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Abstract. The idea of local and average hub numbers is explored as an expansion of the hub number
in graphs, a connectivity measure that holds significance in transportation networks. In this analysis,
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Gaddum type inequalities.
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1. Introduction
The hub set, also known as the weak connecting set (Newman-Wolfe et al. [13]) in earlier studies,
has been a subject of exploration since 1988 when researchers delved into network schemes
that catered to specific communication needs. The concept of hub number, which represents a
transportation problem, was first introduced in 2006 as a visual tool for analysis and study of
networks (Walsh [14]), after which numerous studies have delved into the fascinating correlation
between connected domination number and connected hub number of graphs (Grauman et al. [4],
Johnson et al. [7], Lin et al. [8], Liu et al. [9], Liu et al. [10]). The findings of these studies shed
light on the intricate relationship between hub number and connected domination number of
graphs, providing valuable insights into their underlying structures. Moreover, the continuous
advancement and development of hub numbers by mathematicians worldwide have greatly
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contributed to enhancing the efficiency and effectiveness of communication and transportation
networks (Basavanagoud et al. [2], Cuaresma Jr. and Paluga [3], Mathad and Puneeth [11],
Mathad et al. [12]). With the increasing focus on hub sets, researchers have been drawn to
the idea of utilizing them to enhance connectivity and facilitate efficient routing networks
(Hamburger et al. [5], Newman-Wolfe et al. [13]). Thus, this concept continues to be a crucial
aspect of graph theory, offering valuable insights into optimizing communication networks.

In the realm of communication networks, a graph is used as a natural and effective
way to represent their topology. It consists of interconnected vertices and edges that depict
the relationships between different elements. This paper focuses on studying simple finite
undirected graphs. Let G be a graph with vertex set V (G) and edge set E(G). For a vertex
v ∈V (G), the degree of v in G is denoted by dG(v) and is defined as the number of edges incident
with v in G. For the vertices u,v ∈ V (G), the distance between u and v is denoted by d(u,v)
and is defined as the length of the shortest path connecting u and v in G. The eccentricity of
a vertex v is denoted by e(v) and is maximum of d(u,v), for all u ∈ V (G). The diameter of G
denoted by d(G) or d is defined as d(G)=max{e(v) : v ∈V (G)}. A bipartite graph G is a graph
whose vertex set V can be partitioned into two disjoint subsets V1 and V2 such that every edge
of G joins a vertex V1 to a vertex of V2. If each vertex of V1 is joined to every vertex of V2, then
G is called a complete bipartite graph. If V1 and V2 have m and n vertices respectively, then in
a complete bipartite graph we write G = Km,n. A star is a complete bipartite graph K1,n.

The union G1 ∪G2 of disjoint graphs G1 and G2 is the graph having vertex set V1 ∪V2 and
the edge set E1 ∪E2. The join G1 +G2 is the graph consisting of G1 ∪G2 with all edges joining
all vertices of V1 with all vertices of V2. The corona G1 ◦G2 is the graph obtained from the
graphs G1 and G2 by taking one copy of G1 and |V (G1)| copies of G2 and then joining each
vertex of the ith copy of G2 named (G2, i), with the ith vertex of G1 by an edge. The cartesian
product of disjoint graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G whose vertex set is
V1 ×V2. Consider any two vertices u = (u1, u2) and v = (v1, v2) in V1 ×V2, u and v are adjacent
in G1□G2 whenever u1 = v1 and u2 is adjacent to v2 in G2 or u2 = v2 and u1 is adjacent to v1

in G1 (Harary [6]).

Definition 1.1 ([14]). Suppose that H ⊆ V (G) and u and v be any two vertices. The H-path
between u and v is a path where all intermediate vertices are from H. (This includes
the degenerate cases where the path consists of the single edge uv or a single vertex v if
u = v, call such an H-path trivial.)

Definition 1.2 ([14]). A hub set in a graph G is a set H of vertices in G such that any two vertices
outside H are connected by an H-path. The hub number of G, denoted h(G), is the minimum
size of a hub set in G. Here, any minimum sized hub set are represented by h(G)-set. Further,
a vertex v ∈V (G) is a hub vertex of G if {v} is a hub set of G.

Definition 1.3. A hub set H of G is connected if 〈H〉 is connected. The connected hub number
of G, denoted by hc(G), is the minimum cardinality of a connected hub set in G.
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The average hub number of a graph is determined by the introduction of the concept of local
hub number, which provides more accurate representation of the interconnectedness within
the network as follows.

Definition 1.4. The local hub set of a graph G relative to a vertex v ∈V (G) is a minimum hub
set containing v and is denoted by hv(G)-set. The cardinality of local hub set relative to v is
called local hub number of G relative to v and it is denoted by hv(G).

Definition 1.5. The average hub number of G, denoted by hav(G) is defined as

hav(G)= 1
|V (G)|

∑
v∈V (G)

hv(G).

v1 v2 v3 v4

v5v6

Figure 1. Graph G

Table 1. Graph G

Vertex v Local hub set relative to v

v1 {v1,v2,v3}, {v1,v3,v6}, {v1,v3,v4}, {v1,v2,v5}, {v1,v4,v6}, {v1,v3,v5}

v2 {v2,v3}

v3 {v2,v3}

v4 {v2,v3,v4}, {v1,v3,v4}, {v1,v4,v6}, {v2,v4,v6}

v5 {v2,v3,v5}, {v1,v2,v5}, {v1,v3,v5}, {v2,v4,v5}

v6 {v1,v4,v6}, {v1,v3,v6}, {v2,v4,v6}, {v2,v3,v6}

For example, consider the graph G as shown in Figure 1. The local hub sets of G relative
to each vertex v is given in Table 1. Here, hv2(G) = 2 = hv3(G) and hv1(G) = hv4(G) = hv5(G) =
hv6(G)= 3. Then hav(G)= 1

6 (2 ·2+4 ·3)= 8
3 .

It is important to consider the average hub number while analysing graphs rather than
just the hub number as the average hub number provides more comprehensive understanding
of the connectivity of graphs and network structure. This allows us to assess effectiveness of
information flow within the network in a better way. Therefore, focusing on the average hub
number is crucial for a thorough analysis of graph properties.

In order to validate our findings, it will be beneficial to utilize the following established results.

Theorem 1.6 ([14]). Let T be a tree with n vertices and l leaves. Then h(G)= n− l.
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Lemma 1.7 ([14]). Let d(G) denote the diameter of G. Then h(G)≥ d(G)−1, and the inequality
is sharp.

Theorem 1.8 ([14]). If G is connected graph of order n, then h(G)≤ n−∆(G), and the inequality
is sharp.

Theorem 1.9 ([3]). Let 3≤ p ≤ n, where p,n ∈Z. Then h(Kp□Kn)= p.

Theorem 1.10 ([3]). Let n ≥ 4. If p = 2 or p = 3, then h(Pp□Pn)= n.

2. Local Hub Number of Graphs
Proposition 2.1. Let G be any graph of order n, then for each vertex v ∈V (G), hv(G)≤ h(G)+1
and equality holds if and only if G = Kn.

Proof. For each v ∈V (G), either hv(G)= h(G) or hv(G)= h(G)+1. Hence, hv(G)≤ h(G)+1. Since
for each v ∈ V (G), hv(G) = h(G)+1 if and only if none of the vertex in V (G) belongs to any
h(G)-set. This happens only when the minimum hub set of G is empty. Thus, h(G)= 0, which is
possible only in the case of complete graphs.

Corollary 2.2. Let G be a graph of order n, then the following holds.

(i) For any v ∈V (G), 1≤ hv(G)≤ n.

(ii) If u is a universal vertex of G, then hu(G)= 1.

(iii) If u is an isolated vertex of G, then hu(G)= h(G).

Theorem 2.3. If G of order n > 3 is isomorphic to path Pn, cycle Cn or complete multipartite
graph Kk1,k2,...,kp with p ≥ 2, ki > 2 for every 1≤ i ≤ p, then hv(G)= h(G), for all v ∈V (G).

Proof. Let G be a graph of order n > 3 with V (G) = {v1,v2, . . . ,vn}. The proof is attained in
following cases.

Case (i): If G ∼= Pn then h(G)= n−2. For each vertex vi ∈V (G), the set S =V (G)\{vk,vl : k, l ̸= i}
is an h(G)-sets. Thus, hv(G)= n−2, for every v ∈V (G).

Case (ii): If G ∼= Cn then h(G)= n−3. Using similar argument as in Case (i), we get the required
result.

Case (iii): If G ∼= Kk1,k2...,kp where p ≥ 2, ki > 2 for every 1 ≤ i ≤ p then h(G) = 2. Here any
h(G)-set consists of one random vertex selected from any two arbitrary distinct partite sets and
hence hv(G)= 2= h(G), for every v ∈V (G).

From above result we obtain the following result by taking G to be a path of order k+2 or a
cycle of order k+3, for any positive integer k.

Corollary 2.4. For any given positive integer k, there exists a graph G such that for every vertex
v in G, hv(G)= k = h(G).
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Theorem 2.5. For any connected graph G of order n, if hv(G) = h(G) for each v in V (G) then
either G has no universal vertex or G has exactly (n−2) universal vertices.

Proof. Let G be a connected graph of order n such that hv(G)= h(G), for each v in V (G). Then
from Proposition 2.1, G is a non-complete graph. Now, if G has no universal vertex then there
is nothing to prove. Suppose that G has k, (1 ≤ k < n) number of universal vertices, then
h(G)= 1. If 1≤ k ≤ n−3, then there are more than two non-universal vertices in G. Thus, there
exists atleast one non-universal vertex w in G with hw(G) = 2 = h(G)+1, a contradiction to
the hypothesis. Since the number of universal vertices k ̸= n−1, it follows that G has exactly
(n−2) universal vertices.

Corollary 2.6. Let G be any graph of order n containing exactly (n−2) universal vertices. Then
for every vertex v in V (G), hv(G)= h(G).

Proof. Let G be any graph having exactly two non-universal vertices say, x and y in G both
of whose degree is n−2, that is, x and y are the only two non-adjacent vertices of G. Thus
hx(G)= 1= h(G), as every pair of vertices not containing x are adjacent in G. On similar lines,
hy(G)= 1= h(G). Further, since remaining vertices are of full degree, we have hv(G)= 1= h(G),
for every v ∈V (G).

Theorem 2.7. If T is a tree of order n with l > 2 leaves and ∆(T) < n−1 then for every vertex
v ∈V (T), hv(T)= n− l.

Proof. From Theorem 1.8, we sense that for each non-pendant vertex of a tree T , this result
holds as they form an h(T)-set. Interestingly, for each pendant vertex of T , hv(T)= h(T). This
happens as for each pendant vertex v ∈V (T), the hv(G)-set is formed by the union of {v} and set
of all the non-pendant vertices other than the support of v.

If ∆(T) = n−1 in Theorem 2.7, then T = K1,n−1, in which case for every vertex v ∈ V (G),
hv(T)≥ n− l.

3. Average Hub Number of Graphs
From Definition 1.5 and Proposition 2.1, it is clear that h(G)≤ hav(G)≤ h(G)+1 which attains
its lower bound if and only if every vertex v of G belongs to an h(G)-set and upper bound if
and only if G is Kn. Consequently, hav(Kn)= 1, while from Theorem 2.3, we have the following
proposition.

Proposition 3.1. (i) For n ≥ 3, hav(Cn)= n−3.

(ii) For n ≥ 2, hav(Pn)= n−2.

(iii) For m,n ≥ 2, hav(Km,n)=


1, if m = 2 and n = 2;
2(n+1)

n+2 , if m = 2 and n ≥ 3;
2, if m ≥ 3 and n ≥ 3.
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In general, the result of complete bipartite graph holds true for any complete multi-partite
graph as well with each partite set containing more than two vertices. Now, since the necessary
and sufficient condition for h(G) = hav(G) is that hv(G) = h(G), for all v ∈ V (G), the following
results follow from Theorem 2.5.

Theorem 3.2. For any connected graph G of order n, if hav(G) = h(G) then either G has no
universal vertex or G has exactly (n−2) universal vertices.

Corollary 3.3. If a graph G of order n has k ≥ 1 universal vertices with k ̸= n − 2, then
hav(G) ̸= h(G).

Theorem 3.4. For any graph G of order n, hav(G)≤ h(G)+1− h(G)
n with equality if and only if

G has a unique h(G)-set.

Proof. Let G be a graph of order n with the vertex set {v1,v2, . . .vn}. Note that, if v belongs to
an h(G)-set, then hv(G) = h(G) otherwise, hv(G) = h(G)+1. By definition, we have the below
equations which are equivalent if and only if G has a unique h(G)-set,

hav(G)= 1
n

n∑
i=1

hvi (G)

= 1
n

[
h(G)∑
i=1

hvi (G)+
n∑

i=h(G)+1
hvi (G)

]
= 1

n
[h(G)2 + (n−h(G))(h(G)+1)]

= h(G)+1− h(G)
n

.

On the other hand, if G does not have a unique h(G)-set then definitely the local hub number of
each vertex is less than or equal to the local hub number value in the case of G having a unique
h(G)-set. Hence, hav(G)≤ h(G)+1− h(G)

n .

As a consequence of the aforementioned result, for any star and wheel graphs with n > 4,
we get hav(K1,n−1)= hav(Wn)= 2− 1

n .

Corollary 3.5. If G is connected graph of order n then hav(G) ≤ 1
n [n2 − (n − 1)∆(G)], and

the inequality is sharp.

Proof. From Theorem 2.1 and Proposition 1.8, we have

hav(G)≤ h(G)+1− h(G)
n

≤ 1
n

[(n−1)h(G)+n]

≤ 1
n

[(n−1)(n−∆(G))+n]

≤ 1
n

[n2 − (n−1)∆(G)].

The equality holds in the case of graphs K1,n−1 and Wn.
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Corollary 3.6. Let G be a graph of order n with unique h(G)-set. Then there exists an integer
t > n such that hav(G)= t

n if and only if h(G)= t−n
n−1 .

Proof. Since G is a graph with unique h(G)-set, the following are equivalent,

hav(G)= t
n

⇐⇒ h(G)+1− h(G)
n

= t
n

⇐⇒ (n−1)
n

h(G)+1= t
n

⇐⇒ (n−1)h(G)+n = t

⇐⇒ h(G)= t−n
n−1

For illustration, consider a graph G = K1∪K1,2 for which h(G)= 2, we have t = (3)(2)+4= 10.
Thus, hav(G)= 10

4 = 5
2 .

In this context, next we derive the generalised values of average hub number for specific
types of graph structures, specifically trees and thorn graphs.

Proposition 3.7. If T is a tree of order n with l > 2 leaves and ∆(T)< n−1 then

hav(T)= h(T)= n− l.

Proof. The proof directly follows from Theorem 2.7.

Definition 3.8 ([1]). Let p1, p2, . . . , pn be non-negative integers and G be a graph of order n.
The thorn graph G∗ of the graph G, with parameters p1, p2, . . . , pn, is obtained by attaching pi

new vertices of degree 1 to the vertex ui of the graph G, i = 1,2, . . . ,n.

Theorem 3.9. Let G be a non-trivial connected graph of order n and its corresponding thorn
graph be G∗ of order k. Let t < n, then

hav(G∗)=


n, if pi = 1, 1≤ i ≤ n;
n(k−1)

k +1, if pi > 1, 1≤ i ≤ n;
n+1− t+n

k , if pi = 1, 1≤ i ≤ t and pi = 1, t+1≤ i ≤ n.

Proof. Let V (G)= {u1,u2, . . . ,un} and the proof is obtained from the following cases.

Case (i): If pi = 1, 1≤ i ≤ n, then k = 2n and h(G)= n.
Let V (G∗)= {u1,u2, . . . ,un,v1,v2, . . . ,vn}. Since {u1,u2, . . . ,un} and {u1,u2, . . . ,ui−1,vi,ui+1, . . .un}
are h(G∗)-sets, we have hv(G∗)= n, for all v ∈V (G∗). Hence

hav(G∗)= 1
|V (G∗)|

∑
v∈V (G∗)

hv(G∗)= 2n ·n
2n

= n.

Case (ii): If pi > 1, 1≤ i ≤ n then by the structure of G∗ it can be easily analysed that G∗ has a
unique h(G∗)-set, namely V (G). Then by Proposition 3.4 we obtain

hav(G∗)= n+1− n
k
= n(k−1)

k
+1.
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Case (iii): If pi = 1, 1 ≤ i ≤ t where t < n and pi > 1, t+1 ≤ i ≤ n, then h(G∗) = |V (G)| = n.
Let V (G∗) = {u1,u2, . . . ,ut, . . . ,un,v1,v2, . . . ,vt, . . . ,vk−n}, then {u1,u2, . . . ,un} is an h(G∗)-set.
From Case (i), if v ∈ {u1, . . . ,un,v1, . . . ,vt} then hv(G∗) = n and if v ∈ {vt+1,vt+2, . . . ,vk−n} then
hv(G∗)= n+1. Therefore,

hav(G∗)= (n+ t)n+ (k−n− t)(n+1)
k

= n+1− t+n
k

Theorem 3.10. Let G1 and G2 be two disjoint graphs of order n1 and n2, respectively such that
atleast one of them contains few universal vertices. If k1 and k2 are number of universal vertices
in G1 and G2, respectively then

hav(G1 +G2)≤ 2− k1 +k2

n1 +n2
.

Proof. As each vertex of G1 is adjacent to G2 and vice-versa in G1+G2, we have hu(G1+G2)= 1,
whenever u is an universal vertex of G i , i = 1,2. There are k1+k2 number of such vertices in
V (G1 +G2). Now, for the remaining n1 +n2 − k1 − k2 vertices in V (G1 +G2), we consider the
following cases.

Case (i): Let d(v)≤ ni −2, for v ∈V (G i) such that G i −v = 〈Kni−1〉 then hv(G1 +G2)= 1.

Case (ii): Let d(v)= ni −2, for v ∈V (G i) with G i −v ̸= 〈Kni−1〉. Now, if there exists exactly one
vertex w ∈G i−v such that w and v are not adjacent to each other but w ∼ wi for each wi ∈G i−v
then v forms a hub vertex and thus hv(G1 +G2)= 1, else we need an additional vertex from G j ,
i ̸= j, i, j = 1,2 to form a hub set. Thus, hv(G1 +G2)= 2.
Since the statements in Case (i) and Case (ii) depend on the structure of graphs and cannot be
generalised, from above arguments we have the following:

hav(G1 +G2)≤ 1
n1 +n2

[(k1 +k2) ·1+ (n1 +n2 −k1 −k2) ·2]

≤ 2− k1 +k2

n1 +n2
.

Theorem 3.11. For any disjoint non-trivial connected graphs G and H of orders n and p,
respectively, hav(G ◦H)= n+ p

p+1 .

Proof. Due to the structure of G◦H, it has a unique h(G◦H)-set namely V (G) with h(G◦H)= n.
Since |V (G ◦H)| = n(p+1), from Proposition 3.4, we have

h(G ◦H)= n+1− n
n(p+1)

= n+ p
p+1

.

Theorem 3.12. Let 3≤ p ≤ n, where p,n ∈Z. Then hav(Kp□Kn)= p.

Proof. From Theorem 1.9, we know that the h(Kp□Kn)- set is V (Kp)× {w} for any arbitrary
vertex w in V (Kp□Kn). Thus, for each vertex v ∈ V (Kp□Kn), we have hv(Kp□Kn) = p.
Therefore, hav(Kp□Kn)= p.

Theorem 3.13. Let n ≥ 4. If p = 2 or p = 3, then hav(Pp□Pn)= n.
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Proof. Similar to the proof of above, using Theorem 1.10 we deduce the required result.

After addressing these graph operations, we will now conclude by discussing the bounds for
average hub number through Nordhaus-Gaddum type inequalities.

Theorem 3.14. If G and Ḡ are connected graphs of order n, then

(i) d(G)+d(Ḡ)−2≤ hav(G)+hav(Ḡ)≤ 1
n [n2 +n(δ−∆+2)+∆−δ−1].

(ii) (d(G)−1)(d(Ḡ)−1)≤ hav(G) ·hav(Ḡ)≤ 1
n [n2(δ+2)−n[∆(δ+2)]+∆(δ+1)].

Proof. For the lower bounds, we have d(G)−1 ≤ h(G) ≤ hav(G) from Lemma 1.7 and hence
d(G)+d(Ḡ)−2≤ hav(G)+hav(Ḡ) and (d(G)−1)(d(Ḡ)−1)≤ hav(G) ·hav(Ḡ). Here the bounds are
attained for the self-complementary graph P4 as d(P4)= 3 and hv(P4)= 2, for every v ∈V (P4).
On the other hand, for upper bound we make use of Proposition 3.4 to get the required result as

hav(G)+hav(Ḡ)≤ h(G)+1− h(G)
n

+h(Ḡ)+1− h(Ḡ)
n

= n−1
n

[h(G)+h(Ḡ)]+2.

Now, as both G and Ḡ are connected, from Theorem 1.8, we have

h(G)≤ n−∆(G)

and

h(Ḡ)≤ n−∆(Ḡ)= n− [(n−1)−δ(G)]= 1+δ(G).

Thus,

hav(G)+hav(Ḡ)≤ n−1
n

[n−∆(G)+δ(G)+1]+2

= 1
n

[n2 +n(δ−∆+2)+∆−δ−1]

and

hav(G) ·hav(Ḡ)≤
(
h(G)+1− h(G)

n

)(
h(Ḡ)+1− h(Ḡ)

n

)
= n−1

n

[(
n−1

n

)
h(G) ·h(Ḡ)+h(G)+h(Ḡ)

]
+1

≤ n−1
n

[(
n−1

n

)
(n−∆(G))(1+δ(G))+n−∆(G)+δ(G)+1

]

= 1
n

[n2(δ+2)−n[∆(δ+2)]+∆(δ+1)].

Here the equality holds if and only if both G and Ḡ possess unique minimum hub sets.

4. Conclusion
This study introduces novel parameters termed the local hub number and average hub number
and investigates their properties in detail. By focusing on the average hub number, researchers
can achieve a deeper understanding of the connectivity and structural characteristics of graphs,
facilitating more comprehensive analyses of graph properties. Additionally, examining the
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behaviour of average hub numbers across various graph classes–such as cubic graphs, circulant
graphs, and generalized Petersen graphs–provides valuable insights into their structural
nuances. This exploration leads to the formulation of a necessary and sufficient condition for
the average hub number to coincide with the hub number of a given graph. By elucidating
this relationship, the study advances our understanding of network connectivity and centrality
within the domain of graph theory.
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