theory, and numerical simulations. In the end, the results are concisely
presented in Section 4.

2. The Novel Hyperchaotic System and Its Dynamical Analysis
2.1 Mathematical Model
Yang and Chen [17] have developed a complex three-dimensional chaotic system. It can be
characterized by the following equations:

ẏ1 =σ(y2 − y1),
ẏ2 = ρy1 − y1 y3,
ẏ3 =−γy3 + y1 y2,

(1)

where σ,γ,ρ are real parameters, with σ > 0, γ > 0 and ρ ∈ R. When (σ,γ,ρ) = (10,8/3,16),
(σ,γ,ρ) = (35,3,35), system (1) has a chaotic attractor. By introducing an additional state
variable into the set of equations in (1), the following novel 4D hyperchaotic system is proposed
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as follows:
ẏ1 =σ(y2 − y1),
ẏ2 = ρy1 − y1 y3 + y4,
ẏ3 =−γy3 + y1 y2,
ẏ4 =−my1 +ny2 y3,

(2)

where σ,γ,ρ,m, and n are the parameters of the system, and y1, y2, y3, and y4 are the state
variables. As shown in Figure 1, system (2) exhibits a hyperchaotic attractor with parameters
(σ,γ,ρ,m,n)= (10,8/3,22,8,0.01).

(a)

(b)

Figure 1. Diagram of hyperchaotic attractors in system (2) with parameters σ = 10, γ = 8/3, ρ = 22,
m = 8 and n = 0.01

2.2 Symmetry and Dissipation
Given the coordinate transformation (y1, y2, y3, y4)→ (−y1,−y2, y3,−y4), the system given in (2)
keeps its form, showing that it is symmetrical with regard to the y3-axis.
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The divergence in system (2) can be obtained as follows:

∇V = ∂ ẏ1

∂y1
+ ∂ ẏ2

∂y2
+ ∂ ẏ3

∂y3
+ ∂ ẏ4

∂y4
=−(σ+γ).

According to studies by Owolabi and Atangana [9] and Tarasov [12], the Lyapunov exponents of
the system can be used to determine its dissipation. A system is classified as dissipative if the
sum of all its Lyapunov exponents is negative. When σ= 10, γ= 8/3, ρ = 22, m = 8 and n = 0.01,∑4

i LE i =−12.67< 0, which confirms that system (2) is dessipative.

2.3 The Complexity of Dynamic Behaviors
Given the values σ = 10, γ = 8/3, m = 8, n = 0.01 and a variable ρ, we analyze the dynamic
characteristics of system (2) by using the Lyapunov exponent spectrum, bifurcation diagram,
and Poincaré map. The analyses can be seen in Figures 2 and 3, respectively.
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Figure 2. Spectrum of Lyapunov exponents and bifurcation diagram for ρ ∈ [0,50], with parameters
σ= 10, γ= 8/3, m = 8, and n = 0.01
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Figure 3. The Poincaré maps for the y1-y2 and y3-y4 planes are shown, with parameters σ= 10, γ= 8/3,
ρ = 22, m = 8, and n = 0.01

2.4 The Study of Stability at Equilibrium Points
Consider the following algebraic equations to determine the equilibrium of system (2):

σ(y2 − y1)= 0,
ρy1 − y1 y3 + y4 = 0,
−γy3 + y1 y2 = 0,
−my1 +ny2 y3 = 0.

(3)

It can be observed that system (2) has an origin equilibrium point, EQ1 = (0,0,0,0).
In addition, when mnγ > 0, system (2) shows two more equilibrium points: EQ2 =(pmnγ

n ,
pmnγ

n , m
n , (m−ρn)pmnγ

n2

)
and EQ3 =

(
−

pmnγ
n ,−

pmnγ
n , m

n ,− (m−ρn)pmnγ
n2

)
. The next section will

provide a concise overview of the stability of the origin equilibrium EQ1. The Jacobian matrix
evaluated at EQ1 is

JEQ1 =


−σ σ 0 0
ρ 0 0 1
0 0 −γ 0

−m 0 0 0

 . (4)

Subsequently, we derive the associated characteristic equation as

φ(λ)= (λ+γ) ·φ1(λ)= 0, (5)

where

φ1(λ)= (λ3 +σλ2 −σρλ+σm). (6)

Certainly, −γ is a root of equation (5). According to Routh-Hurwitz criteria, the remaining three
roots may not consistently contain the negative real part. Section 3 will focus on the analysis of
the bifurcation phenomena, specifically in the case where the zero equilibrium is non-hyperbolic.
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3. Local Bifurcation Analysis
3.1 Pitchfork Bifurcation
We take m as a bifurcation parameter in the following investigation. The eigenvalues of Jacobian

matrix (4) when m = 0 are given by λ1 = 0, λ2 = −γ, λ3,4 = −σ±
p
σ(σ+4ρ)
2 , with the associated

eigenvectors

v1 =


−1
−1
0
ρ

 , v2 =


0
0
1
0

 , v3 =


−(σ+

p
σ(σ+4ρ))
2ρ
1
0
0

 , v4 =


−(σ−

p
σ(σ+4ρ))
2ρ
1
0
0

 .

Thus, the equilibrium EQ1 = (0,0,0,0) is not hyperbolic, and we will analyze the stability of
the equilibrium point EQ1 = (0,0,0,0) close to the bifurcation point m = 0 by using the center
manifold theorem (Wiggins [14]).

Firstly, describe a transformation, which is
y1
y2
y3
y4

=


x1
x2
x3
x4

 , (7)

where

T = (v1,v2,v3,v4)=


−1 0 −(σ+q)

2ρ
−(σ−q)

2ρ
−1 0 1 1
0 1 0 0
ρ 0 0 0

 , (8)

and q =√
σ(σ+4ρ).

Thus, system (2) can be changed into the following system:
ẋ1
ẋ2
ẋ3
ẋ4

=


0 0 0 0
0 −γ 0 0
0 0 −σ+q

2 0
0 0 0 −σ−q

2




x1
x2
x3
x4

+


Φ1
Φ2
Φ3
Φ4

 , (9)

where

Φ1 = m
ρ

x1 + m(σ+ q)
2ρ2 x3 + m(σ− q)

2ρ2 x4 + n(x3 − x1 + x4)x2

ρ
,

Φ2 =−(x3 − x1 + x4)
(
x1 + σ+ q

2ρ
x3 + σ− q

2ρ
x4

)
,

Φ3 =−m(σ+2ρ− q)
2ρq

x1 − m(σ+ q)(σ+2ρ− q)
4qρ2 x3 − m(σ− q)(σ+2ρ− q)

4qρ2 x4

− n(σ+2ρ− q)(x3 − x1 + x4)x2

2ρq
−

(σ− q)
(
x1 + σ+q

2ρ x3 + σ−q
2ρ x4

)
x2

2q
,

Φ4 = m(σ+2ρ+ q)
2ρq

x1 + m(σ+ q)(σ+2ρ+ q)
4qρ2 x3 + m(σ− q)(σ+2ρ+ q)

4qρ2 x4
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+ n(σ+2ρ+ q)(x3 − x1 + x4)x2

2ρq
+

(σ+ q)
(
x1 + σ+q

2ρ x3 + σ−q
2ρ x4

)
x2

2q
.

Hence, the stability of the point EQ1 = (0,0,0,0) close to m = 0 can be discovered by using
center manifold theory. This involves investigating a set of 1st-order fundamental ordinary
differential equations (ODEs) with a single parameter on a center manifold. The equations can
be graphically represented by plotting the variables x1 and m on a graph as follows:

Wc(0)=

(x1, x2, x3, x4,m) ∈R5

∣∣∣∣∣∣∣
x2 = h1(x1,m), x3 = h2(x1,m), x4 = h3(x1,m),

|x1| < θ, |m| < θ,

hi(0,0)= 0, Dhi(0,0)= 0, i = 1,2,3

 (10)

where both θ and θ be sufficiently small.
To calculate the center manifold and to obtain the vector field associated with it, consider

that 
x2 = h1(x1,m)= a1x2

1 +a2x1m+a3m2 + . . . ,
x3 = h2(x1,m)= b1x2

1 +b2x1m+b3m2 + . . . ,
x4 = h3(x1,m)= c1x2

1 + c2x1m+ c3m2 + . . . .
(11)

Recall that the center manifold needs to meet [14]

N(h(x1,m))= Dh ·Φ1 −Bh−Φ= 0, (12)

where

h =
h1

h2
h3

 , Φ=
Φ2
Φ3
Φ4

 , B =
−γ 0 0

0 −σ+q
2 0

0 0 −σ−q
2

 . (13)

By using the expression (11) in equation (12) and combining the expression (13), one can obtain
that

x2
1 : γa1 −1= 0 =⇒ a1 = 1

γ
, b1 = 0, c1 = 0,

x1m : a2 = 0, −
(−σ+ q

2

)
b2 −

(
−σ+2ρ− q

2ρq

)
= 0, (14)

=⇒ b2 =−σ+2ρ− q
ρq(σ− q)

, c2 = σ+2ρ+ q
ρq(σ+ q)

,

m2 : a3 = 0, b3 = 0, c3 = 0.

As a result, equation (11) can be rewritten as
x2 = h1(x1,m)= a1x2

1 + . . . ,
x3 = h2(x1,m)= b2x1m+ . . . ,
x4 = h3(x1,m)= c2x1m+ . . . .

(15)

Hence, a reduced vector field is derived by substituting eq. (15) into ẋ1 =Φ1 of eq. (9), and one
can obtain:

ẋ1 = 1
ρ

x1m− (σ+ q)
2ρ2 · (σ+2ρ− q)

ρq(σ− q)
x1m2 + (σ− q)

2ρ2 · (σ+2ρ+ q)
ρq(σ+ q)

x1m2 − n
ργ

x3
1 + o(x4

1),

ṁ = 0.

 (16)
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Suppose

H(x1,m)= 1
ρ

x1m− (σ+ q)
2ρ2 · (σ+2ρ− q)

ρq(σ− q)
x1m2 + (σ− q)

2ρ2 · (σ+2ρ+ q)
ρq(σ+ q)

x1m2 − n
ργ

x3
1.

By the pitchfork bifurcation theory [14], it is simple to verify that the following requirements
are fulfilled. Consequently, system (16) experiences a pitchfork bifurcation at (x1,m) = (0,0)
when m = 0. As −∂3H

∂x3
1

/ ∂2H
∂x1∂m > 0, the direction of the bifurcation is towards m > 0.

H(0,0)= 0,
∂H
∂x1

∣∣∣∣
(0,0)

= 0,
∂H
∂m

∣∣∣∣
(0,0)

= 0,
∂2H
∂x2

1

∣∣∣∣
(0,0)

= 0,

∂2H
∂x1∂m

∣∣∣∣
(0,0)

= 1
ρ
̸= 0,

∂3H
∂x3

1

∣∣∣∣
(0,0)

= −6n
ργ

̸= 0.

Thus, Theorem 1 can be derived.

Theorem 1. When m = 0, system (2) experiences a pitchfork bifurcation at EQ1 = (0,0,0,0).
Moreover, for m < 0, there exists a single origin equilibrium point EQ1 = (0,0,0,0) that is locally
stable and located on the left of m = 0. EQ1 = (0,0,0,0) becomes unstable when m > 0, and
the remaining two equilibrium points EQ2 = (pmnγ/n,pmnγ/n,m/n, (m−ρn)pmnγ/n2) and
EQ3 = (−pmnγ/n,−pmnγ/n,m/n,−(m−ρn)pmnγ/n2) appear and become locally stable close
to the right side of m = 0.

3.2 Hopf Bifurcation
Consider a vector field:

ẏ= g(y,η), y ∈Rn, η ∈R. (17)

If all three of the following criteria are met simultaneously by the vector field [13], it will
experience a Hopf bifurcation.

(C1): g(y0,η0)= 0, the Jacobian matrix D g(y0,η0) has two purely imaginary eigenvalues, φ1(η0)
and φ2(η0).

(C2): Transversality condition: the real parts of eigenvalues satisfy
d

dη
(Re(φ1,2(η)))

∣∣∣∣
η=η0

̸= 0.

(C3): The index number Λ0 is nonzero.

Next, we will examine each of the three listed criteria individually. Let’s start by assuming
that it has two eigenvalues λ=±iw0, where w0 is a positive real number. By placing one of the
eigenvalues into equation (6), we can obtain the following expression:

−w3
0 i−σw2

0 −σρw0i+σm = 0. (18)

Eq. (18) can be expressed as:{
−w3

0 −σρw0 = 0,
σm−σw2

0 = 0.
(19)

The solution of equation (19) yields ρ =−m
σ

and w0 =
p

m, where m > 0.
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Hence, by substituting ρ = −m
σ

in equation (5), we obtain λ1 = −γ, λ2 = −σ, λ3 = i
p

m,
λ4 =−i

p
m, where σ ∈ R+, γ ∈ R+ and m > 0. Hence, condition (C1) is satisfied when ρ =−m

σ
.

Now consider the expression λ(ρ)=α(ρ)+ iw0(ρ), where ±iw0 are roots of the equation φ1(λ)= 0.
By substituting λ(ρ) into φ1(λ) = 0 and applying a differentiation of both sides of equation
φ1(λ)= 0 with respect to ρ, we obtain

dλ(ρ)
dρ

= σλ

3λ2 +2σλ−σρ ,

which implies that
dλ(ρ)

dρ

∣∣∣∣
ρ=−m

σ

= iσw0

−3w2
0 +2σiw0 +m

. (20)

Thus, we have obtained

ρ1 =Re(λ′(ρ))
∣∣∣
ρ=−m

σ

= 2σ2w2
0

[−3w2
0 +m]2 +4σ2w2

0
= 0.5 ̸= 0. (21)

As a result, the condition (C2) is also fulfilled.
Finally, we will continue to apply the center manifold theorem in order to calculate the index

number Λ0, ensuring it meets the condition (C3) where Λ0 ̸= 0. If we look at the Jacobian matrix
(4) and set ρ =−m

σ
, we find the eigenvalues to be λ1 =−γ, λ2 =−σ, λ3 = i

p
m, and λ4 =−i

p
m,

with their associated eigenvectors.

v1 =


0
0
1
0

 , v2 =


σ

0
0

w2
0

 , v3 =


c1

1+ w0
σ

i
0

w0i

 , v4 =


c1

1− w0
σ

i
0

−w0i

 .

Define the transformation as follows:
y1
y2
y3
y4

=Q


z1
z2
z3
z4

 , (22)

where

Q = (Re(v3),−Im(v3),v1,v2)=


1 0 0 σ

1 −w0
σ

0 0
0 0 1 0
0 −w0 0 w2

0

 . (23)

System (2) can be rewritten as follows:
ż1
ż2
ż3
ż4

=


0 −w0 0 0

w0 0 0 0
0 0 −γ 0
0 0 0 −σ




z1
z2
z3
z4

+


f1
f2
f3
f4

 , (24)

where

f1 =
−σ2(z1 +σz4)z3 −σn(z1 − w0

σ
z2)z3

σ2 +w2
0

,
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f2 =
σw0(z1 +σz4)z3 −σ2n

( 1
w0

z1 − 1
σ

z2
)
z3

σ2 +w2
0

,

f3 = (z1 +σz4)
(
z1 − w0

σ
z2

)
,

f4 =
n
(
z1 − w0

σ
z2

)
z3 +σ(z1 +σz4)z3

σ2 +w2
0

.

Equation (24) can be rewritten as follows:{
U̇ = AU + f (U ,V ),
V̇ = BV + g(U ,V ),

(25)

where
A =

[
0 −w0

w0 0

]
, B =

[
−γ 0
0 −σ

]
, U =

[
z1

z2

]
, V =

[
z3

z4

]
,

f (U ,V )=
[

f1

f2

]
, g(U ,V )=

[
f3

f4

]
.

(26)

According to center manifold theory, a center manifold exists for equation (25) and can be
represented as

Wc(0)= {(U ,V ) ∈R2 ×R2 |V = h(U), |U | < θ, h(0,0)= 0, Dh(0,0)= 0}, (27)

where θ is sufficiently small and

h(U)=
[
h1(U)
h2(U)

]
=

[
h1(z1, z2)
h2(z1, z2)

]
. (28)

We assume that z3 = h1(z1, z2) and z4 = h2(z1, z2) have the forms as follows:{
z3 = h1(z1, z2)= d1z2

1 +d2z1z2 +d3z2
2 + . . . ,

z4 = h2(z1, z2)= e1z2
1 + e2z1z2 + e3z2

2 + . . . .
(29)

According to center manifold theory [14], the center manifold has to meet

Dh(U)[AU + f (U ,V )]−Bh(U)− g(U ,V )= 0. (30)

Substituting eq. (26) to eq. (30), expression (27) and equations (29) can be utilized to compare
and balance the coefficients of the identical terms (z2

1, z1z2, z2
2), resulting in the following:

z2
1 : d2w0 +γd1 −1= 0, e2w0 +σe1 = 0,

z1z2 : −2d1w0 +2d3w0 +γd2 + w0
σ

= 0,

−2e1w0 +2e3w0 +σe2 = 0,

z2
2 : −d2w0 +γd3 = 0, −e2w0 +σe3 = 0.

(31)

Then the following solution can be obtained:

d1 =
γ+ w2

0
σ
+ 2w2

0
γ

γ2 +4w2
0

, d2 =
2w0 − γw0

σ

γ2 +4w2
0

, d3 =
2
γ

w2
0 −

w2
0
σ

γ2 +4w2
0

. (32)
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Therefore, f1 and f2 may be expressed as f 1 = 1
σ2+w2

0
[−σ2z1 −σnz1 +nw0z2](d1z2

1 +d2z1z2 +d3z2
2 + . . .),

f 2 = 1
σ2+w2

0
[σw0z1 − σ2n

w0
z1 +σnz2](d1z2

1 +d2z1z2 +d3z2
2 + . . .).

(33)

Thus, we can apply the following formula to calculate the index number Λ0:

Λ0 = 1
16

( f 1
z1z1z1

+ f 1
z1z2z2

+ f 2
z1z1z2

+ f 2
z2z2z2

)

+ 1
16w0

[ f 1
z1z2

( f 1
z1z1

+ f 1
z2z2))− f 2

z1z2
( f 2

z1z1
+ f 2

z2z2
)− f 1

z1z1
f 2

z1z1
+ f 1

z2z2
f 2

z2z2
]

= 1
8(σ2 +w2

0)

{
[σn−3(σ2 +nσ)]d1 +

[
nw0 +σw0 − σ2n

w0

]
d2 + [3σn− (σ2 +nσ)]d3

}
. (34)

Theorem 2. In a novel system, a Hopf bifurcation occurs at the origin equilibrium point,
EQ1 = (0,0,0,0), when conditions (C1) and (C2) are satisfied and Λ0 ̸= 0 in equation (34). This
bifurcation leads to the emergence of a periodic orbit close to ρ0 = −m/σ. This orbit is considered
stable if Λ0 < 0, but it becomes unstable when Λ0 > 0. The direction of the bifurcation is above
(below) ρ0 depending on whether ρ1Λ0 is less than (greater than) 0.

3.3 Numerical Simulations
Numerical simulations are performed in this subsection to verify the validity of Theorems 1
and 2 for both pitchfork and Hopf bifurcation. The simulation uses constant parameters: σ= 10,
γ = 8/3, ρ = 27, m = 8, and n = 0.2. In Section 3.1, it is important to note that the pitchfork
bifurcation occurs at m = 0. Similarly, in Section 3.2, the Hopf bifurcation takes place at ρ0 =−m

σ
.

The given parameters are ρ = ρ0 =−0.8, Λ0 =−0.086, and ρ1Λ0 < 0.
According to Theorem 1, system 2 would experience a pitchfork bifurcation at EQ1 when

m = 0. Thus, there would be a change in both the number and stability of the equilibria around
the value of m = 0. The system should have two stable nonzero equilibrium points, EQ2 and
EQ3, and one unstable zero equilibrium point, EQ1, nearby to the right of m = 0. In the left
part of m = 0, there should only be one stable zero equilibrium point, EQ1. The x1-coordinate
values of fixed locations in the surrounding area of m = 0, ranging from −4 to 4, are displayed
in Figure 4. Figure 4 illustrates that the bifurcation direction occurs when m > 0. While EQ1 is
stable for m < 0, it becomes unstable and is replaced by the stable states EQ2 and EQ3 when
m > 0. This observation corresponds to the result derived from Theorem 1.

According to Theorem 2, the bifurcation direction is above ρ0, and the limit cycle close
to ρ0 should be stable. The provided numerical simulations serve to verify the outcomes of
the theorem. In Figure 5(a), the trajectory of system (2) is drawn towards the stable origin
equilibrium point EQ1 by choosing the value of ρ as −0.9, which is located in the left region of
ρ0. In Figure 5(b), the trajectory of system 2 is drawn towards a stable limit cycle that derives
from EQ1 by choosing the value of ρ as −0.6, which is in close range to ρ0. The simulation
findings clearly support the conclusion drawn from Theorem 2.
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Figure 4. Pitchfork bifurcation diagram of system (2) at m = 0
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Figure 5. (a) ρ =−0.9< ρ0, the system’s trajectory converges to a stable origin equilibrium point, EQ1.
(b) ρ =−0.6> ρ0, the system’s trajectory evolves towards a stable limit cycle arises from EQ1

4. Conclusions
This paper introduces a novel type of hyperchaotic system having four coupled ordinary
differential equations with three quadratic nonlinear parts in a continuous time frame. A variety
of dynamic behaviors, including the Lyapunov exponent spectrum, bifurcation diagrams, and
Poincaré maps, have been shown by the comprehensive dynamical analysis that was conducted.
The system has also shown stability at equilibrium points, symmetry, and dissipation properties.
The Poincaré-Andronov-Hopf bifurcation theorem and center manifold theory have been used
in local bifurcation investigations to show pitchfork and Hopf bifurcations at zero equilibrium
points. Combining mathematical results with numerical simulations validates the flexibility of
the proposed hyperchaotic system.
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