
Communications in Mathematics and Applications
Vol. 15, No. 3, pp. 1045–1062, 2024
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v15i3.2629

Research Article

Study of Activation Energy of Magnetohydrodynamic
Radiative Casson Nanofluid With Heat Source/sink
and Cattaneo Christov Heat Flux Model Over
Exponential Stretching Sheet

Mohammed Younus*1 and A. Venkatalakshmi2

1Department of Mathematics, Keshav Memorial Institute of Technology, Hyderabad, Telangana, India
2Department of Mathematics, University College of Science, Osmania University, Hyderabad, Telangana, India
*Corresponding author: younus@kmit.in

Received: February 9, 2024 Accepted: April 22, 2024

Abstract. The present work uses numerical analysis to examine the activation energy (A.E.) of a
magnetohydrodynamic (MHD), mixed convective, radiative Casson nanofluid with heat source/sink,
Cattaneo Christov’s heat flow model, “zero normal flux of the nanoparticles” across an exponentially
stretched sheet, together with convective boundary condition. Numerous parameters’ impacts on the
temperature profile, velocity, and concentration profile were graphically interpreted after investigation.
The findings are very comparable to those found in openly available literature. The velocity profile
was observed for Casson fluid parameter (β) buoyancy parameter (N), mixed convection parameter
(λ), Magnetic parameter (M) and Suction parameter (S). Observed temperature profile for Magnetic
parameter (M), mixed convection parameter (λ), Thermophoresis parameter (Nt), Biot number (Bi),
Heat source/sink Parameter (Hg), Thermal relaxation parameter (δT ), Prandtl Number (Pr), Eckert
number (Ec), Radiation parameter (R). Examined concentration profile for Activation Energy (A.E.),
temperature difference (δ), Thermophoresis parameter (Nt), Magnetic parameter (M), chemical
reaction rate constant (σ∗), parameter of Brownian motion (Nb), Solute relaxation parameter (δC),
and Schmidt Number (Sc). Additionally, for a range of values, the local Sherwood number, skin friction
coefficient, and local Nusselt number were obtained.
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1. Introduction
Due to its many applications in various industrial manufacturing processes and engineering like
wire drawing, extrusion of plastic, hot rolling and rubber sheets, glass blowing, fibre spinning,
metallic plates’ condensation process, aerodynamics, and many others, the study of mass and
heat transmission of laminar boundary layer flow across a stretching sheet has quickly advanced.
Stretching and concurrent heating or cooling have a significant impact on the end goods’ quality
during such procedures. Modern metallurgical and medicinal fields are very interested in the
magnetohydrodynamic (MHD) flow of a fluid that is electrically conducting. Examples of these
domains include the coating of metals, magnetohydrodynamic (MHD) power production systems,
cooling of nuclear reactors, wound healing, and the use of MRI to diagnose diseases and perform
surgical procedures. Due to its broad range of technological applications, substantial research
has been done on boundary layer flow that is brought on by an exponentially stretched sheet.
For instance, the final result depends on changes in temperature distribution and stretching
velocity when copper wires are annealed and tinned. In such operations, the quality of the final
outputs is significantly influenced by both the concurrent heating or cooling and the kinematics
of stretching. Choi originated the term “nanofluid” to describe dispersions of nanoparticles in
common fluids including propylene glycol, water, and ethylene glycol. Choi demonstrated that
the thermal conductivity of traditional heat transfer liquids could be improved up to almost
two times by the addition of a tiny quantity (<1% by volume) of nanoparticles. A fluid that
detracts from Newton’s viscosity law is referred to as non-Newtonian. It is necessary to study
non-Newtonian fluid ideas in order to fully understand nature of common fluids. Researchers
are interested in fluids that are non-Newtonian in nature, because of their complexity and large
range of scientific and industrial applications. Non-Newtonian fluids comprise, for instance,
tangent hyperbolic fluids, Casson fluid, Maxwell, Power-law fluids, Williamson fluids, and
Jeffrey fluids. Such fluids contain the non-Newtonian Casson fluid, which displays yield stress.
The influences of heat generation and absorption on mass and heat transmission have been the
subject of extensive experimental and theoretical research in recent years. Applications for heat
source/sink include heat source or sink modification in polymer manufacturing, cooling electronic
equipment, cooling/heating of plastic items, etc. On the other hand, because thermal radiation
has such an extensive range of applications in physics, engineering, and space technology, it has
a considerable impact on the mass and heat transfer of different fluids over a stretching surface.
For instance, in the industry of manufacturing polymers, thermal radiation effects may be a
significant factor in managing heat transfer. Some significant uses of radiative heat transfer
consist of high-temperature plasmas, nuclear power plants, cooling of nuclear reactors, MHD
accelerators, liquid metal fluids, spacecraft and satellites.

Engineers, scientists, and researchers were driven to study “Non-Newtonian fluid boundary
layer flow with heat and mass transmission over stretched surfaces” because of the wide-
ranging applications. Svante Arrhenius developed the term “Arrhenius activation” in 1889. The
minimum level energy necessary for a chemical system with potential reactants to initiate
a chemical reaction is simulated. A.E.’s effects on “convective heat and mass transmission
in boundary layer region” were assessed by Bestman [5]. Since then, numerous studies have
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taken place to check how A.E. affects mass and heat transmission in boundary layer flow of
the fluid. The impact of A.E. on mass and heat transmission in unstable flow of fluid under
several geometries was studied by Anurada and Sashikala [3], Dhlamini et al. [7], and Hamid
et al. [11]. Sarwe et al. [22] looked at the Casson hybrid nanofluid flow across a plate moving
vertically under the impact of magnetic field and (A.E.) activation energy with convective
boundary conditions. Atif et al. [4] studied the magnetohydrodynamic Casson nanofluid and
activation energy under the influence of exponential, temperature-dependent, and variable
viscosity, thermal conductivity on a stretched surface.

With the help of his heat conduction model, Fourier (in 1822) took the decision to look
into the various practical situations in which heat transmission occurs. The parabolic heat
equation is produced as a result of this law, which demonstrates how the initial disturbances
has an immediate impact on the system under investigation. The result is a clear denial of the
notion of heat conduction. In order to address this issue, Fourier significantly altered the law
of heat conduction (Jabeen et al. [15]). Cattaneo, with the addition of thermal relaxation time
in 1948 has given a new heat conduction law that produced a hyperbolic equation allowing
energy to be transferred via waves. Under various boundary conditions, many researchers
examined activation energy employing Cattaneo-Christov heat flux (see Eswaramoorthi et
al. [8], Ijaz et al. [13], Muhammad et al. [17]). The concept of heat flux given by Cattaneo-
Christov was examined by Ali and Sandeep [2], Prasad et al. [19], Ramana et al. [20] for a
range of fluids in various settings. Using the Keller box methodology, Malik etal[16] studied
about MHD flow of Casson fluid with the model of Cattaneo-Christov heat flux and variable
viscosity. Bilal et al. [6] carried out a numerical analysis of 2D viscoelastic fluid driven by
surface stretched exponentially with magnetic effects. Aligned magnetic field, heterogeneous-
homogeneous chemical reaction, Cattaneo-Christov heat flux, of Casson fluid flow across a
stretching surface were all investigated by Reddy and Suneetha [21].

Gangiah et al. [10] inspected the effects of a heat source and thermal radiation on the MHD,
mixed convection flow of Casson nanofluid across a sheet stretched exponentially. Ittedi et
al. [14] examined the influences of chemical reaction, magnetic field, and heat source/sink on
heat transmission of a nanofluid on a stretching sheet at the boundary by taking thermal slip,
velocity slip, and concentration slip into account. The effects of a viscous dissipation, as well as,
heat source on a Jeffrey fluid flow through a vertical plate were examined by Muzara et al. [18]
in their study. Gangiah et al. [9] examined how viscosity dissipation along with chemical reaction
affects flow of non-Newtonian nanofluid flow across an exponentially extending sheet. Abualnaja
[1] employed the Homotopy perturbation method to examine the flow of MHD Williamson fluid
on an exponentially stretched sheet with convective boundary condition.

The primary goal of the current study is to look at the effects of the activation energy (A.E.)
of a mixed convective, a Magnetohydrodynamic (MHD) Casson fluid flow with “zero normal flux
of nanoparticles over a sheet” stretched exponentially in the presence of heat source/sink and
radiation parameters, along with the convective boundary condition and Cattaneo-Christov heat
flow. We took into account a “zero normal flux of nanoparticles” defined in boundary conditions,
to exclude gravitational effects at the sheet’s surface. The results of the nondimensional velocity,
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concentration, and temperature tests were illustrated with graphs thoroughly and presented
quantitatively in tables for the Sherwood, Nusselt number, and skin friction coefficient.

2. Mathematical Formulation
Consider a steady, two-dimensional (2D), laminar, mixed convection boundary layer flow over
a sheet stretched exponentially along with thermal radiation, heat source/sink and Cattaneo-
Christov heat flux. A variable magnetic field B(x) taken normal to the surface. Applied
suction and convective heat condition at the sheet’s surface. On the basis of application of
two opposite and equal forces at a time along the x-axis, it is assumed that the flow is produced
by stretching the sheet with a strong force until its velocity is exponential in nature. The
y-axis is perpendicular to the x-axis and x-axis is assumed to be the stretching surface in the
fluid flow’s direction. The flow is contained to y > 0 and concurs with the plane y = 0. The
sheet is then stretched while the origin is held fixed, with velocity Uw and Tw as the surface
temperature. It is assumed that nanoparticle mass flux at the wall is zero.

y

O

x

B0 Force

Momentum Boundary Layer

Thermal Boundary Layer

Solutal Boundary Layer

u = 0

T¥

C¥

u =Uw, v =Vw, −k ∂T
∂y = h f (Tw −T), DB

∂C
∂y + DT

T∞
∂t
∂y = 0

Figure 1. Fluid flow physical model

The sheet is subjected to an evolving magnetic field B = B0ex/2L where B0 is the magnetic
field’s initial intensity. All of these factors lead to the following governing equations for this
flow’s continuity, momentum, energy, and concentration (Bilal et al. [6], Gangaiah et al. [10],
Younus and Lakshmi [23]):

Continuity equation is given by
∂v
∂y

+ ∂u
∂x

= 0 . (1)

Momentum equation is given by

u
∂u
∂x

+v
∂u
∂y

= ν
(
1+ 1

β

)
∂2u
∂y2 + gβt(T −T∞)+ gβc(C−C∞)− σB0

2

ρ f
u . (2)
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The equation of energy is

u
∂T
∂x

+v
∂T
∂y

+λTωT

= k
ρcp

∂2T
∂y2 + µ

ρcp

(
∂u
∂y

)2
− 1
ρcp

∂qr

∂y
+τ

[
DB

∂C
∂y

∂T
∂y

+ DT

T∞

(
∂T
∂y

)2]
+ Q
ρcP

(T −T∞). (3)

The equation of concentration is

u
∂C
∂x

+v
∂C
∂y

+λCωC = DT

T∞
∂2T
∂y2 +DB

∂2C
∂y2 −k2

r(C−C∞)
(

T
T∞

)n
e−

(
Ea
kT

)
, (4)

where

ωT = v
∂v
∂y

∂T
∂y

+u
∂u
∂x

∂T
∂x

+u2∂
2T
∂x2 +v2∂

2T
∂y2 +2uv

∂2T
∂x∂y

+v
∂u
∂y

∂T
∂x

+u
∂v
∂x

∂T
∂y

(5)

and

ωC = u
∂u
∂x

∂C
∂x

+v
∂v
∂y

∂C
∂y

+u2∂
2C
∂x2 +v2∂

2C
∂y2 +2uv

∂2C
∂x∂y

+u
∂v
∂x

∂C
∂y

+v
∂u
∂y

∂C
∂x

. (6)

The problem’s boundary conditions are as follows (Gangaiah et al. [10]):

u =Uw, v =Vw, −k
∂T
∂y

= h f (Tw −T) and DB
∂C
∂y

+ DT

T∞
∂T
∂y

= 0, at y= 0 (7)

and u → 0, T → T∞, C → C∞ as y→∞.

From the above equations, we have u and v as velocity components respectively along X and
Y axes, µ stands for viscosity coefficient, density of the fluid as ρ, g, β stand for the gravitational
acceleration and Casson fluid parameter respectively, βc and βt stands for coefficients of the
concentration and thermal expansion respectively, C represents concentration and T represents
temperature of fluid, T∞, C∞ as ambient fluid temperature and fluid concentration respectively,
σ as the fluid’s electrical conductivity, k represents the thermal conductivity, Q = Q0ex/2L is
“the temperature dependent volumetric rate of heat source when Q > 0 and heat sink when
Q < 0, Q0 is a constant”, and cp stand for fluid’s specific heat under constant pressure, qr

stands for the radiative heat flux, kinematic viscosity is expressed as ν= µ

ρ
, τ= (ρc)p

(ρc) f
represents

“the ratio of nanoparticle heat capacity to base fluid heat capacity”, DB represents Brownian
diffusion and DT represents thermal diffusion coefficients respectively, and Kc = k0e

x
L is the

chemical conversion rate of irreversible reaction of first order. In the boundary conditions,
Uw =U0e

x
L is elongating velocity, where U0 is the position velocity, and the characteristic length

denoted by L, Vw =−v0e
x

2L is special type velocity on the wall. Here v0 is the starting suction
strength, Vw < 0 stands for the flow rate of blowing, and Vw > 0 stands for flow rate of suction,
the convective heat transfer coefficient is denoted by h f , whereas Tw stands for the sheet’s
convective fluid temperature, kr is designated as the response rate parameter, Ea is (A.E.)
the activation energy and ‘n’ represents fitted rate constant.

On simplification of radiative heat flux

qr = −4α1

3k1
∂T4

∂y
, (8)

T4 ∼= T3
∞(4T −3T∞). (9)
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On using (9) in (8), we get

qr = −16α1

3k1 T3
∞
∂T
∂y

. (10)

3. Solution Methodology

By the below similarity transformations, we can convert the system to O.D.E from a system of
P.D.E.

η(x, y)=
√

U0

2νL
e

x
2L y, ψ(x, y)=√

2U0νLe
x

2L f (η),

T = T∞+ (Tw −T∞)θ(η), C = C∞+ (C∞) ·φ(η)

 , (11)

where η as the similarity variable, f (η) as stream function, θ(η) as dimensionless temperature
function and φ(η) as concentration function, and ψ(x, y) is the stream function.

Continuity equation is getting satisfied with the selection of ψ(x, y) such that

u = ∂ψ

∂y
, v =−∂ψ

∂x
.

Therefore,

u =U0e
x
L f ′(η), v =−

√
νU0

2L
e

x
2L (η f ′(η)+ f (η)). (12)

By substituting the aforementioned conversions (11)-(12) in equations (2)-(4), we get a system
of O.D.E(

1+ 1
β

)
f ′′′(η)+ f (η) f ′′(η)−2[ f ′(η)]2 +λ[θ(η)+Nφ(η)]−M f ′(η)= 0 (13)

1
Pr

[
1+ 4R

3
−PrδT[ f (η)]2

]
θ′′(η)+θ′(η) · f (η)+Ec[ f ′′(η)]2

+ Nbθ′(η)φ′(η)+Nt[θ′(η)]2 +Hg ·θ(η)= 0 , (14)

φ′′(η)−φ′′(η)LePrδC[ f (η)]2 +LePr f (η)φ′(η)+ Nt
Nb

θ′′(η)

+LePrδC f (η) · f ′(η) ·φ′(η)−σ∗LePr e−
(

E
1+θδ

)
(1+θδ)nφ(η)= 0. (15)

Therefore, we get from (7) dimensionless boundary conditions as
f (η)= S, f ′(η)= 1, θ′(η)=Bi[θ(η)−1], Nb ·φ′(η)+Nt ·θ′(η)= 0 at η= 0,

and f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η→∞

}
, (16)

where β = µB

p
2πc
Py

is the Casson fluid parameter, Mixed convection parameter is λ =
2Lgβt(Tw−T∞)

Uw
2 , N = βc

βt

(Cw−C∞)
(Tw−T∞) , the buoyancy parameter. Prandtl number is Pr = µ

k cp = ν
α

,

M = 2LσB0
2

U0ρ
stands for parameter of magnetic field, R = 4α1

kk1 T3∞ is the radiation parameter
in which α1 denotes Stefan-Boltzmann Constant, k1 stands for coefficient of absorption,
Ec = Uw

2

cp(Tw−T∞)
representing Eckert number, δT = Uw

2L λT is for Thermal relaxation parameter,

Brownian motion parameter is Nb = τDB(Cw−C∞)
ν

, Q = Q0ex/2L is “the temperature dependent
volumetric rate of heat source when Q > 0 and heat sink when Q < 0, Q0 is a constant”, Le= α

DB
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is the Lewis number, Nt = τDT(Tw−T∞)
νT∞ for the parameter of thermophoresis, K I = 2Lk0

U0
stands

for chemical reaction parameter, S = υ0

√
2L
νU0

> 0 is the parameter of suction, Biot number,

Bi= h f
k

√
2Lν
Uw

, σ∗ = K I
Kc

k2
r is the “chemical reaction rate constant”, δC = Uw

2L λC represents solute

relaxation parameter E = Ea
kT∞ is the Activation Energy (A.E.) and δ= (Tw−T∞)

T∞ , the temperature
difference. Coefficient of skin friction C fx = τw

ρUw
2 , Local Nusselt number Nux = xqw

k(Tw−T∞) , Local

Sherwood number Shx = xqm
DB(Cw−C∞) (Gangaiah et al. [10]),

(Rex)
1
2 C fx =

(
1+ 1

β

)
f ′′(0) , (17)

(Rex)
−1
2 Nux =−

(
1+ 4R

3

)
θ′(0) , (18)

(Rex)
−1
2 Shx =−φ′(0), (19)

were Rex = xUw
ν

is local Reynold’s number.

4. Numerical Procedure
The equation set from (13) to (15) and also the boundary conditions (16) are difficult to solve
analytically. Using the 4th order Runge-Kutta (RK) method and the shooting methodology
described by Younus and Lakshmi [23], these equations were numerically solved. This approach
is still one of the most exact and successful ways of solving boundary layer flows. It is vital to
make a choice of the suitable finite numbers for the boundary conditions for θ(η) and θ′(η) at
η= 0. To find η∞, we begin with a first guess value for a certain set of physical factors to obtain
the values of f ′′(0), θ′(0) and φ′(0). We first reduce the aforementioned differential equations
(D.E.) using the variables shown below:

f = f1, f ′ = f2, f ′′ = f3, θ = f4, θ′ = f5, φ= f6, φ′ = f7 . (20)

Equations (13) through (15) are changed by using the variables from (20), and the result is the
order one differential equation system that is shown below (Bilal et al. [6], Gangaiah et al. [10]):

f ′1 = f ′ = f2, (21)

f 1
2 = f ′′ = f3, (22)

f 1
3 = f ′′′ = [2( f2)2 − f1 f3 +M f2 −λ( f4 +N f6)][

1+ 1
β

] , (23)

f 1
4 = θ′ = f5, (24)

f 1
5 = θ′′ = Pr(

PrδT( f1)2 −1− 4R
3

) [ f1 f5 +Ec( f3)2 +δT f1 f2 f5 +Nb f5 f7 +Nt( f5)2 +Hg f4], (25)

f 1
6 =φ′ = f7, (26)

f 1
7 =φ′′ =

[
Nt
Nb

Pr(
PrδT( f1)2 −1− 4R

3

) [ f1 f5 +Ec( f3)2 +δT f1 f2 f5 +Nb f5 f7
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+Nt( f5)2 +Hg f4]−LePrσ∗(1+δθ)ne−
(

E
1+δθ

)
φ(η)+Le ·Pr f1 f7 +LePrδC f1 f2 f7

]
·
[

1
(LePrδC( f1)2 −1)

]
. (27)

The reformed boundary conditions are
f1(η)= S, f2(η)= 1, f5(η)=Bi[ f4(η)−1], Nb · f7(η)+Nt · f5(η)= 0 at η= 0,

and f2(η)→ 0, f4(η)→ 0, f6(η)→ 0 as η→∞

}
(28)

For the set of equations (21) through (27) and the boundary conditions (28) to be solved, a value
of θ(0)= f4(0), θ′(0)= f5(0), is necessary but such a value is not provided. The appropriate guess
values are selected for f (η), θ(η) and φ(η) in order to attain the values of θ(0) in the MATLAB
technique utilising the Runge-Kutta (RK) process with the operation of shooting, adopting step
size as ∆η= 0.01. In order to make θ′(0)= 1. We used the parameters ηmax = 3, θ(0)= 2, and we
compared the created values of −θ′(0) to the results that previously existed. Until the outcomes
are converging and fall within such a tolerance [10,23] of 10−4. this procedure is repeated.

5. Discussion on Findings

Using the MATLAB programme with the Runge-Kutta (RK) Method, investigated the behaviour
of the temperature, nanoparticle volume fraction profile, and velocity profile with governing
parameters. Figures 2-23 and Tables 1-4 present the findings. Except for a few occasions, we
utilised N =Ec= λ= 0.3, Pr= 6.9, M =β=Bi=Nt=Nb= 0.5, S = 0.2, σ∗ = 0.5, δ= 0.3, E = 1,
n = 0.5, Hg= 0.2, δT = δC = 0.1, Sc= 8, and R = 0.6 for graph plotting during the analysis.

We physically discussed the graphical results of the problem to underline the results. The
velocity boundary layer is reduced when the Casson fluid parameter β increases, as shown in
Figure 2. The rise in β causes the fluid’s plastic dynamic viscosity to increase, which lowers the
fluid’s velocity profiles by raising the fluid’s internal resistance. The fluid’s velocity increases
as the mixed convection factor λ is raised, as shown in Figure 3. An advantageous pressure
gradient is produced and fluid flow is accelerated as a result of the rise in λ, which also
generates a large increase in thermal buoyancy. This causes the velocity boundary layer to
thicken as λ increases, while the temperature profile shows the opposite pattern in Figure 11.
Figure 5 shows how the buoyancy parameter N affects profile of velocity. A similar explanation
may be given for the behaviour of the buoyancy parameter, which causes the fluid’s velocity to
increase as N increases. The impact of S, the suction parameter on boundary layer profiles of
velocity is seen in Figure 6. The fluid is forced to migrate closer to the sheet because of increased
suction, which raises resistance and diminishes profiles of velocity. Magnetic parameters’ effects
on the velocity curve, temperature curve, and concentration curve are shown in Figures 4,
10, and 20. It shows that as the magnetic parameter enhances, the velocity profile decreases.
Some useful energy is converted into heat due to the Lorentz force, produced by the magnetic
field’s existence and resists fluid motion. Because of this, as M is raised, the temperature and
concentration rise but the flow velocity falls. Figure 7 shows how the radiation parameter R
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affects the thermal boundary layer. As R rises, thermal boundary layer thickness develops along
with the temperature, increasing the flow of radiative heat. Figure 8 illustrates how the Prandtl
number affects the temperature curve. Here, we observed that when the Pr value increased, the
temperature profile decreased. Thermal diffusivity decreases as Pr increases. This implies that
the ability to transport energy has reduced and the thermal barrier layer has become thinner.
According to Figure 13, the temperature profile rises with increasing Eckert number. The Eckert
number is indeed the ratio between difference in boundary layer enthalpy and kinetic energy.
Since an increase in Ec leads to an increase in K.E., from motion, the fluid will extract energy
and convert it into thermal energy. Due to this the fluid becomes heated. How the Brownian
motion parameter Nb impacts the concentration profile is depicted in Figure 19. The thickness
of the concentration boundary layer thins because Nb boosts fluid diffusion. Figures 9 and 18
show how the thermophoresis parameter Nt affects temperature and concentration profiles. It
exhibits that as Nt grows, thermophoresis force rises, leading nanoparticles to move to a cold
surface from a hot one. This causes the temperature to rise and the concentration boundary
layer to thicken. As Hg, the heat source/sink parameter increases, Figure 12 shows that the
thickness of thermal boundary layer also increases. In fact, the temperature field of the fluid’s
thermal barrier layer increases as Hg increases. Figure 15 shows the effect of Bi, the Biot
number, on temperature profiles. The ratio of “thermal conductivity to heat transfer rate” is
denoted by the dimensionless metric known as Bi. Better temperature profiles are the result of
Bi, which increases the heat flux. The temperature profile’s impact on δT thermal relaxation
parameter is shown in Figure 14. It is evident that the fluid’s temperature decreases as thermal
relaxation parameter rise. A possible physical explanation for this might be that the material’s
particles require more amount of time to transfer energy to their nearby neighbours when the
thermal relaxation increases. Therefore, a rise in thermal relaxation parameter will accompany
a fall in the temperature profile. Figure 16 shows how volume fraction profile of nanoparticles
are impacted by the “chemical reaction rate constant” σ∗. In a result, as σ∗, increases, the
fluid’s concentration will drop. As the values of σ∗ increases, the Arrhenius expression rises
as well, ultimately harming the chemical reaction. The Schmidt number Sc has an impact on
the volume fraction profile of nanoparticles, as shown in Figure 17. It illustrates how, when Sc
inclines, the mass diffusivity and, subsequently, thickness of boundary layer of concentration
decrease. Figure 21 illustrates how the volume fraction profile of nanoparticles are impacted
by activation energy E. Thermophoresis parameter increases are correlated with temperature
increases, which are correlated with increases in A.E., which are correlated with increases in
chemical reaction rates and boundary layer concentration. Due to this, concentration boundary
layer thickness grows as E rises. Temperature variations have an impact on the volume fraction
profile of nanoparticles, as seen in Figure 23. The boundary layer thickness of the concentration
decreases as the temperature difference widens. From Figure 22 we can see that as the solute
relaxation parameter increases, nanoparticle volume fraction decreases.

Communications in Mathematics and Applications, Vol. 15, No. 3, pp. 1045–1062, 2024



1054 Study of Activation Energy of Magnetohydrodynamic Radiative. . . : M. Younus and A. Venkatalakshmi

Figure 2. Variations in velocity profile for β Figure 3. Variations in velocity profile for λ

Figure 4. Variations in velocity profile for M Figure 5. Variations in velocity profile for N

Figure 6. Variations in velocity profile for S Figure 7. Variation in temperature profile for
R
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Figure 8. Variations in temperature profile for
Pr

Figure 9. Variations in temperature profile for
Nt

Figure 10. Variations in temperature profile
for M

Figure 11. Variation in temperature profile for
λ

Figure 12. Variation in temperature profile for
Hg

Figure 13. Variation in temperature profile for
Ec
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Figure 14. Variation in temperature profile for
δT

Figure 15. Variation in temperature profile for
Bi

Figure 16. Variation in nanoparticle volume
fraction for σ∗

Figure 17. Variations in nanoparticle volume
fraction for Sc

Figure 18. Variation in nanoparticle volume
fraction for Nt

Figure 19. Variation in nanoparticle volume
fraction for Nb
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Figure 20. Variations in nanoparticle volume
fraction for M

Figure 21. Variations in nanoparticle volume
fraction for E

Figure 22. Variations in nanoparticle volume
fraction for δC

Figure 23. Variations in nanoparticle volume
fraction for δ

Table 1. Comparison of [−θ′(0)] for various β, Nt and Nb values, when Hg= M = R = 0, S = 0, Bi= 0.2,
λ= N = 0.3, Sc= 0.7

β Nt Nb Hayat et al. [12] Gangiah et al. [10] Present values

0.5 0.2 0.2 0.15271 0.15281 0.152923

0.7 0.15204 0.15197 0.152430

0.9 0.15150 0.15136 0.152073

0.2 0.2 0.2 0.15271 0.15281 0.152923

0.4 0.15195 0.15267 0.152784

0.6 0.15106 0.15106 0.152643

0.5 0.2 0.2 0.15271 0.15281 0.152923

0.4 0.15186 0.15280 0.152926

0.6 0.15100 0.15279 0.152927
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On Comparison of [−(2Rex)
1
2 C fx], the skin friction coefficient to the results of Hayat et

al. [12], Gangaiah et al. [10] in Table 1 for different β, Nt and Nb, values, outcomes are found to
be in strong agreement with previous.

From Table 2 we got the information that local skin friction coefficient value enhances with
βand λ and declines with S and M. From Table 3 we have that local Nusselt number falls
when Nt, β, Ec, Hg and M values increase, while the opposite is true for Pr and R. Table 4,
has shown that local Sherwood number grew with increases in Sc, σ∗, δC , and δ and fall with
increases in E, Pr and Nt.

Table 2. Skin friction Coefficient for different
parameters

S. No. M β S λ (Rex)
1
2 C fx

1 0 0.5 −2.566605

2 1 −1.991566

3 2 −1.679888

4 0.5 0.5 −2.802953

5 1 −2.200563

6 2 −1.867564

7 1 0.5 −3.027007

8 1 −2.395609

9 2 −2.040251

10 0 0.5 −2.526286

11 1 −2.428497

12 1.5 −2.334483

13 0.5 0.5 −2.760926

14 1 −2.659475

15 1.5 −2.562514

16 1 0.5 −2.983087

17 1 −2.877589

18 1.5 −2.777369

19 0 −2.659516

20 0.1 −2.735779

21 0.2 −2.802953

Table 3. Nusselt number for different parameter
values

S. No. M β Pr Nt R Ec Hg (Rex)
−1
2 Nux

1 0.3 0.538083

2 0.6 0.530700

3 0.9 0.522835

4 0.5 0.533214

5 1 0.502862

6 2 0.468363

7 1.7 0.468756

8 5 0.528943

9 7.5 0.542033

10 0 0.633352

11 0.5 0.533214

12 1 0.288647

13 0.2 0.402663

14 0.4 0.468855

15 0.8 0.596092

16 0.2 0.564838

17 0.4 0.469944

18 0.6 0.309053

19 −0.2 0.615436

20 −0.1 0.583348

21 0.1 0.578790

22 0.2 0.533214
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Table 4. Sherwood Number for different parameter values

S. No. P Nt σ∗ Sc E δ δC (Rex)
−1
2 Shx

1 1.7 −0.213408

2 5 −0.257542

3 7 −0.277010

4 0 −0.000000

5 0.5 −0.272269

6 1 −0.287884

7 0.5 1.7 −0.326219

8 5 −0.297656

9 8.5 −0.270152

10 1 1.7 −0.322428

11 5 −0.292128

12 8.5 −0.265435

13 1.5 1.7 −0.318640

14 5 −0.286300

15 8.5 −0.260411

16 0 −0.265637

17 0.5 −0.269789

18 1 −0.272269

19 1.5 −0.273735

20 0 −0.273044

21 0.3 −0.272269

22 0.6 −0.271516

23 0 −0.281806

24 0.05 −0.280709

25 0.1 −0.279566

6. Conclusions
Final observations of the present work are the following.

The fluid velocity profile increases with a rise in the parameter of mixed convection, the
buoyancy parameter, and it decreases with a rise in Casson fluid parameter, the magnetic field
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parameter, and the suction parameter. While thickness of thermal boundary layer declines
with increasing values of the Prandtl number, mixed convection parameter, thermal relaxation
parameter, it increases with rising of the radiation parameter, thermophoresis, magnetic field
parameter, parameter of heat source/sink, Eckert number, and Biot number. With increment in
value of chemical reaction rate constant, temperature difference, Solute relaxation parameter,
Brownian motion parameter, and Schmidt number, the profile of nanoparticle volume fraction
decreases; conversely, it increases as A.E., Schmidt number, thermophoresis, and magnetic field
parameters all increase. The skin friction coefficient rises due to the Casson fluid, and mixed
convection parameter, whereas it falls due to suction parameter, and magnetic field parameter.
The local Nusselt number grows with the Prandtl number and radiation parameter and falls
with Casson fluid, the thermophoresis, magnetic field, heat source or sink parameters and
Eckert number. Local Sherwood number rises along with “chemical reaction rate constant”,
temperature difference, Schmidt number, and solute relaxation parameter, while it falls along
with the thermophoresis parameter, Prandtl number, and activation energy (A.E.).
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