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Abstract. In this work, we introduce a novel finite-dimensional cubic functional equation
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where [ =4 is an integer, and derive its general solution. The main purpose of this work is to examine
the Hyers-Ulam stability of this functional equation in fuzzy normed spaces by means of direct
approach and fixed point approach.
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1. Introduction
A cubic mapping f : U — V between real vector spaces is defined as:
fQRuU+v)+fQu—-v)=2f(u+v)+2f(u—-v)+12f(u), (1.1)

where u and v are in U. The equation (1.1) is known as a cubic functional equation. The problem
of fuzzy stability in functional equations has received significant attention recently. Several
fuzzy stability findings for various functional equations have been studied by Mirmostafaee and
Moslehian [[10H12], and Mirmostafaee et al. [13].

In addressing applied problems, it’s common to encounter situations where only partial
information is accessible, or where the parameters of a model are uncertain, or measurements
are imprecise. These characteristics often motivate researchers to explore functional equations
within the framework of fuzzy theory.

Over the past four decades, fuzzy theory has emerged as a vibrant field of study, witnessing
significant advancements in the adaptation of classical set theory to fuzzy sets. This branch
of mathematics has found extensive applications across various domains in science and
engineering.

In 1984, Katsaras [7] introduced a fuzzy norm on a linear space. Following this, in 1991,
Biswas [3] expanded on this concept and explored fuzzy inner product spaces within linear
spaces. In 1992, Felbin [6]] proposed an alternative notion of a fuzzy norm for linear topological
structures within fuzzy normed linear spaces.

Subsequently, in 1994, Cheng and Mordeson [4] defined another type of fuzzy norm on
a linear space, leading to the development of the induced fuzzy metric by Kramosil and
Michalek [8]. In 2003, Bag and Samanta [1] modified the definition provided by Cheng and
Mordeson [4]] by removing a regular condition. Recent research has seen numerous authors
delve into various aspects of these topics, as documented by Bag and Samanta [2], Mirmostafaee
and Moslehian [|10], and Shieh [16].

In this work, we introduce a novel finite-dimensional cubic functional equation

l
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where [ = 4 is an integer, and derive its solution. The main aim of this study is to investigate
the Hyers-Ulam stability of the above mentioned functional equation in fuzzy normed spaces,
employing both direct and fixed point techniques.

2. Preliminaries
We review some fundamental facts about fuzzy normed spaces, as well as some preliminary

findings. We follow the concept of fuzzy normed spaces in [1].

Definition 2.1 ([1]). Let X be a real vector space. A function N : X x R — [0,1] is called a fuzzy
normon X if forall x,ye€ X and all s,te R,

(N1) N(x,t)=0, for t <0;
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(N2) x=0ifand onlyif N(x,t)=1, forall t > 0;

(N3) N(cx,t):N(x,%) if c #0;

(N4) N(x+y,s+t)=min{N(x,s),N(y,t)};

(N5) N(x,-) is a non-decreasing function of R and }irgloN(x,t) =1;

(Ng) for x #0, N(x,-) is continuous on R.
The pair (X,N) is called a fuzzy normed vector space.

Definition 2.2. Let (X,N) denote a fuzzy normed space. A sequence {x,};_; in X is said to
be convergent if there exists x € X such that lim N(x, —x,t) =1, for all t > 0. x is the limit of
n—00

the sequence {x,}} |, denoted by N-limx, =x.

The limit of the convergent sequence {x,};_; in a fuzzy normed space (X, N) is unique, as
seen in [14].

Definition 2.3. In a fuzzy normed space (X,N), a sequence {x,};_, is defined as a Cauchy
sequence if, for every € > 0 and each t > 0, there exists an M € N such that for all n = M and
every p >0, the condition N(x,p —%n,t) > 1—¢ is satisfied.

The condition states that all convergent sequences in a fuzzy normed space are Cauchy
sequences. A fuzzy normed space (X,N) is referred to as a fuzzy Banach space if all Cauchy
sequences in X converge.

A mapping f : X — Y between fuzzy normed vector spaces X and Y is continuous at a point
xo € X if any sequence {x,} that converges to xy in X also converges to f(xg). If f: X — Y is
continuous at all x € X, it is considered continuous on X.

In fixed point theory, we shall apply the fundamental result presented below.

Theorem 2.4 ([5]). Let (X,d) denote a generalized complete metric space, and let A : X — X
represent a strictly contractive function with a Lipschitz constant L < 1. Assume there exists an
element a € X such that a nonnegative integer k satisfies d(A**1a, A*a) < co. Then,

(i) the sequence {A"a};” ; converges to a fixed point b € X of A;
(ii) b is only one fixed point of A in the set Y ={y e X : d(A*a,y) < oo};

(iii) d(y,b)= t2pd(y,Ay), for every yeY.

3. Solution of Equation (1.2)
Theorem 3.1. If a mapping ¢ : A — B fulfills the functional equation (1.2), then the function
¢: A — B fulfills (1.1).

Proof. Assume that ¢ : A — B fulfills (1.2), for every ni,ng,---,n; € X. Substituting
(n1,n9,-++,n;) by (0,0,---,0) in (1.2), we receive

$(0) =0,
for all n € A. Replacing (n1,n9,:--,n;) by (n,0,---,0) in (1.2), we arrive
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for every n € A. Hence ¢ is odd function. Again replacing (n1,n9,:--,n;) by (n, %,0,--- ,0) in
(1.2), we have

P(2n) = 22p(n), (3.1)
for all n € A. Now, letting n by 2n in (3.1), we get

Pdn) = 42¢p(n), (3.2)
for all n € A. In general, for any positive integer a, we get

Hlan) = adpn). (3.3)
Setting (n1,ng,---,n;) by (u,3*,%,4,0,---,0) in and utilizing (3.1), we receive

3p(u +v) =—-6¢(u) +3p(v) + p(2u +v) + Pp(u —v), (3.4)
for every u,v € A. Substituting v by —v in (3.4), we reach

3p(u —v) =—-6¢(u) —3P(v) + p(2u —v) + Pp(u +v), (3.5)
for every u,v in A. Adding and (3.5), we archive our result (1.7). O

In the subsequent sections of this paper, we designate A as a linear space, (B, P) as a fuzzy
Banach space, and (Z,Q) as a fuzzy normed space. To simplify notation, we introduce the
abbreviation for a mapping ¢ : A — B as follows:

l
D(,b(nl,ng,---,nl):(,b(Zana)— Z ¢dlang +bny+cn)—(3-1) Z ¢lang +bny)
a=1

l<a<b<c=l l<a<b=l
-1

12-51+6
—(Q Y (a+1Pp(nar1),
a=0

2

for every nqi,nq,---,n; €A.

4. Ulam Stability of Equation (1.2): Direct Technique
Theorem 4.1. Let u € {—1,1} be fixed and let a mapping y : A — Z such that ¢ >0 and (2%)u <1,
Q(y(2“n,2%n,,0,---,0),¢) = Q(¢“x(n,n,0,---,0),€) (4.1)
and
lim Q2" n1,2" " ng, - ,24mp),234Mme) = 1,

for every n,ny,ng,---,n; € A and € > 0. If an odd function ¢ : A — B fulfills ¢$(0) =0 and

P(D¢(ny,ng, - ,np),e) 2 Q(x(n1,ng, - ,n;),e), (4.2)
forall ni,ne,---,n; € A and € > 0. Then, the limit
2um
Cn)=P— lim &1

m—oo 9Q3um

exists for every n € A and a unique cubic mapping C : A — B fulfilling
P((/)(n) - C(n)ae) = Q(X(ny n,O, Tt 70)7(12 - 5l + 6)€|23 - Cl)’ (43)
forall ne A and ¢ > 0.

Proof. Let u = 1. Switching (n1,n9,---,n;) by (n,n,0,---,0) in (4.2), we reach
P((I12 - 51 +6)p(2n) - 8(1% = 51 + 6)p(n),€) = Q(y(n,n,0,--- ,0),€), neA,e>0.
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Then, we have

2
P (/)(23n) —(n), m) > Q(x(n,n,0,---,0),e), neA,e>0. (4.4)
Switching n by 2™n in (4.4), we acquire
2m+1
p[* 23 = _‘P(zmn)’m =Q(x(2"n,2™n,0,--,0),6), neA,e>0. (4.5)

Using (4.1) and the condition in (4.5), we obtain

H2™ n)  p(2™n) €
P 93(m+1)  g93m ’93m+D(j2 _ 5] 1 6) =>Q|x(n,n,0,--- ,0),C—m , n€eA,e>0. (4.6)
Switching € by ¢"¢ in (4.6), we reach
¢(23(m+1)m) (,D(an) Cme
P( SBmTD T gom D251+ 6) >Q(y(n,n,0,---,0),e), neA,e>0. (4.7)
From (4.7), we obtain
(p(zmn) m-1 6.(’.a
P( 93m _‘P(n)’a;) 23@+ (]2 5] + 6)
_P(mz—l [¢(2a+1n) ~ (P(2an) mX—:1 €§'a )
N S| 23D 93¢ |” &= 93+1(]2 — 5] +6)
L (92T g@2n) et
Zo<astm-1 | 286D 93a ’3wrD(2_5]+16)
= Q(X(n)naoa 70)76)3 (4:8)

for all ne A, € >0 and every m € N. Switching n by 2°n in (4.8) and using (4.1) with [(N3), we
attain

¢(2m+sn) ¢(2sn) m—1 €Ca ) )
( 03(m+s) 93 ’a;) 93a+s+D(j2 _ 5] 1 6) = Q(x(2°n,2°n,0,--,0),¢€)
€
EQ(X(n’n’O,“"O)’F )
and so
¢(2m+sn) ¢(2sn) m+s—1 €Ca
P( 23(m+s) - 238 ’ a;s 23(a+1)(l2_5l+6) EQ(X(n,n,O,"',O),E),

€

for every n € A, € > 0 and all integers s,m = 0. Replacing € by in the above

m+s—1 a
Y s
a=s 23@+D)q2_5/16)

inequality, we obtain

m+s S
P(¢>(2 n) _¢2n)

93(m+s) 93s ’ ) = Q(X(n’n’o’ -+, 0), ) (4.9)

m+s—1 ca

a§s 23@ D (125 +6)

o0
forall n€ A, € >0 and all integers s,m = 0. Since Y (m)a < 00, it follows from (4.9) and
a=0

(N'5) that {¢(2?3'fn”)}‘jn°:1 is a Cauchy sequence in (B, P) for each n € A. As (B,P) is a fuzzy Banach
space, {(p(;;n) (:noz 1 converges to a point C(n) € B for every n € A. Consequently, we may define
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the mapping C: A — B as
2m
Cn)i= P Tim 22
m—oo 923m
As ¢ is an odd function, C inherits the same property of being odd. Substituting s = 0 into (4.9),
we obtain:
p ¢(2™n)
93m

, neA.

’m-1

—(p(n),e) EQ()((n,n,O,--- .0) ¢ ) (4.10)

¢
CEO 23@+D(12-5]+6)

forallne A, e >0 and every m = 1. Then

P(¢p(n)—C(n),e + @) =min {P ((P(;;nn) - gb(n),e),P((p(;;:ln) -C(n), a) }

Zmin{Q()((n,n,O,--- ,0) . ),P((p(z’;n) —C(n),a)},

"m-1 23

Ca
a§0 23@D(12-5]+6)

foralln € A, e,a >0 and every m = 1. Thus, by passing the limit as m — oo in the last inequality
and utilizing property we obtain:

P(¢p(n)—C(n),e+a) = Q(x(n,n,0,---,0),I% -5l +6)(2° -c)), neA, e a>0.
By taking the limit as a approaches 0, we arrive at equation (4.3).

Now, we claim that C is cubic. It is evident that

1
P(DC(ny,ng,---,n;),2¢) = min{P(DC(nl,ng,--- ,ny)— 23—mD(/)(2mn1,2mn2,--- ,Zmnl),e),

1
P(23_mD()b(2mn172mn2a e 72mnl)7€)}7

1
By " = mln{P(DC(n17n27 ,nl)_ 23_mD¢)(2mn1’2mn2,___ ,2mnl)7€)7

R(y(2™n1,2™ngy, ,2mnl),23me)}, neA,e>0.
Since

1
llm pP DC(nlynz"" ’nl)_ —D(P(zmnl,zmnz,"' ’2mnl)7€) = 1’

m—oo 23m
lim C(y(2™n1,2™ng,---,2™n;),23™e) =1,
m—00

we infer P(DC(n1,ng,---,n;),2¢) =1, for all ni,ng,---,n; € A and all € > 0. Then [(Ny) implies
DC(ni,ng,---,n;) =0, for all nq,ng,--- ,n; € A. Therefore, Theorem [3.1/implies that C: A — B is
cubic function. To demonstrate the uniqueness of C, let us consider one more cubic mapping
D : A — B which fulfilling (4.3). Because C(2™n) = 2°™C(n) and D(2™n) = 2°™D(n), for every
n €A and every m € N, then

C@2™n) D(2"n) e)

P(C(n)—D(n),é‘):P( 93m 923m

zmin{P(C@ n)_(/)(2 n)}E)’P((/)(Z n)_D(2 n)’i)}
93m 93m 2 93m 93m 2
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(12-51+6)2%-¢)e
o
(12-51+6)2%-¢)e

2¢™ )

2_ 3_
for every n € A, € >0 and every m € N. Since lim { 51;?,2(2 Se
m—0o0

> Q()((2mn,2mn,0,--~ ,0),

zQ(x(n,n,O,---,O),

= 00, we obtain

(12 -51+6)(2° - c)e) 1
2¢c™m

Consequently, P(C(n)—D(n),e) =1, for every n € A and every € > 0. So C(n) = D(n), for every

ne€A. For u = -1, we may illustrate the result utilizing a similar technique. The proof of the

theorem is now accomplished. O

lim Q(x(n,n,0,~- 0,
m—-0o0

5. Ulam Stability of Equation (1.2): Fixed Point Technique

Radu [15] presented a new approach for investigating the stability associated with functional
equations employing the fixed point alternative method.

In this section, we explore the Ulam-Hyers stability of in fuzzy normed spaces utilizing
the fixed point approach.

First, let us define y, as a constant such that:

]2, ifa=0,
Ye711, ifa=1
and we consider Y ={v: A — B :v(0) =0}.

Theorem 5.1. Let ¢p: A — B be an odd function, where ¢p(0) = 0 and there is a mapping y Al Z
subject to

lim Q(y(yg'n1,yg'ng, - W), wime) =1, ni,ng,---,nj€A,e>0, (5.1)
and satisfying the inequality

PD¢p(ni,ne,---,n7),e)=2Q(x(n1,ng,---,n7),€), ning---,n €A e>0. (5.2)
Let o(n) = mX(%, 5,0, ,0) for every n € A. If there is L = L, €(0,1) such that

1
Q(Fa(wan),e) =Q®WLo(n)e), neA,e>0, (5.3)
then there is only one cubic mapping C : A — B fulfilling
l1-a
P((,b(n)—C(n),e)ZQ(l_La(n),e), neA,e>0. (5.4)

Proof. Suppose ¢ is the generalised metric on Y:

¢(w,w)=1inf{r € (0,00) : P(v(n) —w(n),e) = Q(ro(n),e),n € A, ¢ >0},
and as usual, we use inf@ = +oco. Mihet and Radu [9, Lemma 2.1] demonstrates that (Y,¢) is
the complete generalised metric space. We may define @, : Y — Y by ®,v(n) = év(wan) for all
n€A. Let v,w in Y be given such that ¢(v,w) < a. Then

Pw(n)—wn),e)=Q(ac(n),c), neA,e>0,
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whence

P(®,v(n) - Daw(n),e) = Q(%U(wan),e), neA,e>0.

a
According to (5.3),
P(®,v(n)—®,w(n),e)=Q(aLo(n),e), neA,e>0.
Hence, we have ¢(®,v,®,w) < aL. This shows ¢(®,v,P,w) < L¢(v,w), i.e., D, is strictly

contractive function on Y with L. Switching (n1,ne,---,n;) by (n,n,0,---,0) in (5.2) and using
(N3)l we obtain

P(¢(223n) - ¢7(n),€) > Q();(?Z;L’_O;l:;),e , neA,e>0. (5.5)
If o = 0, we deduce from (5.5) that

P(¢(223n) - gb(n),e) > Q(Lo(n),e), neA,e>0.
Therefore,

(Do, )<L =L1"1. (5.6)

Replacing n by § in (5.5), we obtain

P(¢(n)—23¢(g),236) > Q(x(g g,o,--- ,o),23(z2 5L+ 6)6)

=Q(o(n),22(12-51+6)), necA,e>0.
Therefore,

(@19, ¢p)<1=L""7 (5.7)
Based on and , we may deduce that ¢(D,¢p, ) < L17% < 0o. The Fixed Point Alternative
Theorem [2.4] asserts that there exists a fixed point C of ®, in Y such that

(i) ®,C=C and %%c(@&"c[),C) =0;
(i) C is the only one fixed point of ® in E ={v € Y : d(¢p,v) < o0};
(i) ¢(¢,C) = 721 6(h, Pup).
Setting ¢(®7'¢p,C) = ap,, we get P(DP'¢p(n) — C(n),e) = Q(ano(n),e), for all n € A and all € > 0.

Since lim a,, =0, we infer

Cny=P — lim 2¥a™

m= g

Switching (n1,n9, -+ ,n;) by (Wi'ni,wing, - ,ya'n;) in (5.2), we obtain

e€A.

1
p WD(p(w;nnl,leng, ,w;nnl),e) = Q(X(w;nnlaw;nn27 ’wtrznnl)’wzme)a

foralle>0and all ny,ng,---,n; € A. Applying a similar approach as the proof of Theorem [4.1], we
can argue that the function C: A — B is cubic. As ¢(®y¢p, ) < L17% from (iii) that c(p,C) < III_—_Z,
implying (5.4). To demonstrate the function C is unique, let D : A — B be an one more cubic
function satisfying (5.4). As C(2"n) =23"C(n) and D(2™n) = 23™D(n), we obtain

C@2™n) D(2"n) e)

P(C(n)—D(n),é‘):P( 93m 923m

Zmin{P(C(2mn)—¢(2 n) f)’ ((/)(2 n) D@2"n) E)}

23m 23m ’2 23m 23m ’2
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.Ll_a 23m
o(2™n), 6).

2Q(l—L 2

By (5.1), we have
Ll—a 23m
lim Q( o(2™n), 6) -1,

m—oo “\1-L 2
Consequently, P(C(n)—D(n),e) =1 for every n € A and every € >0. So C(n)=D(n) forall n€ A,
this concludes the proof. O

Corollary 5.2. If an odd mapping ¢ : A — B satisfies ¢(0) = 0 and inequality

l
PD¢(ni,ng,--- ,nz),e)EQ(T+9 [Tlnrall?,e],

a=1
for every ni,no,---,n; € A and every € > 0. Then, there is only one cubic function C : A — B such
that

P(p(n)—C(n),e)=Q(1,7¢), neA,e>0,
where q,0,7 are in R* with lq €(0,3).

Corollary 5.3. If an odd mapping ¢ : A — B such that $(0) =0 and

l l
P(Dp(n1,ng, -+ ,n1),e)2Q(a ) ngl” +6 [ Inal?,e|,
a=1 a=1
for every ni,ng,---,n; € A and every € >0. Then, there is only one cubic function C : A — B such
that
P(p(n)—C(n),e) = Q2aln|?,(%-51+6)|2° —2Ple), neA, e>0,
where q,p,a and 0 are in R* with p,lq €(0,3)U(3,+00).

Corollary 5.4. If an odd mapping ¢ : A — B such that ¢(0) =0 and

l
P(D¢p(ni,ng,---,ny),e)= Q(H I IInallq,e),
a=1

for every ni,ne,---,n; € A and every € > 0, where q and 0 are in R* with 0 <lq # 3. Then,
the function ¢ is cubic.

6. Conclusion

We introduced a novel finite-dimensional cubic functional equation and derive its general
solution. The main purpose of this work is to examined the Hyers-Ulam stability of this
functional equation in fuzzy normed spaces by means of direct approach and fixed point
approach.
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