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Abstract. This study investigates the impact of fisheries harvesting on a Fish-bird model, focusing
specifically on the presence of illnesses in fish and the consequential effects on bird populations.
Tilapia fish, serving as the primary dietary source for pelican birds in the Salton Sea region, face
the risk of overexploitation due to increased fishing activities. The study reveals that heightened
harvesting rates can lead to the eventual extinction of bird species over time, highlighting the delicate
balance between fishing sustainability and ecological preservation. The equilibrium and stability of
the system are analyzed, with numerical simulations illustrating various dynamical behaviors such
as chaotic attractors and quasi-periodic oscillations. The harvesting model considers the extraction of
both susceptible and infected fish, demonstrating that an increase in the harvesting rate of susceptible
fish poses a significant threat to bird populations. Conversely, while maintaining a constant harvesting
rate of infected fish, the bird population remains viable even for varying levels of infected harvesting
rates. Ultimately, the study underscores the importance of sustainable fishing practices, cautioning
against the overexploitation of susceptible fish, which could lead to the extinction of birds in the
Salton Sea region.
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1. Introduction
Ecology and epidemiology were traditionally studied as distinct fields for a considerable period
of time. The classical Lotka-Volterra model, developed by Lotka in 1925 [12] and and Volterra in
1926 [20], is an example of an early ecological model. The Lotka-Volterra model has been a useful
tool for researchers studying interaction models between two or more species. Its application has
led to numerous studies in the field of ecology, investigating the dynamics of species interactions
and their impacts on ecosystem health. However, Kermack and McKendrick [10] were the first
to use mathematical modeling to analyze the spread of diseases by using SIR epidemic model
(Capasso and Serio [4]).

Over the past thirty years, there has been a rising interest in the examination of infectious
diseases in the context of prey-predator interaction models. This has led to an increased focus
on the study of eco-epidemiological systems, where the spread of disease is analyzed alongside
the interactions between species in an ecosystem. Understanding these complex interactions is
important for identifying effective strategies for disease control and maintaining the health of
ecosystems.

The Predator-Prey model with infection in prey studied by Chattophyay and Arino [6], and
Adak and Bairagi [1].

In eco-epidemiological research, the focus is on the spread of diseases among populations
that interact with one another. The study of dynamics is crucial from both an ecological and
mathematical perspective. Numerous researchers have explored various interaction models
to understand the spread of diseases became an important issue from both Banerjee et al. [2]
and Upadhyay and Roy [17]. Pelicans are at risk in Salton sea – an eco-epidemiological model
studied by Chattopadhyay et al. [5,7].

Additionally, there have been numerous studies investigating the transmission of disease
in the fish populations of Salton Sea (Greenhalgh et al. [8], and Upadhyay et al. [18, 19]).
In the summer the weather reaches 128 degree Fahrenheit and the water evaporates very
quickly, leaving the salt behind. The salinity of water progressively rises as a result of
the presence of dissolved salts, leading to a reduction in oxygen levels. This phenomenon
occurs because the binding of salt in water is more challenging compared to freshwater.
The Salton Sea serves as a primary destination for several migrating bird species, including
pelicans. However, a significant number of water birds, mostly pelicans, as well as fish, have
perished in substantial quantities. The precise aetiology of this phenomenon remains uncertain;
nevertheless, mounting evidence suggests a growing association with the proliferation of
hazardous algal blooms. Numerous aquatic organisms have perished as a result of the depletion
of oxygen levels. Chattopadhyay and Bairagi [5] and Upadhyay et al. [18] have undertaken
research on mathematical models that elucidate the dynamics of the interaction between fish,
namely tilapia, and birds, specifically pelicans.

Furthermore, Upadhayay et al. [19] conducted a study on an ecosystem in a state of
crisis. They examined an eco-epidemic model that included seasonal disturbances. The study
demonstrates that the model exhibits stable focus, a limit cycle, and chaotic dynamics.
The research discovered that variations in the contact rate, environmental carrying capacity
(k), and predator population death rate contribute to the eco-epidemiological system exhibiting
chaotic dynamics within certain ranges of amplitude and frequency of contact rate fluctuations.
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In 2014, Upadhayay and Roy [17] studied an eco-epidemic model, which considered the prey
species divided into two compartments: susceptible fish and infected fish population. The model
also included the predator tilapia birds.

The odor emitted by dying fishes is unpleasant, and migratory birds visiting the sea during
the winter months are particularly impacted by it.

The pedator-prey model did eases with harvesting studied by many researchers, e.g., Barman
and Ghosh [3], Mahata et al. [13], and Panja et al. [14] but on Salton sea harvesting as fishing
did not studied by anyone.

In this article harvesting can be included as a factor that affects the size and structure of
the fish population. For example, the model can simulate different levels of fishing pressure and
examine the impact on the fish population’s dynamics and the spread of diseases or parasites.
Harvesting can also be used as a control measure to manage the spread of diseases or parasites.
For instance, if a disease outbreak occurs, harvesting can be temporarily increased to reduce the
density of infected fish and limit the spread of the disease. The model assumes that only fish
and birds interact as predator and prey in a closed system. However, in reality, there are many
other factors that can influence the dynamics of predator-prey interactions. One of these factors
is harvesting, which refers to the act of catching fish for human consumption. Harvesting can
have a significant impact on the dynamics between the fish and bird populations, as it can
alter the predator-prey relationship and affect the sustainability of the ecosystem. The model
formulation is presented in Section 2. Section 3 is devoted to the analysis of the positivity of
the solution, equilibrium, and stability. A new model, referred to as model (4.1), is developed
in Section 4, where harvesting is applied to both susceptible and infected fish. The results of
numerical simulations are discussed in Section 5. Finally, the discussion section is presented in
Section 6.

2. Model Formulation
The model consists fish population as prey and pelican bird as a predator. N(t) and P(t) are the
fishes and pelican density at time t. Some assumptions for model formulation as follows:

I. If disease not present, the fishes grows logistically with intrinsic growth rate r and carrying
capacity k such that

dN
dt

= rN
(
1− N

k

)
. (2.1)

II. If disease present in the system then total fishes divided into two compartment, namely,
susceptible S(t) and infected prey I(t), that is at time t net population of fishes as:

N(t)= S(t)+ I(t) . (2.2)

III. Reproduction of fishes only due to susceptible fishes. In logistic growth birth rate positive
as population can not be negative. The infected prey removed with positive death rate d1 or not
be able for reproducing. However, infected population contributes with S to population growth
towards the carrying capacity.

IV. Diseases transmitted by the law of mass action means disease spread with linear function
φ(t)=λSI , where λ represent rate of disease transmission. Infected fishes only due to disease
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spread in prey fishes not genetically inherited. The infected fishes does not recover or become
immune,

dS
dt

= rS
(
1− S+ I

k

)
−λSI . (2.3)

V. Predator (Pelican) bird are not smart enough to predict which fish is infected and which is
not, so pelican birds consumes fishes according to modified Holling type-II. In the absence of
fishes(prey) pelican(predator) population decay exponentially.

VI. We add one more term in fish growth as harvesting due to fishing, for fishing we take linear
harvesting. Hence, the rate of change of susceptible fish population can be written as

dS
dt

= rS
(
1− S+ I

k

)
−λ .SI − pSB

(mS+ I + c)
−hS . (2.4)

Based on the assumptions outlined above, the model can be mathematically formulated as a
system of nonlinear differential equations, which can be expressed as follows:

dS
dt

= rS
(
1− S+ I

k

)
−λSI − pSB

(mS+ I + c)
−hS, (2.5a)

dI
dt

=λSI − m1IB
(mS+ I + c)

−dI, (2.5b)

dB
dt

= p1SB
(mS+ I + c)

+ m2IB
(mS+ I + c)

−d1B (2.5c)

with s(0) > 0, I(0) = I0 > 0 and B(0) > 0. Also, all others parameters have been considered
positive for biological feasible reason.

Table 1. Parameters of model (2.5) and model (4.1)

Symbol Description Unit

S Susceptible fish Number per unit area (tones)

I Infected fish Number per unit area (tones)

B Pelican bird (Predator) Number per unit area (tones)

r Intrinsic growth rate of fish population Per day

k Carrying capacity Number per unit area (tones)

λ Disease transmission rate Per day

h2 Harvesting rate Per day

d Death rate of infected fish Per day

d1 Death rate of birds Per day

m Predator preference rate between S and I Per day

p, m1 Predation rate Per day

m2 Conversion rate of infected fish to pelican’s bird Per day

p1 Conversion rate of susceptible fish to pelican’s bird Per day
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3. Theoretical Studies
The existence and boundedness of the solution of model (2.5) are same as the paper (Upadhayay
and Roy [18], and Kumar and Sinha [11]) so this part omitted.

Theorem 3.1. Solution of the given model (2.5) with initial value S(0)≥ 0, I(0)≥ 0 and B(0)≥ 0
is positive.

Proof. Since the function S f1, I f2, and Bf3 are taken from right side of model (2.5) are
continuous function and locially Lipschitzian on R3+, implies that the solution (S(t), I(t),B(t))
exist and unique on [0,ϵ], where 0< ϵ<∞ (see Hale [9], and Shaikh and Das [16]). For positivity
integrating model (2.5), with respect to initial condition we get solution as follows;

S(t)= S(0)e
∫ t

0 f1(S(s),I(s),B(s))ds ≥ 0,

I(t)= I(0)e
∫ t

0 f2(S(s),I(s),B(s))ds ≥ 0,

B(t)= B(0)e
∫ t

0 f3(S(s),I(s),B(s))ds ≥ 0,

where S(0)= S0 ≥ 0, I(0)= I0 ≥ 0 and B(0)= B0 ≥ 0. Hence the theorem proved.

3.1 Equilibrium and Their Stability Analysis
To find for the system we need to solve dS

dt = 0, dI
dt = 0, and dB

dt = 0, simultaneously. We have
the following results obtained as follows:

(I) The trivial equilibrium always exist.

(II) The axial equilibrium E1(S∗,0,0)= (
k

(
1− h

k
)
,0,0

)
is biological feasible if h < k.

(III) The disease-free equilibrium point E(S∗,0,B∗), where S∗ = cd1
(p1−d1m) and

B∗ =
{
rS∗

(
1− S∗

k

)
−h

}
(mS∗+c)

p is feasible if p1 > d1m and rS∗
(
1− S∗

k

)
> h.

(IV) A non-zero equilibrium solution of the model is called as coexistence of equilibrium,
E(S∗, I∗,B∗), where S∗ > 0, I∗ > 0, B∗ > 0, where B∗ = (mS+I+c)(λS−d)

m1
, I = d1mS+dd1−p1S

m2−d1

and S∗ = m1(d1−m2)(h−r)+m1(r+λ)(I+d)+Bd1(d1−m2)
(d1−m2)(m1r−pλk)−m1mk(r+λ)}(d1−m2)m1

.

3.1.1 Feasible Region for Coexistence
We consider the set of parameters r = 2.4, K = 80, m = 3.1, m1 = 3.1, d = 5, m2 = 3.25, λ= 0.8,
p = 1.2, p1 = 4.45, d = 2.98, d1 = 1.3. For parameter h the feasibility condition for interior
equilibrium (S∗I∗B∗) is 0≤ h ≤ 0.34 (see Figure 1), where S∗ =−7.320575769h+6.274477838,
I∗ = 1.791125645h+1.713554153, B∗ = 39.48890341h2 −63.18183191h+17.21436086 for the
above set of parameters.

3.2 Local Stability Analysis
For local stability of equilibrium point first we have to find Jacobian matrix about the interior
equilibrium. If all the eigenvalue of the jacobian matrix are negative real parts then that
equilibrium point is locally asymptotically stable (Perko [15]).

J =
a11 a12 a13

a21 a22 a23
a31 a32 a33

 , (3.1)
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Figure 1. Feasible region h for the co-existence of all the three population densities. Taking into account
all the parameters mentioned in equation (5.1)

where a11 = r(1− (2S+I)
k )−λI − pB(I+c)

(mS+I+c)2 − h, a12 = −rS
K −λS + pSB

(mS+I+c)2 , a13 = pS
mS+I+c , a21 =

λI + m1mIB
(mS+I+c)2 , a22 = λS − m1B(mS+I+c)

(mS+I+c)2 − d, a23 = −m1I
mS+I+c , a32 = −p1SB

(mS+I+c)2 + m2B(mS+c)
(mS+I+c)2 , and

a33 = p1S
(mS+I+c) + m2I

(mS+I+c) −d1.

The characteristic equation as follows:

λ3 − A1λ
2 + A2λ− A3 = 0 . (3.2)

So interior equilibrium is asymptotically stable if A1 > 0, A2 > 0 and A1A2 > A3, this is the
Routh-Hurwitz criterion so proof omitted.

(i) Stability of trivial Equilibrium: The eigenvalues of trivial equilibrium are r−h, −d, d1. So
there is an unstable manifold along S-direction and a stable manifold along I and B-direction.

(ii) Stability of Axial equilibrium Point:

J(S∗,0,0) =
a11 a12 a13

a21 a22 a23
a31 a32 a33

=

h− r ( h
r −1)(−r−λk) a13

0 m1 p
mk(1−h/r)+c) −d 0

0 0 p1k(r−h)
mkr(r−h)+cr −d1

 . (3.3)

Here eigenvalues of the matrix are diagonal elements of the matrix because JE1 as a diagonal
matrix. If all the eigenvalues are negative then axial equilibrium is asymptotically stable.

(iii) Disease Free Equilibrium:

J(S∗,0,B∗) =
a11 a12 a13

a21 a22 a23
a31 a32 a33

 , (3.4)

where a11 = r(1− (2S)
k )− pBc)

(mS+c)2 −h, a12 = −rS
K −λS+ pSB

(mS+I+c)2 , a13 = pS
mS+I+c , a21 =λI+ m1mIB

(mS+I+c)2 ,

a22 =λS− m1B(mS+I+c)
(mS+I+c)2 −d, a23 = 0, a32 = −p1SB

mS+c)2 +
m2B(ms+c)

mS+c)2 , and a33 = p1S
(mS+c) −d1. Stability of

diseases free equilibrium calculated as similar to the interior equilibrium.
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4. Fish-Bird Model With Harvesting Term in Both Infected Fish and
Susceptible Fish Population

In this model, we considered a harvesting term used in both susceptible and infected prey
populations. All the assumptions and parameters are taken to be the same as in the model(2.5).

dS
dt

= rS
(
1− S+ I

k

)
−λSI − pSB

(mS+ I + c)
−hS, (4.1a)

dI
dt

=λSI − m1IB
(mS+ I + c)

−dI −h2I, (4.1b)

dB
dt

= p1SB
(mS+ I + c)

+ m2IB
(mS+ I + c)

−d1B (4.1c)

with S(0) > 0, I(0) = I0 > 0 and B(0) > 0. Also, all others parameters have been considered
positive for biological feasible reason, where h and h1 are the used for harvesting in susceptible
and infected fishes both.

5. Numerical Simulation
In this section, we discuss the numerical simulation in which we studied the dynamical behavior
of the models numerically. The dynamical behavior of the solution of the models was studied
through phase portraits and time series plots, as discussed in the subsection below. For the
numerical simulation we use the Runga-Kutta method and the MATLAB 2018a software. we
considered a fixed set of parameters, which are listed below:

r = 2.4, k = 80, m = 3.1, m1 = 3.1, d = 5, m2 = 3.25, λ= 0.8, p = 1.2, d1 = 2.98, (5.1)

d2 = 1.3, h = 0.1, p1 = 4.45 .

For the numerical simulation we use the Runga-Kutta method and the MATLAB 2018a software
used.

5.1 Numerical Simulation for Model (2.5)
In this subsection discuss the impact of susceptible harvesting of the model (2.5). We plot phase
portraits and time series for the different harvesting parameter.

(a) (b)
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(c)

Figure 2. (a) and (b) indicates the quasi periodic attractor, and (c) indicates the quasi periodic oscillation
for h = 0.010 and d2 = 1.31 for model (2.5) and taking the initial condition (4.5,1.5,4.4). Taking into
account all the parameters mentioned in equation (5.1)
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Figure 3. (a), (b) indicates the stable focus, and (c) indicates the time series for h = 0.3. Taking all
the other parameters are same as equation (5.1)

0

1

10

2

15

3

B
ir
d

4

Infected Fish

10

5

5

Susceptible Fish

6

5

0 0

(a)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Susceptible Fish

0

2

4

6

8

10

12

14

In
fe

ct
e
d

 F
is

h

(b)

Figure 4. (a) Phase portrait and (b) time series plot for d1 = 1.2854 and h = 0.01. Taking all the others
parameters are same as equation (5.1)

Figure 4(a) displays the attractor, which represents the long-term behavior of the system,
and Figure 4(b) shows the corresponding time series, which illustrates the dynamics of the
system over time, converging to the attractor.
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Figure 5. This diagram shows the variation of bird population with time for the various harvesting
value and all others parameters are same as fixed set of parameters for model (2.5). As the harvesting
rate (h) increases, the bird population is more likely to go to extinction
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5.2 Numerical Simulation of Model (4.1)
For the numerical simulation of model (4.1), we used the same fixed parameters as in
equation (5.1), but with different values of harvesting, h and h1.
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Figure 6. This shows chaotic attractor and time series about unstable interior equilibrium plot for
the fixed parameter and h1 = 1.5 and h = 0.1 and initial condition(7,1,18)
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Figure 7. This shows quasi periodic oscillation time series about unstable interior equilibrium plot for
the fixed parameter and h1 = 1.5 and h = 0.1 for model (4.1)
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Figure 8. This shows chaotic attractor and time series about unstable interior equilibrium plot for
the fixed parameter and h1 = 5.5 and h = 0.1 for model (4.1), taking initial condition (15,1,79)
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The term “quasi-periodic” is used to describe a certain kind of behaviour that is shown by
some dynamic system. It is situated within the spectrum, which includes periodic phenomena,
characterised by regular patterns, and chaotic phenomena, characterised by high levels of
unpredictability. Quasi-periodic systems exhibit a discernible level of regularity in their patterns,
although they lack the exact repetition characteristic of periodic systems.
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Figure 9. In (a) and (b) are the time series variation of bird population with time for the different value
harvesting h and h1, all other parameters are same as fixed and (a) for h1 = 1.5; (b) for h = 0.1

Figure 9(a) illustrates that when we fix the infected fish harvesting rate h1 = 1.5 and
increase the susceptible harvesting rate h, the bird population tends towards extinction. This
suggests that the harvesting of susceptible fish has a more significant impact on the bird
population. In contrast, Figure 9(b) shows that the harvesting of infected prey has a relatively
minimal impact on the bird population. As h1 increases, we observe a transition from damped
oscillations to periodic oscillations, as seen in the case where h = 4.5, which exhibits periodic
oscillations.
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Figure 10. This figure shows the time series of infected and susceptible fish with respect to time for the
different value of h1 for the model (4.1) and all others are same as fixed parameters

Figures 10(a) and (b) present time series plots for the susceptible fish and infected fish
populations, respectively, as a function of time. These plots reveal that the harvesting rate
of infected fish, h1 is the primary factor responsible for the type of oscillations observed in
the system.
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6. Discussion
This study investigates the effects of fisheries harvesting on two Fish-bird model (2.5) and
(4.1), specifically focusing on the presence of illnesses in fish. Tilapia fish serve as the primary
dietary source for pelican bird in the Salton Sea region. If there is an increase in fishing, it
may have a detrimental impact on bird populations, as they may have difficulties owing to
the insufficient availability of fish as a food source. Figure 5 illustrates the consequences of
harvesting on bird populations. It is evident from the figure that an increase in the harvesting
rate leads to the eventual extinction of the bird species over a certain period of time. Fishing
is feasible under the constraints of a restricted fishing pace. The equilibrium and stability of
the system have been studied, and numerical simulations have been conducted to study the
phase portrait and time series (5). The harvesting model (4.1) considers the extraction of both
susceptible and infected fish. Through this study, it is seen that an increase in the harvesting
rate of susceptible fish leads to the extinction of birds, assuming a constant harvesting rate of
infected fish (Figure 9). It is important to note that the collection of susceptible fish should be
significantly reduced in comparison to infected fish in order to ensure the survival of pelican
bird populations. Furthermore, it is evident that while the susceptible harvesting rate remains
constant, the bird population will not go extinct for varying values of the infected harvesting
rate, as seen in Figure 10. In the present work also describe the dynamical behaviour such as
chaotic attractor, quasi periodic attractor, quasi periodic oscillation and dumping oscillator are
studied through numerical simulation see Figures 2, 3, 6, 7 and 8. This study concludes that
the fishing of infected fish can be increase, however, the fishing of susceptible fish may lead to
the extinction of birds in Salton sea.
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