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Abstract. The theory of jets provides a useful tool for various fields in mathematics, enabling
the solution of higher-order differential equations and partial differential equations that model
complex mechanical systems. This theory adopts a geometric approach to generalized mechanics
and field theory. For instance, in Lagrangian particle mechanics, the formalism of higher-order jet
bundles proves useful. Thus, the study of jets is not only beneficial to mathematics but also extends its
applicability to other fields such as physics. In this study, we approach jet bundles from a differential
geometry perspective. Specifically, we use structure of the bundle of all 1-jets of maps from Rp to
M with source at 0. By employing normal coordinates on the manifold M, we demonstrate that this
bundle is diffeomorphic to the p-Whitney sum of tangent bundles. Then, we prove that this bundle
carries a vector bundle structure. Using its vector bundle structure, the paper establishes the existence
of the isomorphism for tangent bundles of p1 velocities, and extends the previous result by proving
that the vector bundle of 1-jets of p-velocities is isometric to p-sum of tangent bundles, even in cases
where the base manifold does not carry a Banach structure.
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1. Introduction
The concept of jet bundles, and in particular the tangent bundle of pk velocities, is a versatile
mathematical tool with applications in various fields of mathematics. It has been used
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extensively for the solutions of partial differential equations (Baker and Doran [1], and Barco
[2]), second order differential equations modeling certain types of dynamical systems (Sarelet
et al. [13]), and singularity theory (Golubitsky and Guillemin [7]). Jet bundles also have
applications in higher order mechanics (Deleón and Rodrigues [4], and Krupková [10]) and
variational calculus (Musilová and Hronek [12]), offering a unique perspective on formulating
fundamental physical theories like special relativity, classical electrodynamics, and quantum
mechanics.

There are basically two different approach on the notion of jets in the literature. One
approach is to define an equivalence relation among local sections of a given bundle (E,π, N).
This type of jets is discussed in detail by Saunders [14]. The other approach is to use equivalence
relation ∼=k on a function between smooth functions N and M. Each equivalence class is called
a k-jet. Also, k-jet bundle is defined as the set of all k-jets. In this study, we consider this
approach.

A specific instance of k-jets is referred to as the tangent bundle of higher order, particularly
when N = Rp. This jet bundle exhibits a distinct geometric structure known as the almost
tangent structure of higher order. In a broader context, if N =Rp, the jet bundle is denoted as
the tangent bundle of pk velocities. This notion was aimed at advancing classical field theory in
an autonomous manner (Deleón and Rodrigues [4], and Ehresmann [5]). The concept was also
used to the construction of the geometry on frame bundles (Cordero et al.[3]).

A particular instance within the tangent bundle of pk velocities arises when p = 1. This
variant of the jet bundle is commonly referred to as the k-th order tangent bundle, owing to
its intimate connection with the standard tangent bundle. According to this definition, a jet
is simply an equivalence class of curves on an arbitrary manifold M such that two curves are
equivalent if and only if their derivatives up to the k-th order at the origin are equal. The set
of these type of jets carries a bundle structure (Morimoto [11]). Their geometry on Banach
manifolds has also been studied by Suri [15,16].

The third definition of jet bundles is constructed by using an equivalence relation on the
functions from Rp to M, such that all of their partial derivatives up to order 1 at the origin are
equal. That is, the 1-jets with the source at the origin of Rp, directed towards M offer a sound
approach for the generalization of tangent bundles. This type of approach is used in working
with double tangent bundles (Fischer and Laquer [6], and Kadioǧlu [9]), frame bundles (Cordero
et al. [3]). In this paper, we focus on this type of jets.

In this paper, we demonstrate that J1
pM can be expressed as the Whitney sum of p tangent

bundles. It was proven by Suri [16] that the kth order tangent bundles (or the tangent bundle of
1k velocities) are isometric to the k-Sum of tangent bundles if the base manifold carries a Banach
structure. Here we prove that the manifold structure of 1-jets of p-velocities is equivalent to
p-sum of tangent bundles even if the base manifold does not carry a Banach structure. We prove
that each fiber of the jet bundle is indeed a vector space and then prove that the jet bundle J1

pM
is indeed a vector bundle. We also present local coordinates of the tangent vectors in TJ1

pM. By
using these local coordinates, we prove that the p-sum representation is actually a Whitney
sum representation by showing that J1

pM is bundle isomorphic to the p-Whitney sum.
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2. Preliminaries
In this section, we provide a concise overview of essential preliminary materials.

2.1 First Order Jets: J1
pM

Definition 2.1 ([3]). Suppose that C∞(Rp) denotes the algebra of smooth functions on
the Euclidean space Rp with natural coordinates (u1,u2, . . . ,up), and f , g ∈ C∞(Rp). Then, there
is an equivalence relation on C∞(Rp): f ≡ g if and only if f (0)= g(0) and ∂

∂uα

∣∣
0( f )= ∂

∂uα

∣∣
0(g) for

every i = 1,2, . . . , p.

Now, let M be an m dimensional manifold, and φ,ξ :Rp → M, two smooth maps. Then, we say
that φ ≡ ξ if f ◦φ ≡ f ◦ξ for every f ∈ C∞(M). This relation an equivalence relation, and we
denote by j1(φ) the equivalence class of φ ∈ C∞(Rp; M) referred to as a 1-jet in M at φ(0).

We denote J1
pM the set of all equivalence classes in C∞(Rp; M), which is a mp+m dimensional

smooth manifold with local charts defined as follows:

If (U , x1, . . . xm) is a local chart in M, then (J1
pU , x1, . . . , xm, x1

α, . . . , xm
α ) is the local chart for J1

pM,
with α= 1,2, . . . , p by

xi( j1(φ))= xi(φ(0)) ,

xi
α( j1(φ))= ∂(xi ◦φ)

∂uα

∣∣∣
0

. (2.1)

Consider an arbitrary point j1φ, and suppose φα :R→ M represents the differentiable curve
defined as φα(u) = φ(0, . . . ,u, . . .0), where u is at the αth position. Then, associated with j1φ,
there exists a unique (p+1)-tuple [x; X1, . . . , X p], determined as follows:

x =φ(0), Xα = (φα)∗
(

d
du

∣∣∣
0

)
, (2.2)

where d
du is the canonical vector field tangent to R. Henceforth, we will express [x; X1, . . . , X p]

more succinctly as [x; Xα]. Furthermore, we will denote the equivalence between j1φ and [x; Xα]
if there is no confusion.

Remark 2.1. If j1φ ∈ J1
pM is represented by [x; Xα], then Xα = ∂φ

∂uα

∣∣
0.

2.2 The Whitney Sum ⊕p(TM)
Consider M as an m-dimensional manifold, with (TM,π, M) representing its tangent bundle,
where Ψ : π−1U → U × Rm is the local bundle trivialization, and (xi, ẋi) represents its
corresponding local coordinate chart. Then, the Whitney sum TM⊕M TM = {(V1,V2) ∈ TM×TM :
π(V1) = π(V2)} is a vector bundle on M, with bundle projection π1,2 : TM ⊕M TM → M → M,
π1,2(V1,V2)=π(V1)=π(V2), local trivializations Ψ1,2 : (TM⊕M TM)U →U× (Rm×Rm) defined by

Ψ1,2(V1,V2)= (π1,2(V1,V2), (pr2 ◦Ψ)(V1), (pr2 ◦Ψ)(V2)).

If (xi, ẋi) being a local chart on π−1(U), then the local coordinate chart induced by the local
trivializations on π1,2(U) is given by (x̄i, ˙̄yi

1, ˙̄yi
2), where

x̄i = xi ◦π1,2, yi
1 = ẋi ◦Pr1, yi

2 = ẋi ◦Pr2.
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Here, Pr1 and Pr2 are first and second projections on TM×M TM, respectively. The following
remark is needed when we work on tangent vectors on J1

pM.

Remark 2.2 ([3]). If φ̇ is a tangent vector to φ :R→ J1
pM; then, there exist

ψ :R×Rp → M (2.3)

and δ> 0 such that φ(t)= j1(ψt) for |t| < δ, where

ψt(u)=ψu(t)=ψ(t,u), (2.4)

for t ∈R and u ∈Rp .

Now, let’s delve into some preliminary information concerning the generalized Whitney sum
of tangent bundles.

Definition 2.2. The pth Whitney sum ⊕p(TM)= {(V1,V2, . . . ,Vp) ∈ TM×TM× . . .×TM :π(V1)=
π(V2)= . . .=π(Vp)} is a vector bundle, with bundle projection

π1−p :⊕p(TM)→ M

(V1,V2, . . . ,Vp)→π1−p(V1,V2, . . . ,Vp)=π(V1)=π(V2)= . . .=π(Vp)

with local coordinate chart (x̄i, yi
1, yi

2, . . . , yi
p) such that

x̄i = xi ◦π1−p, yi
1 = ẋi ◦ pr1, yi

2 = ẋi ◦ pr2, . . . , yi
p = ẋi ◦ prp , (2.5)

where pr1, pr2, . . . , prp are usual projections ⊕p(TM) → TM. Here, prα(V1,V2, . . . ,Vp) = Vα.
This definition offers a straightforward extension of the concept of TM ⊕M TM to the pth
Whitney sum ⊕p(TM), extending the understanding of tangent bundles in a systematic manner.

3. J1
pM as a Whitney Sum

Definition 3.1. Let ⊕p(TM) represent the generalized Whitney sum TM⊕TM⊕TM⊕ . . .⊕TM
on the manifold M. Now, we define Ω : J1

pM →⊕p(TM) as

Ω( j1φ)=
(
φ∗0

(
∂

∂u1

)
,φ∗0

(
∂

∂u2

)
, . . . ,φ∗0

(
∂

∂up

))∣∣∣
φ(0)

, (3.1)

where j1φ ∈ J1
pM is a 1-jet in M at φ(0) and (u1,u2, . . .up) is the standard coordinate system

in Rp .

The mapping Ω defined in equation (3.1) establishes a connection between the 1-jets in M at
φ(0) and the generalized Whitney sum ⊕p(TM), providing a valuable tool for further analysis.

Lemma 3.1. Ω is well defined.

Proof. Consider j1φ and j1φ′ in J1
pM with j1φ= j1φ′. By the definition of 1-jets,

φ(0)=φ′(0) and
∂(xi ◦φ)
∂uα

∣∣∣
0
= ∂(xi ◦φ′)

∂uα

∣∣∣
0

,

for all α ∈ {1,2, . . . , p}. Then, for all α ∈ {1,2, . . . , p}, φ∗0
(

∂
∂uα

)=φ′
∗0

(
∂

∂uα

)
and φ∗0

(
∂
∂u1

)
in the same

tangent space at φ(0)=φ′(0). Therefore Ω( j1φ)=Ω( j1φ′), thus Ω is well defined.
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Lemma 3.2. Ω is an injection.

Proof. Consider Ω( j1φ)=Ω( j1φ′) for j1φ, j1φ′ ∈ J1
pM. Then, we have(

φ∗0

(
∂

∂u1

)
,φ∗0

(
∂

∂u2

)
, . . . ,φ∗0

(
∂

∂up

))∣∣∣
φ(0)

=
(
φ′
∗0

(
∂

∂u1

)
,φ′

∗0

(
∂

∂u2

)
, . . . ,φ′

∗0

(
∂

∂up

))∣∣∣
φ′(0)

.

Then, φ(0)=φ′(0) and φ∗0
(

∂
∂uα

)=φ′
∗0

(
∂

∂uα

)
. Thus ∂(xi◦φ)

∂uα

∣∣
0 =

∂(xi◦φ′)
∂uα

∣∣
0, for all α ∈ {1,2, . . . , p} and

φ(0)=φ′(0), implying that j1φ= j1φ′. Therefore, Ω is an injection.

Theorem 3.1. J1
pM is diffeomorphic to the sum ⊕p(TM).

Proof. Since M is paracompact, there exists a normal neighborhood U at x ∈ M, and Ũ ⊂ TxM
a neighborhood of 0 so that the exponential map Exp : Ũ → U is a diffeomorphism. We
now consider U as a normal neighborhood of x such that it is diffeomorphic to Ũ , and let
V1,V2, . . . ,Vp ∈ TxM be such that

∑p
α=1 uαVα ∈ Ũ , ∀(u1,u2, . . . ,up) in a small neighborhood of

∈Rp . Then, we define a function

φV :Rp → M

(u1,u2, . . . ,up)→φV (u1,u2, . . . ,up)=Exp

(
p∑

α=1
uαVα

)
The function φV is actually a combination of Exp and a linear function

ηV :Rp → TxM

defined by ηV (u1, . . . ,up)=∑p
α=1 uαVα. Thus φV is clearly a smooth function.

On the other hand, from the definition of η and Exp, we have φV (0)= (Exp◦η)(0)=Exp(0x)= x.
Also we have

(φV )∗0

(
∂

∂uα

∣∣∣
0

)
=Exp∗0x

(
η∗0

(
∂

∂uα

∣∣∣
0

))
=Exp∗0x

(
∂η

∂uα

∣∣∣
0

)
=Exp∗0x(Vα)=Vα.

Therefore,

Ω( j1(φV ))=
(
(φV )∗0

(
∂

∂u1

∣∣∣
0

)
, (φV )∗0

(
∂

∂u2

∣∣∣
0

)
, . . . , (φV )∗0

(
∂

∂up

∣∣∣
0

))
= (V1,V2, . . . ,Vp)x.

Then, Ω is a bijection.
Now, we continue with the local form of the function Ω. For any j1φ ∈ J1

pM the local form is
j1φ ∈ J1

pM = [x, Xα], where Xα =φα∗
( d

du |0
)
. Therefore,

Ω( j1φ)=Ω([x, Xα])= (X1, X2, . . . , X p)|x .

Thus, the local representation of Ω is the identity map of Rmp+m, concluding the proof.

Remark 3.1. The function Ω defined in Definition 3.1 is a natural generalization of
the diffeomorphism in [8, Proposition 4].

So far, we have showed that the total space of the two bundles are equivalent. In the next
section we focus on the bundle structure of the jet bundle J1

pM, and define a vector bundle
structure on it.
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4. The Vector Bundle J1
pM and Its Tangent Bundle

In this section, we prove that the bundle carries a vector bundle structure, and also, this chapter
provides local expressions of each tangent vector on J1

pM. First, we introduce the vector bundle
structure of J1

pM.

4.1 J1
pM as a Vector Bundle

It is well known that the fiber space of the bundle J1
pM is the vector space L(Rp,Rm). In order

for a bundle to carry a vector bundle structure, one needs to show that each fiber carries a
vector space structure and is isomorphic to its fiber space. In the following theorem, we define
this structure:

Theorem 4.1. Let j1 f , j1 g ∈ π−1{x} be two jets in the same fiber. Therefore, we conclude that
f , g :Rp → M smooth functions where f (0)= g(0)= x. Suppose that [x, Xα], [x,Yα] are the local
coordinates (as in equation (2.2)) of j1 f , and j1 g respectively, and c ∈R a scalar. We define

+ ( f , g)(u)= exp

(
p∑

α=1
(uα(Xα+Yα))

)
, (4.1)

• (c, f )= exp

(
p∑

α=1
(uα(cXα))

)
. (4.2)

Then, +( f , g) and •(c, f ) are differentiable functions.

Proof. Suppose that j1 f , j1 g ∈ π−1{x} with the local forms [x, Xα], [x,Yα], respectively. From
equation (2.2), we know that x = f (0) = g(0) and Xα = ( fα)∗

( d
du

∣∣
0
)

and Yα = (gα)∗
( d

du

∣∣
0
)
. By

Remark 2.1, we have Xα = f∗0
(

∂
∂uα

∣∣
0
)

and Yα = g∗0
(

∂
∂uα

∣∣
0
)
. Thus Xα,Yα ∈ TxM are tangent

vectors at the point x, then Xα+Yα ∈ TxM and cXα ∈ TxM as well.
Since M is paracompact, a linear connection ∇ on M, and a normal neighbourhood N

of x ∈ M, exists such that there is Ũ ⊂ TxM a neighborhood such that exp : Ũ → N is a
diffeomorphism. Now, consider such neighborhood in TxM such that

∑p
α=1 uα(Xα+Yα) ∈ Ũ ,

for all (u1,u2, . . . ,up) ∈U , where U be a small neighborhood of 0 ∈Rp . We now define functions
η(X+Y ) :Rp → TxM, and ηcX :Rp → TxM defined by

η(X+Y )(u1, . . . ,up)=
p∑

α=1
uα(Xα+Yα),

η(cX )(u1, . . . ,up)=
p∑

α=1
uα(cXα),

where X ,Y ∈ TxM tangent vectors, and c ∈R a scalar. From the definition of the functions above,
both η(X+Y ) and ηcX are linear functions. Since the exponential function exp is differentiable,
then the functions +( f , g) and •(c, f ) are differentiable.

Now, we consider the jets of j1(+( f , g)) and j1(•(c, f )).

Lemma 4.1. If j1 f , j1 g ∈π−1{x}, then j1(+( f , g)) ∈π−1{x}, and j1(•(c, f )) ∈π−1{x}.
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Proof. Let j1 f , j1 g ∈π−1{x}, then π( j1 f )=π( j1 g)= x. On the other hand, since Xα+Yα ∈ TxM,
then +( f , g)(0)= exp

(∑p
α=1(uα(cXα))

)= exp(0x)= x. Here 0x represents the zero vector of TxM.
Therefore π( j1+ ( f , g))=+( f , g)(0)= x, i.e. j1(+( f , g)) ∈π−1{x}. Using the same method, it can be
proven that j1(•(c, f )) ∈π−1{x}.

In the following definition, we define the addition and multiplication of two jets explicitly:

Definition 4.1. Let j1 f , j1 g ∈π−1{x} and c ∈R. We define

⊞ :π−1{x}×π−1{x}→π−1{x}

( j1 f , j1 g)→ j1 f ⊞ j1 g = j1(+( f , g)), (4.3)

and

⊡ :R×π−1{x}×π−1{x}→π−1{x}

(c, j1 f )→ c⊡ j1 f = j1(•(c, f )) (4.4)

Remark 4.1. The local expressions of the addition j1 f + j1 g = j1φ+
f ,g and the scalar

multiplication c j1 f = j1φc
f are as follows:

j1φ+
f ,g ≡ [x, Xα+Yα],

j1φc
f ≡ [x, cXα]. (4.5)

The proof directly stems from the definitions of the operations ⊞ and ⊡ outlined in
Definition 4.1. Therefore we skip the proof.

Theorem 4.2. ⊞ and ⊡ are well defined.

Proof. Let j1 f , j1 g, j1 f̄ , j1 ḡ ∈ π−1{x} and their local forms are given by [x, Xα], [x,Yα], [x, X̄α],
[x, Ȳα], respectively.
Suppose that( j1 f , j1 g)= ( j1 f1, j1 g1). Then, ∂(xi◦ f )

∂uα

∣∣
u=0 = ∂(xi◦ f1)

∂uα

∣∣
u=0, and ∂(xi◦g)

∂uα

∣∣
u=0 = ∂(xi◦g1)

∂uα

∣∣
u=0.

Then, Xα = X̄α, and Yα = Ȳα. From equation (4.5), the local form of j1 f ⊞ j1 g = j1(+( f , g)) =
[x, Xα+Yα] and the local form of j1 f̄ ⊞ j1 ḡ = j1(+( f̄ , ḡ))= [x, X̄α+ Ȳα]. Then, the local forms of
j1 f ⊞ j1 g and j1 f̄ ⊞ j1 ḡ are equal. Therefore, ⊞ is well defined. Using the same way, one can
prove that ⊡ is well defined too.

By Theorem 4.2, we defined addition and scalar multiplication on J1
pM.

Corollary 4.1. With the addition and the scalar multiplication defined by equations (4.1) and
(4.2), each fiber π−1{x} is a vector space. +( f , g)(0) = exp(η(X+Y )(0)) = exp(0x) = x, where 0x

represents the zero vector of TxM.

We skip the proof as it can be proven with using the definitions of j1φ+
f ,g and j1φc

f . In
the next theorem, we show that J1

pM carries a vector bundle structure.

Theorem 4.3. With the bundle structures given by equation (2.1), and the vector space structure
on each fiber given by equation (4.5), J1

pM is a vector bundle on M with fiber space L(Rp,Rm)
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and bundle trivializations

ϕ : J1
pU →U ×L(Rp,Rm),

where uα is the usual coordinate functions of Rp, 1≤ i ≤ m, 1≤α≤ p, and U is an open subset
of M.

Proof. The coordinate charts of J1
pM is given by equation (2.1). Using these given structures,

J1
pM is a smooth bundle. Now we present the vector bundle structure. Each fiber is defined as

π−1{x}= { j1 f :φ(0)= x}. Here recall that f :Rp → M smooth functions. The addition and scalar
multiplication on each fiber as follows:

j1 f + j1 g = [x, Xα+ X ′
α],

λ j1 f = [x,λXα],

where j1 f = [x, Xα], and j1 g = [x, X ′
α]. Using the operations defined in Definition 4.1, fibers of

J1
pM carry vector space structure. The fiber map

ϕx :π−1{x}→ L(Rp,Rm)

j1 f →
[
∂(xi ◦ f )
∂uα

∣∣∣
0

]
(4.6)

for all x ∈ M. Therefore, we have

ϕx( j1 f +λ j1 g)=ϕx([x, Xα]+ [x,λX ′
α])

=ϕx([x, Xα+λX ′
α)]

=
[
∂(xi ◦ f )
∂uα

∣∣∣
0
+λ∂(xi ◦ g)

∂uα
∣∣∣
0

]
=ϕx( j1 f )+λψx( j1 g).

Now we prove that it is a bijection:

Let ϕx( j1 f ) = [0] ∈ L(Rp,Rm). Then
[∂(xi◦ f )

∂uα
∣∣
0
] = [0] for all 1 ≤ i ≤ m, and for all α, 1 ≤ α ≤ p.

Then j1 f = [x,0], which proves that ϕx is one to one. From the rank-nullity theorem, ϕx is a
bijection. Thus ϕx is a linear isomorphism for all x ∈ M.

4.2 The Tangent Bundle TJ1
pM

In this section, we compute the tangent vectors of J1
pM. For this purpose, we define the local

coordinates of a curve on J1
pM.

Remark 2.2 points out that for each curve φ corresponding to a tangent vector φ̇, there
exists functions ψ,ψt,ψu as in equation (2.3) and (2.4). Using the correspondence we define
local coordinates of φ(t) if φ is a smooth curve on the bundle J1

pM as following:

Definition 4.2. If φ is a curve on the bundle J1
pM, then the local coordinates of φ(t) is

φ(t)=
[
(xi ◦ψt)(0);

∂(xi ◦ψt)
∂uα

∣∣∣
u=0

]
,

where ψ :R×Rp → M is a smooth function such that φ(t)= j1(ψt) for ψt(u)=ψ(t,u)=ψu(t), for
all (t,u) ∈R×Rp .
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Lemma 4.2. Let φ̇ ∈ T(J1
pM) and ψ,ψt,ψu are the smooth functions defined by equations (2.3)

and (2.4). Then the local form of φ̇ is given by:

φ̇ ∈ T(J1
pM)≡

([
(xi ◦ψ)(0,0);

∂(xi ◦ψ0)
∂uα

∣∣∣
u=0

]
,
[
(xi ◦ψ̇0);

∂(xi ◦ψ̇u)
∂uα

∣∣∣
0

])
. (4.7)

Proof. Let φ :R→ J1
pM be a smooth curve such that, for all t ∈R, local form of φ(t), as defined

in (4.2), is φ(t)= [
(xi ◦ψt)(0); ∂(xi◦ψt)

∂uα

∣∣
u=0

]
. The derivative of φ is given by:

d
dt

∣∣∣
t=0

( j1(ψt))= d
dt

∣∣∣
t=0

(xi ◦ψt(0))
∂

∂xi

∣∣∣
j1ψ0

+ d
dt

∣∣∣
t=0

(X i
α ◦ψt)

∂

∂X i
α

∣∣∣
j1ψ0

. (4.8)

As φ̇ ∈ T j1ψ0
(J1

pM), the first two components of local form are (xi ◦ψ0)(0), and ∂(xi◦ψ0)
∂uα

∣∣
u=0.

The computation of the terms in equation (4.8) is as follows:
d
dt

∣∣∣
t=0

(xi ◦ψt)(0))= d
dt

∣∣∣
t=0

(xi ◦ψ0)(t))= (xi ◦ψ0)′(0).

Additionally,
d
dt

∣∣∣
t=0

(
∂(xi ◦ψt)
∂uα

∣∣∣
u=0

)
= d

dt

∣∣∣
t=0

((
∂(xi ◦ψ)(t,u)

∂uα

)∣∣∣
u=0

)
= ∂2(xi ◦ψ)(t,u)

dt∂uα

∣∣∣
(0,0)

.

Since ψ is a smooth function, we have

∂2(xi ◦ψ)(t,u)
dt∂uα

∣∣∣
(0,0)

= ∂2(xi ◦ψ)(t,u)
∂uαdt

∣∣∣
(0,0)

= ∂

∂uα

∣∣∣
u=0

(
d(xi ◦ψ)(t,u)

dt

∣∣∣
t=0

)
= ∂

∂uα

∣∣∣
u=0

(
d(xi ◦ψu)

dt

∣∣∣
t=0

)
= ∂(xi ◦ψ̇u)

∂uα

∣∣∣
u=0

.

Therefore,
d
dt

∣∣∣
t=0

(
∂(xi ◦ψt)
∂uα

∣∣∣
u=0

)
= ∂(xi ◦ψ̇u)

∂uα
|u=0 .

Using this equation in equation (4.8), we have

φ̇= (xi ◦ψ̇0)
∂

∂xi

∣∣∣
j1ψ0

+ ∂(xi ◦ψ̇u)
∂uα

∣∣∣
u=0

∂

∂X i
α

∣∣∣
j1ψ0

.

Therefore, the local form of φ̇ is
([

(xi ◦ψ)(0,0); ∂(xi◦ψ0)
∂uα

∣∣
u=0

]
,
[
(xi ◦ψ̇0); ∂(xi◦ψ̇u)

∂uα

∣∣∣
0

])
.

In the following lemma, we demonstrate that the local coordinates of the tangent vector
remain independent of the choice of ψ.

Lemma 4.3. The local coordinates of the tangent vector φ̇ do not depend the choice of ψ.
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Proof. Suppose that ψ and ψ̄ are the smooth functions corresponding to the tangent vector φ̇.
According to Definition 4.2, the local coordinates of φ(t) for all t ∈R are given by

φ(t)=
[
(xi ◦ψt)(0);

∂(xi ◦ψt)
∂uα

∣∣∣
u=0

]
=

[
(xi ◦ ψ̄t)(0);

∂(xi ◦ ψ̄t)
∂uα

∣∣∣
u=0

]
.

The following equalities hold for all t ∈R:

(xi ◦ψ)(t,0)= (xi ◦ ψ̄)(t,0), (4.9)

∂(xi ◦ψt)
∂uα

∣∣∣
u=0

= ∂(xi ◦ ψ̄t)
∂uα

∣∣∣
u=0

. (4.10)

Now, by setting t = 0 in both equations, we obtain

(xi ◦ψ)(0,0)= (xi ◦ ψ̄)(0,0),
∂(xi ◦ψ0)
∂uα

∣∣∣
u=0

= ∂(xi ◦ ψ̄0)
∂uα

∣∣∣
u=0

.

Rewriting equations (4.9) and (4.10), we obtain

(xi ◦ψ0)(t)= (xi ◦ ψ̄0)(t) (4.11)

and
∂(xi ◦ψ)(t,u)

∂uα

∣∣∣
u=0

= ∂(xi ◦ ψ̄)(t,u))
∂uα

∣∣∣
u=0

. (4.12)

Therefore, third component of the local coordinates remains the same. Now, let’s compute last
components. Taking the derivative of both sides of equation (4.11) at the point t = 0, we get

(xi ◦ψ0)′(0)= (xi ◦ ψ̄0)′(0).

Similarly, taking the derivative of both sides of equation (4.12), we have
d
dt

∣∣∣
t=0

(
∂(xi ◦ψ)(t,u)

∂uα

∣∣∣
u=0

)
= d

dt

∣∣∣
t=0

(
∂(xi ◦ ψ̄)(t,u)

∂uα

∣∣∣
u=0

)
,

⇒ ∂2(xi ◦ψ)(t,u)
dt∂uα

∣∣∣
(0,0)

= ∂2(xi ◦ ψ̄)(t,u)
∂uαdt

∣∣∣
(0,0)

.

Since both ψ and ψ̄ are smooth functions, this implies

∂

∂uα
|u=0

(
d(xi ◦ψu)

dt

∣∣∣
t=0

)
= ∂

∂uα

∣∣∣
u=0

(
d(xi ◦ ψ̄u)

dt

∣∣∣
t=0

)
⇒ ∂(xi ◦ψu)′(0)

∂uα

∣∣∣
u=0

= ∂(xi ◦ ψ̄u)′(0)
∂uα

∣∣∣
u=0

.

Therefore, the last components of the local coordinates are the same, concluding the proof.

Thus far, we have demonstrated the equivalence of the total spaces of the two bundles.
To establish that the bundles are isomorphic, we now aim to show that the differential Ω∗ is
injective. To achieve this, we need to express the local form of Ω∗.

Lemma 4.4. For a tangent vector φ̇ ∈ T(J1
pM), the local coordinates of Ω∗(φ̇) are given by

Ω∗(φ̇)≡
(
(xi ◦ψ0)(0),

(xi ◦ψ0)
∂uα

∣∣∣
u=0

;(xi ◦ψ̇0),
∂(xi ◦ψ̇u)

∂uα

∣∣∣
u=0

)
.
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Proof. Let φ̇ ∈ T(J1
pM) be a tangent vector, and let ψ be the function corresponding to φ as in

equations (2.3) and (2.4). Then(
(x̄i; yi

1, . . . , yi
p)(Ω◦φ)(0);

d(x̄i ◦Ω◦φ)
dt

∣∣∣
t=0

,
d(yi

1 ◦Ω◦φ)
dt

∣∣∣
t=0

,
d(yi

2 ◦Ω◦φ)
dt

∣∣∣
t=0

, . . . ,
d(yi

p ◦Ω◦φ)

dt

∣∣∣
t=0

)
,

where

(Ω◦φ)(t)=Ω( j1ψt)=
(
∂(xi ◦ψt)
∂u1

∣∣∣
u=0

∂

∂xi

∣∣∣
ψt(0)

,
∂(xi ◦ψt)
∂u2

∣∣∣
u=0

∂

∂xi

∣∣∣
ψt(0)

, . . . ,
∂(xi ◦ψt)
∂up

∣∣∣
u=0

∂

∂xi

∣∣∣
ψt(0)

)
.

We denote αth component of (Ω◦φ)(t) as Vα(t). Then

(Ω◦Φ)(t)= (ψt(0);V1(t),V2(t), . . . ,Vp(t)) ,

where Vα(t)= ∂(xi◦ψt)
∂uα

∣∣
u=0

∂
∂xi

∣∣
ψt(0) ∈ Tψt(0)M. Finally,

Ω∗(φ̇)= (Ω◦φ)′(0) ∈ TΩ( j1ψ0)(⊕p(TxM)),

where x =ψ0(0).

From Equation 2.5, the local coordinate chart for ⊕p(TM) be (x̄i; yi
1, yi

2, . . . , yi
p) is given by

(x̄i; yi
1, yi

2, . . . , yi
p), where

x̄i = xi ◦π1−p, yi
1 = ẋi ◦ pr1, yi

2 = ẋi ◦ pr2, . . . yi
p = ẋi ◦ prp .

Now we compute each of the local coordinates of (Ω◦φ)(t):

x̄i((Ω◦φ)(t))= (xi ◦π1,2)((Ω◦φ)(t))

= (xi ◦π1,2)(Ω( j iψt))

=
(
(xi ◦π1,2)(ψt)(0);

∂(xi ◦ψt)
∂uα

∣∣∣
u=0

)
= (xi ◦ψ0)(t) (4.13)

and

yi
α((Ω◦φ)(t))= yi

α((Ω◦φ)(t))

= yi
α(Ω( j iψt))

= yi
α

(
(ψt)(0);

∂(xi ◦ψt)
∂uα

∣∣∣
u=0

)
= ∂(xi ◦ψt)

∂uα

∣∣∣
u=0

(4.14)

for all α ∈ {1,2, . . . , p}. Therefore,

Ω∗(φ̇)= d(x̄i ◦Ω◦φ)
dt

∣∣∣
t=0

∂

∂x̄i

∣∣∣
Ω( j1ψ0)

+ d(yi
1 ◦Ω◦φ)

dt

∣∣∣
t=0

∂

∂yi
1

∣∣∣
Ω( j1ψ0)

+ . . .

+ d(yi
2 ◦Ω◦φ)

dt

∣∣∣
t=0

∂

∂yi
2

∣∣∣
Ω( j1ψ0)

+
d(yi

p ◦Ω◦φ)

dt

∣∣∣
t=0

∂

∂yi
p

∣∣∣
Ω( j1ψ0)

.

Conversely, using the local coordinates of (Ω◦φ)(t), we have

Ω∗(φ̇)=
(

d(x̄i ◦Ω◦φ)
dt

∣∣∣
t=0

,
d(yi

1 ◦Ω◦φ)
dt

∣∣∣
t=0

,
d(yi

2 ◦Ω◦φ)
dt

∣∣∣
t=0

, . . . ,
d(yi

p ◦Ω◦φ)

dt

∣∣∣
t=0

)
(Ω◦φ)(0)

.
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From equation (4.13), the derivative is d(x̄i◦Ω◦φ)
dt

∣∣
t=0 = (xi ◦ψ̇0).

On the other hand, referring to equation (4.14), we observe
d(yi

α ◦Ω◦φ)
dt

∣∣∣
t=0

= d
dt

∣∣∣
t=0

(
∂(xi ◦ψt)
∂uα

∣∣∣
u=0

)
= ∂2(xi ◦ψ(t,u))

dt∂uα

∣∣∣(0,0)

= ∂2(xi ◦ψ(t,u))
∂uαdt

∣∣∣(0,0)

= ∂

∂uα

∣∣∣
u=0

(
d

∂(xi ◦ψu)(t)
|t=0

)
= ∂(xi ◦ψ̇u)

∂uα

∣∣∣
u=0

,

for all α ∈ {1,2, . . . , p}. Then, the local coordinates of Ω∗(φ̇) are

Ω∗(φ̇)≡
(
(xi ◦ψ0)(0),

(xi ◦ψ0)
∂uα

∣∣∣
u=0

;(xi ◦ψ̇0),
∂(xi ◦ψ̇u)

∂uα

∣∣∣
u=0

)
.

Theorem 4.4. Ω is both an immersion and submersion.

Proof. Let the local function of Ω∗ be Ω̃∗, and φ̇ ∈ T(J1
pM) be a tangent vector. From Lemma 4.2,

the local form of φ̇ is([
(xi ◦ψ)(0,0);

∂(xi ◦ψ0)
∂uα

∣∣∣
u=0

]
,
[
(xi ◦ψ̇0);

∂

∂uα

∣∣∣
0
(xi ◦ψ̇u)

])
.

On the other hand, from Lemma 4.4, the local coordinate chart of Ω∗(φ̇) is

Ω∗(φ̇)≡
(
(xi ◦ψ0)(0),

(xi ◦ψ0)
∂uα

∣∣∣
u=0

;(xi ◦ψ̇0),
∂(xi ◦ψ̇u)

∂uα

∣∣∣
u=0

)
.

Therefore, the local function Ω̃∗ :Rmp+p ×Rmp+p →Rmp+p ×Rmp+p is an identity map. Hence, Ω
is both an immersion and submersion.

Corollary 4.2. With the vector bundle structure given in Theorem 4.3, J1
pM is bundle isomorphic

to the Whitney sum ⊕p(TM).

Proof. Theorem 3.1 indicates that the total spaces of the bundles J1
pM and ⊕p(TM) are

diffeomorphic. It can easily be seen that Figure 1 commutes.

J1
pM Ω−−−−→ ⊕p(TM)yπ′ yπM

M
idM−−−−→ M

Figure 1

Therefore, Ω is a fiber-preserving map. The local form of Ω is the identity map. Therefore, Ω
maps the fiber J1

pMx to the fiber ⊕p(TM)x.
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Now lets consider the restriction of Ω to the fiber J1
pMx. ΩJ1

pMx
: J1

pMx →⊕p(TxM). Let
j1σ, j1τ ∈ J1

pMx. Then, σ(0)= τ(0)= x. Thus, Ω is a vector bundle isomorphism.

5. Conclusion
We demonstrate that the jet bundle J1

pM can be expressed as the Whitney sum of p tangent
bundles. For future research, the vector bundle isomorphism between the p-jet bundle and the
p-Whitney sum can be used to lift a Riemannian metric on the manifold M to J1

pM. This can
be achieved by extending the product metric ⊕p g on ⊕p(TM) to J1

pM and using the pull back
metric along the isomorphism Ω. This approach opens the door to studying the behavior and
properties of Riemannian metrics in the context of jet bundles, which could lead to new insights
in Riemannian geometry and its applications in related fields.
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