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1. Introduction
In 1995, Lindqvist [5] defined the sine function in the p-generalization form which is symbolized
by sinp(ζ) and it is the inverse of the function,

arcsinp(ζ)=
∫ ζ

0
(1− tp)

−1
p dt,

where 1< p <∞ and 0≤ ζ≤ 1. For the value p = 2, the function sinp(ζ) is equivalent to general
sine function and it will be extended to (−∞,∞) (Nantomah and Prempeh [7]). Similarly, cosine
and tangent functions are also given in the p-generalization form using the sine function.
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With the addition of this, the hyperbolic sine function defined in the p-generalization form
which is symbolized by sinhp(ζ) and it is the inverse of the function,

arcsinhp(ζ)=
{∫ ζ

0 (1+ tp)
−1
p dt, ζ ∈ (0,∞),

−arcsinhp(−ζ), ζ ∈ (−∞,0).

In 2012, Takeuchi [9] given a further generalization of the sine function in the form of
pq-generalization, which is symbolized by sinp,q(ζ) and is inverse of the function,

arcsinp,q(ζ)=
∫ ζ

0
(1− tq)

−1
p dt,

where 0≤ ζ≤ 1 and p, q ∈ (1,∞). Now the function sinp,q(ζ) match sinp(ζ) for p = q and it will
be extended upto (−∞,∞). Similarly, p, q-generalization of tangent and cosine functions is also
defined as a generalization of the sine function.

Now, the hyperbolic sine function is also defined in the form p, q-generalization, which is
symbolized by sinhp,q(ζ) and is inverse of the function,

arcsinhp,q(ζ)=
∫ ζ

0
(1+ tq)

−1
p dt, ζ ∈ (0,∞).

Similarly, using the hyperbolic sine function we can also define the hyperbolic cosine and
hyperbolic tangent functions in the form of p, q-generalization.

In this paper, we present a generalization of inequalities that involve the generalized
hyperbolic functions. Our primary goal is to refine and sharpen certain inequalities related to
the generalized hyperbolic cosine and hyperbolic sine functions. The main result we establish is
a broader generalization of inequalities involving the sine and cosine hyperbolic functions.

2. Preliminaries
In this section, we define the generalized hyperbolic sine and cosine functions and present some
key results related to these functions.

Definition 2.1 ([7]). The hyperbolic sine, hyperbolic cosine and hyperbolic tangent functions
can be defined in the generalized form respectively as (Darkunde and Ghodechor [3], Nantomah
and Prempeh [7], and Nantomah et al. [8]),

sinha (ζ)= aζ−a−ζ

2
, cosha (ζ)= aζ+a−ζ

2
,

tanha (ζ)= aζ−a−ζ

aζ+a−ζ , cotha (ζ)= aζ+a−ζ

aζ−a−ζ ,

where a > 1 and ζ ∈ (−∞,∞).
All these generalized results satisfies the identities as follows:

cosha (ζ)+sinha (ζ)= aζ, cosha (ζ)−sinha (ζ)= a−ζ,
d
dζ

[sinha (ζ)]= lnacosha (ζ),
d
dζ

[cosha (ζ)]= lnasinha (ζ),

d
dζ

[tanha (ζ)]= lnasech2
a (ζ),

d
dζ

[cotha (ζ)]= lnacsch2
a(ζ),

d2

dζ2 [cosha (ζ)]+ d2

dζ2 [sinha (ζ)]= (lna)2aζ,
d2

dζ2 [cosha (ζ)]− d2

dζ2 [sinha (ζ)]= (lna)2a−ζ,
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cosh2
a (ζ)+sinh2

a (ζ)= cosha (2ζ), cosh2
a (ζ)−sinh2

a (ζ)= 1,

2cosha (ζ) ·sinha (ζ)= sinha (2ζ), cosh2
a (ζ)= cosha (2ζ)+1

2
,

sinh2
a (ζ)= cosha (2ζ)−1

2
.

In particular, Nantomah [8] for the Euler’s number a = e = 2.71828, all these defined
identities and results coincide with their basic definitions.

Lemma 2.1 (Hermite-Hadamard Inequality, [6]). If f : I ⊆ (−∞,∞) → (−∞,∞) be the convex
function then

f
(u1 +v1

2

)
≤ 1

v1 −u1

∫ v1

u1

f (t)dt

≤ f (u1)+ f (v1)
2

,

where u1,v1 ∈ I and u1 < v1.

Lemma 2.2 ([2]). Let the function f , g : [a,b]→R are continuous and be differentiable on (a,b)
and g′(x) ̸= 0 on (a,b). Let A1(x)= f (x)− f (a)

g(x)−g(a) , A2(x)= f (x)− f (b)
g(x)−g(b) , x ∈ (a,b),

(i) A1(·) and A2(·) are increasing (strictly increasing) on (a,b) if f ′(·)
g′(·) is increasing (strictly

increasing) on (a,b),

(ii) A1(·) and A2(·) are decreasing (strictly decreasing) on (a,b) if f ′(·)
g′(·) is decreasing (strictly

decreasing) on (a,b).

Lemma 2.3 ([1]). If, M(x)=
∞∑

k=0
mk(x)xk and N(x)=

∞∑
k=0

nk(x)xk are convergent for |x| < R, where

mk and nk are the real numbers for k = 0,1,2,3, . . . such that nk > 0. Now if the sequence mk
nk

is
strictly increasing (or decreasing) on (0,R), then the function M(x)

N(x) is also strictly increasing (or
decreasing) on (0,R).

The power series of generalized hyperbolic sine and hyperbolic cosine functions is defined as
(Gradshteyn et al. [4]):

sinha (ζ)=
∞∑

n=0
(lna)2n+1 ζ2n+1

(2n+1)!
,

cosha (ζ)=
∞∑

n=0
(lna)2n ζ2n

(2n)!
.

We will use these power series for the proof of our main result.

3. Main Results
In this section, we present the inequalities with sharpened bounds for the generalized hyperbolic
functions. These refined inequalities provide more accurate bounds for the generalized
hyperbolic functions.
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Theorem 3.1. Let m ≥ (lna)3
15 then the function f (ζ) =

(
ln sinha (ζ)

ζ

)
ln(1+mζ2) is strictly increasing on (0, r)

where r ∈ (0,∞). In specific, for this fixed value of m the best suitable constants α and β are
(lna)3

6m and

(
ln sinha (r)

r

)
ln(1+ r2

15 )
respectively such that,

(1+mζ2)α ≤ sinha (ζ)
ζ

≤ (1+mζ2)β .

Proof. Let

f (ζ)=
ln sinha (ζ)

ζ

ln(1+mζ2)
= f1(ζ)

f2(ζ)
,

where f1(ζ)= ln sinha (ζ)
ζ

and f2(ζ)= ln(1+mζ2) with f1(0)= 0 and f2(0)= 0.
Differentiating f1(ζ) and f2(ζ), we get

f ′1(ζ)= ζ

sinha (ζ)

[
ζ lnacosha (ζ)−sinha (ζ)

ζ2

]
= ζ lna ·cosha (ζ)−sinha (ζ)

ζsinha (ζ)

and f ′2(ζ)= 2mζ

1+mζ2 , therefore

f ′1(ζ)
f ′2(ζ)

= ζ lna ·cosha (ζ)−sinha (ζ)
ζsinha (ζ)

· (1+mζ2)
2mζ

= (1+mζ2)
2m

(
ζ lna ·cosha (ζ)−sinha (ζ)

ζ2 sinha (ζ)

)
= 1

2m

[
ζ lna ·cosha (ζ)−sinha (ζ)

ζ2 sinha (ζ)
+ mζ3 lna ·cosha (ζ)−mζ2 sinha (ζ)

ζ2 sinha (ζ)

]
= 1

2m

[
lna

cotha(ζ)
ζ

− 1
ζ2 + lna.mζcotha(ζ)−m

]
= 1

2m
f3(ζ) ,

where f3(ζ)= lna cotha(ζ)
ζ

− 1
ζ2 + lna ·mζcotha(ζ)−m.

Now f3(ζ) is increasing iff f ′3(ζ)> 0 therefore by using Lemma 2.2, we see that f (ζ) is increasing
if f ′3(ζ)> 0.

f ′3(ζ)= (lna)

[
−(lna)cosech2

a(ζ)ζ−cotha(ζ)
ζ2

]
+ 2
ζ3 +m lna

[−ζ(lna)cosech2
a(ζ)+cotha(ζ)

]> 0

which is equivalent to

2− (lna)2
(

ζ
sinha(ζ)

)2 − (lna)ζcotha(ζ)

ζ2(lna)
[
(lna)

(
ζ

sinha(ζ)

)2 −ζcotha(ζ)
] > m .

Due to well known following result (Alzer and Qiu [1]),(
ζ

sinha(ζ)

)2
< 1< ζ

tanha(ζ)
.
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We see that, F4(ζ)> m, where

F4(ζ)=
2− (lna)2

(
ζ

sinha(ζ)

)2 − (lna)ζcotha(ζ)

ζ2(lna)
[
(lna)

(
ζ

sinha(ζ)

)2 −ζcotha(ζ)
]

=
2− (lna)2

[(
ζ

sinha(ζ)

)2 − (lna)ζ cosha(ζ)
sinha(ζ)

]
ζ2(lna)

[
(lna)

(
ζ

sinha(ζ)

)2 −ζ
cosha(ζ)
sinha(ζ)

]

=
2− (lna)2

[
ζ2−(lna)ζsinha(ζ)cosha(ζ)

sinh2(ζ)

]
ζ2(lna)

[
(lna)ζ2−ζsinha(ζ)cosha(ζ)

sinh2(ζ)

]
= 2sinh2

a(ζ)− (lna)2ζ2 − (lna)3ζsinha(ζ)cosha(ζ)
(lna)2ζ4 − (lna)ζ3 sinha(ζ)cosha(ζ)

= cosha(ζ)−1− (lna)2ζ2 − (lna)ζsinha(2ζ)
2

(lna)2ζ4 − (lna)ζ3 sinha(2ζ)
2

= 2cosha(ζ)−2−2(lna)2ζ2 − (lna)ζsinha(2ζ)
2(lna)2ζ4 − (lna)ζ3 sinha(2ζ)

.

Using power series expansion of sinha(ζ) and cosha(ζ) above equation can be written as,

F4(ζ)=
2

∞∑
n=0

22n(lna)2n ζ2n

(2n)! −2−2(lna)2ζ2 − (lna)ζ
∞∑

n=0

(lna)2n+122n+1ζ2n+1

(2n+1)!

2(lna)2ζ4 − (lna)ζ3
∞∑

n=0

(lna)2n+122n+1ζ2n+1

(2n+1)!

=
2

∞∑
n=0

22n(lna)2n ζ2n

(2n)! −2−2(lna)2ζ2 −
∞∑

n=0

(lna)2n+222n+1ζ2n+2

(2n+1)!

2(lna)2ζ4 −
∞∑

n=0

(lna)2n+222n+1ζ2n+4

(2n+1)!

=

∞∑
n=2

22n+1(lna)2n ζ2n

(2n)! −
∞∑

n=0

(lna)2n+222n+1ζ2n+2

(2n+1)!

2(lna)2ζ4 −
∞∑

n=0

(lna)2n+222n+1ζ2n+4

(2n+1)!

=

∞∑
n=2

22n+1(lna)2n ζ2n

(2n)! −
∞∑

n=2

(lna)2n22n−1ζ2n

(2n−1)!

−
∞∑

n=3

(lna)2n−322n−3ζ2n

(2n−3)!

=

∞∑
n=2

[
(lna)2n22n+1

(2n)! − (lna)2n−22n−1

(2n−1)!

]
ζ2n

−
∞∑

n=3

(lna)2n−322n−3ζ2n

(2n−3)!

=

∞∑
n=3

[
(lna)2n−22n−1

(2n−1)! − (lna)2n22n+1

(2n)! −
]
ζ2n

∞∑
n=3

(lna)2n−322n−3ζ2n

(2n−3)!
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=

∞∑
n=3

anζ
2n

∞∑
n=3

bnζ2n
,

where

an

bn
=

(lna)2n 22n−1

(2n−1)! − (lna)2n 22n+1

(2n)!

(lna)2n−3 22n−3

(2n−3)!

= (lna)2n(2n)(2)2n−1 − (lna)2n(2)2n+1(2n−3)!
(lna)2n−3(2)2n−3(2n)!

= (lna)2n(2n)(2)2n−1 − (lna)2n(2)2n+1

(lna)2n−3(2)2n−3(2n)(2n−1)(2n−2)

= (lna)38(n−2)
(2n)(2n−1)(2n−2)

= 4(lna)3(n−2)
(n)(2n−1)(2n−2)

= cn .

Suppose, cn ≤ cn+1,

=⇒ 2(n−2)(n+1)(2n+1)< (n−1)(2n−1)(2n−2)

=⇒ 2
[
(n2 −n−2)(2n+1)

]< [
(2n2 −3n+1)(2n−2)

]
=⇒ 2n2 −12n−2< 0

=⇒ n ≥ 3

Therefore the sequence is strictly increasing and bn > 0, for all n ≥ 3.
By Lemma 2.3, F4(ζ) is strictly increasing on (0, r), which implies that F(ζ) is also increasing.
So, sup {F4(ζ) : ζ> 0}≥ m and m ≥ (lna)3

15 since,

lim
ζ→0+

F4(ζ)= (lna)3

15
.

We have,

lim
ζ→0+

F(ζ)≤ F(ζ)≤ lim
ζ→r−

F(ζ) .

Hence theorem is proved.

Theorem 3.2. Let m ≥ (lna)
3 , then the function G(ζ) = logcosha(ζ)

log1+mζ2 is strictly increasing in (0, r),
where r ∈ (0,∞).
In particular, the best possible value of α1 and β1 are (lna)

2m and ln(cosha(r))
ln(1+mr2) , such that

(1+mζ2)α1 < cosha(ζ)< (1+mζ2)β1 .

Proof. Let

G(ζ)= lncosha(ζ)
ln(1+mζ2)

= G1(ζ)
G2(ζ)

,

where G1(ζ)= lncosha(ζ) and G2(ζ)= ln(1+mζ2) with G1(0)=G2(0)= 0.
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Differentiating G1(ζ) and G2(ζ), we get
G′

1(ζ)
G′

2(ζ)
= (lna)(1+mζ2)sinha(ζ)

(2mζ)cosha(ζ)
= (lna)G3(ζ) ,

where

G3(ζ)= (1+mζ2)sinha(z)
(2mζ)cosha(ζ)

,

G′
1(ζ)

G′
2(ζ) is increasing iff G′

3(ζ)> 0.

By Lemma 2.2, G(ζ) will be increasing if G′
3(ζ)> 0, where

G3(ζ)= tanha(ζ)
ζ

+mz tanha(ζ),

G′
3(ζ)= ζ(lna)sech2

a(ζ)− tanha(ζ)
ζ2 + (mtanha(ζ)+mz(lna)sech2

a(ζ))

= ζ(lna)(1−sinha(ζ)cosha(ζ))
ζ2 +m

ζ(lna)+sinha(ζ)cosha(ζ)
cosh2

a(ζ)
(lna)

[
(ζ)cos2

a(ζ)− (ζ)sinh2
a(ζ)

]−sinha(ζ)cosha(ζ)

> mζ2 [
(lna)(−ζ)cosh2

a(ζ)+ (ζ)sinh2
a(ζ))−sinha(ζ)cosha(ζ)

]
.

=⇒ 2(lna)(ζ)−sinha(2ζ)> mζ2 [−2ζ(lna)−sinha(2ζ)]

=⇒ 2(lna)(ζ)−sinha(2ζ)>−2(lna)mζ3 −mζ2 sinha(2ζ)

=⇒ 2(lna)(ζ)−sinha(2ζ)
−2(lna)ζ3 −ζ2 sinha(2ζ)

> m.

It is equivalent to

G4(ζ)= 2(lna)(ζ)−sinha(2ζ)
2(lna)ζ3 +ζ2 sinha(2ζ)

< m.

It implies G4(ζ) < m and G4(ζ) = 1
G3(ζ) . It shows G3(ζ) is strictly increasing in (0, r), which

implies G(ζ) is increasing for specified values of m = (lna)
3 .

So, sup {G4(ζ) : ζ ∈ (0, r)}≤ m and

lim
ζ→0+

G4(ζ)= (lna)
3

.

Now we have that,

lim
ζ→0+

G(ζ)≤G(ζ)≤ lim
ζ→r−

G(ζ) .

Hence theorem is proved.

4. Scope for Further Research
These generalized results can be used in further research to refine and sharpen inequalities
involving hyperbolic functions. They provide a broader framework for exploring new inequalities
and enhancing the precision of existing ones in various mathematical and applied contexts.
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