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1. Introduction
In the field of non-linear analysis, fixed point theory plays an eminent role. Due to the invention
of the Banach contraction principle by Banach [1], many new results emerged, and it initiated
the generalization of many metric spaces. S-metric space was initiated by Sedghi et al. [10]
has been generalized into SJS-metric space by Beg et al. [2] through JS-metric space which in
turn is proposed by Mohamed and Samet [7]. In similar footsteps, G-metric space initiated by
Mustafa et al. [8] has been generalized into GJS-metric space through JS-metric by Srilatha
and Kiran [12]. Moreover, common fixed point results on compatible self-maps were given by
Jungck [4] and the concept of compatible mappings was also introduced by him with the aim
of generalizing the notion of weak commutativity. In 2017, Vishnu and Dolhare [13] proved
the common fixed point theorem for three self-maps in a generalized metric space, and these
results were extended to four, five and six self-maps in various metric spaces by Kumar et
al. [6], Rauf et al. [9] and Goud and Rangamma [3], respectively. The main aim of this paper is
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to generalize the common fixed point result for three self-maps given by Singh [11] using the
contractive modulus function in GJS-metric space, which is a recently emerged metric space. It
is a well-known fact that if U : E → E is an identity map on any metric space, then U(χ) = χ,
for every χ ∈ E, which implies that ‘χ’ is a fixed point of U , whereas if V is any self-map on E
such that U(χ)=V (χ)= t, for some t ∈ E, then ‘χ’ is called the common fixed point of U and V .
In this article, we extend this concept to three self-maps and try to find the common fixed point
of three self-maps in GJS-metric space and verify its uniqueness.

2. Preliminaries
In preliminaries, we give some basic definitions which are required for our main result.

Definition 2.1 ([12]). Assume that E is a non-void set and GJS : E3 → [0,∞] is a mapping
satisfying the following conditions:
(GJS1): GJS(χ,ψ,ξ)= 0 if and only if χ=ψ= ξ,

(GJS2): 0<GJS(χ,χ,ψ) for all χ,ψ ∈ E with χ ̸=ψ,

(GJS3): GJS(χ,χ,ψ)<GJS(χ,ψ,ξ), for all χ,ψ,ξ ∈ E with ψ ̸= ξ,

(GJS4): GJS(χ,ψ,ξ) = GJS(σ(χ,ψ,ξ)), for all χ,ψ,ξ ∈ E where σ(χ,ψ,ξ) is a permutation of
the set {χ,ψ,ξ}, and

(GJS5): there is a constant c > 0 such that for (χ,ψ,ξ) ∈ E3 and 〈χn〉 ∈G(GJS,E,χ),

GJS(χ,ψ,ξ)≤ c limsup
n→∞

GJS(χn,ψ,ξ),

where G(GJS,E,χ)= {〈χn〉 ⊂ E : lim
n→∞GJS(χn,χ,χ)= 0}.

Then, the mapping GJS is called a GJS-metric on E and the pair (E,GJS) is called a GJS-metric
space.

Definition 2.2 ([5]). Two self-maps U ,V of GJS-metric space (E,GJS) are said to be compatible
if for all χ ∈ E, lim

n→∞GJS(UVχn,UVχn,VUχn) = 0, where 〈χn〉 is a sequence in E such that
lim

n→∞Uχn = lim
n→∞Vχn = t, for some t ∈ E.

Definition 2.3. A function φ : [0,∞) → [0,∞) is called a contractive modulus if φ(0) = 0 and
φ(t)< t, for t > 0.

Definition 2.4. A self-map U : E → E is said to be GJS-continuous at a point χ0 in E if for every
ε > 0 there exists a δ > 0 such that GJS(Uχ,Uχ,χ0) < ε whenever GJS(χ,χ,χ0) < δ, for every
χ ∈ E.

Definition 2.5. Let E be a non-empty set and U ,V and W be three self-maps on E such that
U(E)∪V (E)⊆W(E). Then a sequence 〈χn〉 is called an associated sequence of χ0 ∈ E relative to
three self-maps U ,V and W if Uχ2n =Wχ2n+1,Vχ2n+1 =Wχ2n+2 for n ≥ 0.

Definition 2.6. A point χ ∈ E is said to be common fixed point of three self-maps U ,V and W
on E if Uχ=Vχ=Wχ= χ.
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3. Main Result
Theorem 3.1. In a GJS-metric space, (E,GJS), E be a non-void set and U ,V and W be three
self-maps of E which are commutative, fulfilling the following conditions:

(i) U(E)∪V (E)⊆W(E).

(ii) W is GJS-continuous.

(iii) Either (V ,W) or (U ,W) is a compatible pair.

(iv) For χ0 ∈ E, we can find an associate sequence 〈χn〉 relative to U ,V and W such that the
sequence Uχ0,Vχ1,Uχ2,Vχ3, . . . ,Uχ2n,Vχ2n+1 converges to some point ξ ∈ E.

(v) GJS(Uχ,Uχ,Vψ)≤max{φ(GJS(Wχ,Wχ,Wψ)+GJS(Uχ,Uχ,Wχ)),

φ(GJS(Uχ,Uχ,Wχ)+GJS(Vψ,Vψ,Wψ)),

φ(GJS(Wχ,Wχ,Wψ)+GJS(Vψ,Vψ,Wψ))}, (3.1)

where φ is a contractive modulus.
Then U ,V and W will have ξ as the unique common fixed point.

Proof. Let us consider the case when (U ,W) is a compatible pair and φ be a contractive modulus.
Due to the fact that each of the sequence Uχ2n and Vχ2n+1 converges to ξ ∈ E and Uχ2n =
Wχ2n+1 and Vχ2n+1 =Wχ2n+2 for n ≥ 0. As n →∞, we can have

Uχ2n,Vχ2n+1,Wχ2n+1,Wχ2n+2 and hence Wχ2n → ξ as n →∞. (3.2)

Since W is continuous as n →∞, we can have

WUχ2n →Wξ, W2χ2n →Wξ. (3.3)

Also, since U ,W are compatible, we have

lim
n→∞GJS(WUχ2n,WUχ2n,UWχ2n)= 0. (3.4)

Since Uχ2n,Wχ2n → ξ as n →∞, by (3.2), using (3.3) and (3.4), we get

UWχ2n →Wξ as n →∞.

Similarly, if (V ,W) is a compatible pair and W is continuous, we get

W2χ2n+1 →Wξ, WVχ2n+1 →Wξ and VWχ2n+1 →Wξ as n →∞.

Now, using (3.1), we know that

GJS(UWχ2n,UWχ2n,Vχ2n+1)

≤max{φ(GJS(W2χ2n,W2χ2n,Wχ2n+1)+GJS(UWχ2n,UWχ2n,W2χ2n)),

φ(GJS(UWχ2n,UWχ2n,W2χ2n)+GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1)),

φ(GJS(W2χ2n,W2χ2n,Wχ2n+1)+GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1))}.

Letting n →∞, we get

GJS(Wξ,Wξ,ξ)≤max{φ(GJS(Wξ,Wξ,ξ)+GJS(Wξ,Wξ,Wξ)),

φ(GJS(Wξ,Wξ,Wξ)+GJS(ξ,ξ,ξ)),

φ(GJS(Wξ,Wξ,ξ)+GJS(ξ,ξ,ξ))}.

Using the fact that φ(0)= 0, we get

GJS(Wξ,Wξ,ξ)≤max{φ(GJS(Wξ,Wξ,ξ)),0,φ(GJS(Wξ,Wξ,ξ))}=φ(GJS(Wξ,Wξ,ξ)).
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Thus, we get

GJS(Wξ,Wξ,ξ)≤φ(GJS(Wξ,Wξ,ξ)).

This leads to a contradiction if Wξ ̸= ξ as φ(t)< t, for t > 0. Hence

Wξ= ξ. (3.5)

Again,

GJS(Uξ,Uξ,Vχ2n+1)≤max{φ(GJS(Wξ,Wξ,Wχ2n+1)+GJS(Uξ,Uξ,Wξ)),

φ(GJS(Uξ,Uξ,Wξ)+GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1)),

φ(GJS(Wξ,Wξ,Wχ2n+1)+GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1))}.

Letting n →∞, we get

GJS(Uξ,Uξ,ξ)≤max{φ(GJS(ξ,ξ,ξ)+GJS(Wξ,Wξ,ξ)),φ(GJS(Wξ,Wξ,ξ)+0),

φ(GJS(ξ,ξ,ξ)+0)}

≤max{φ(GJS(Uξ,Uξ,ξ)),φ(GJS(Uξ,Uξ,ξ)),0}.

Thus

GJS(Uξ,Uξ,ξ)≤φ(GJS(Uξ,Uξ,ξ)).

This leads to a contradiction if Uξ ̸= ξ as φ(t)< t, for t > 0. Hence

Uξ= ξ. (3.6)

Similarly, we can see that

GJS(Uχ2n,Uχ2n,Vξ)≤max{φ(GJS(Wχ2n,Wχ2n,Wξ)+GJS(Uχ2n,Uχ2n,Wχ2n)),

φ(GJS(Uχ2n,Uχ2n,Wχ2n)+GJS(Vξ,Vξ,Wξ)),

φ(GJS(Wχ2n,Wχ2n,Wξ)+GJS(Vξ,Vξ,Wξ))}.

As n →∞ and using equation (3.5), we get

GJS(ξ,ξ,Vξ)≤max{φ(GJS(ξ,ξ,ξ)+GJS(ξ,ξ,ξ)),φ(GJS(ξ,ξ,ξ)+GJS(Vξ,Vξ,ξ)),

φ(GJS(ξ,ξ,ξ)+GJS(Vξ,Vξ,ξ))}

≤max{0,φ(GJS(Vξ,Vξ,ξ)),φ(GJS(Vξ,Vξ,ξ))}.

Thus GJS(ξ,ξ,Vξ) ≤ φ(GJS(Vξ,Vξ,ξ)), which leads to a contradiction if Vξ ̸= ξ as φ(t) < t, for
t > 0. Hence

Vξ= ξ. (3.7)

Thus, from (3.5), (3.6) and (3.7), we get

Uξ=Vξ=Wξ= ξ.
Hence U ,V and W has ξ as a common fixed point.
Now to prove its uniqueness, let us take ξ′ ̸= ξ as some other common fixed point of U ,V and W .
Then Uξ=Vξ=Wξ= ξ and Uξ′ =Vξ′ =Wξ′ = ξ′,

GJS(ξ,ξ,ξ′)=GJS(Uξ,Uξ,Vξ′)≤max{φ(GJS(Wξ,Wξ,Wξ′)+GJS(Uξ,Uξ,Wξ)),

φ(GJS(Uξ,Uξ,Wξ)+GJS(Vξ′,Vξ′,Wξ′)),

φ(GJS(Wξ,Wξ,Wξ′)+GJS(Vξ′,Vξ′,Wξ′))}

≤max{φ(GJS(ξ,ξ,ξ′)),0,φ(GJS(ξ,ξ,ξ′))}.
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Thus GJS(ξ,ξ,ξ′)≤φ(GJS(ξ,ξ,ξ′)), which will be a contradiction if ξ ̸= ξ′.
Hence ξ= ξ′.
Therefore, the common fixed point of U ,V and W is unique.

Example 3.2. Let GJS : E3 → [0,∞] be a GJS-metric on E = [0,1] defined by,

GJS(ξ,ψ,χ)= |ξ−ψ|+ |ψ−χ|+ |χ−ξ|, for χ,ψ,ξ ∈ E.

Define the self-maps U ,V and W of E by, U(χ) = χ3

32 , V (χ) = χ

2 and W(χ) = (χ2+χ)
2 , where

U(E)= [
0, 1

32

]
, V (E)= [

0, 1
2

]
and W(E)= [0,1].

Thus U(E)∪V (E)⊆W(E), and we can observe that W is GJS-continuous on E.
If we establish a sequence 〈χn〉 in a way that χn → 0 as n →∞, then

lim
n→∞Wχn = lim

n→∞Uχn = 0.

Moreover, lim
n→∞GJS(WUχn,WUχn,UWχn)= 0, showing that (U ,W) is a compatible pair.

Let φ(t)=p
t be a contractive modulus.

Now we will check condition (3.1) for all possible values of χ,ψ.

Case 1: Let χ=ψ= 0.
In this case,

U(χ)=V (χ)=W(χ)= 0,

U(ψ)=V (ψ)=W(ψ)= 0,

so that (3.1) is obvious.

Case 2: If χ= 0, ψ ̸= 0.
Then

GJS(Uχ,Uχ,Vψ)=GJS

(
0,0,

ψ

2

)
=ψ, (3.8)

GJS(Wχ,Wχ,Wψ)=GJS

(
0,0,

ψ2 +ψ
2

)
=ψ2 +ψ,

GJS(Uχ,Uχ,Wχ)= 0,

GJS(Vψ,Vψ,Wψ)=GJS

(
ψ

2
,
ψ

2
,
ψ2 +ψ

2

)
=ψ2,

max{φ(ψ2 +ψ),φ(ψ2),φ(2ψ2 +ψ)}=max{φ(GJS(Wχ,Wχ,Wψ)+GJS(Uχ,Uχ,Wχ)),

φ(GJS(Uχ,Uχ,Wχ)+GJS(Vψ,Vψ,Wψ)),

φ(GJS(Wχ,Wχ,Wψ)+GJS(Vψ,Vψ,Wψ))}

=φ(2ψ2 +ψ)

=
√

2ψ2 +ψ. (3.9)

Thus, from (3.8) and (3.9), we can say that condition (3.1) is satisfied in this case.

Case 3: If χ ̸= 0, ψ= 0.
Then we can easily verify that the result remains same as seen in Case 2.
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Case 4: If χ ̸= 0, ψ ̸= 0,

GJS(Uχ,Uχ,Vψ)=GJS

(
χ3

32
,
χ3

32
,
χ

2

)
=

∣∣∣∣16ψ−χ3

16

∣∣∣∣ , (3.10)

GJS(Wχ,Wχ,Wψ)=GJS

(
χ2 +χ

2
,
χ2 +χ

2
,
ψ2 +ψ

2

)
= |χ2 −ψ2 +χ−ψ|GJS(Uχ,Uχ,Wχ)

=GJS

(
χ3

32
,
χ3

32
,
χ2 +χ

2

)
= |χ3 −32χ2 −32χ|

16

GJS(Vψ,Vψ,Wψ)=GJS

(
ψ

2
,
ψ

2
,
ψ2 +ψ

2

)
=ψ2,

max{φ(GJS(Wχ,Wχ,Wψ)+GJS(Uχ,Uχ,Wχ)),φ(GJS(Uχ,Uχ,Wχ)+GJS(Vψ,Vψ,Wψ)),

φ(GJS(Wχ,Wχ,Wψ)+GJS(Vψ,Vψ,Wψ))}

=max
{
φ

(
|χ2 −ψ2 +χ−ψ|+ |χ3 −32χ2 −32χ|

16

)
,φ

( |χ3 −32χ2 −32χ|
16

+ψ2
)
,

φ(|χ2 −ψ2 +χ−ψ|+ψ2)
}

. (3.11)

Thus, from (3.10) and (3.11), we can say that condition (3.1) is satisfied in this case.
Hence in all the cases, condition (3.1) is satisfied for all χ,ψ ∈ E.
Let χ0 = 0 ∈ E so that Uχ0 = 0 and there exists χ1 ∈ E such that Uχ0 =Wχ1 ⇒ 0= χ1.
Hence χ1 = 0.
Now χ2 ∈ E with Vχ1 =Wχ2 which implies 0= χ2.
Thus χ2 = 0.
Proceeding in the same manner we can construct an associated sequence of χ0, that is
Uχ0,Vχ1,Uχ2,Vχ3, . . . converging to a point 0 ∈ E.
Hence ‘0’ is the common fixed point of U ,V and W .

Corolllary 3.3. If U ,V and W are three self-maps of (E,GJS) which are commutative among
themselves satisfying the conditions from (i) to (iv) of Theorem 3.1. Further,

GJS(Uχ,Uψ,Vψ)≤max{φ(GJS(Vψ,Vψ,Wψ))[GJS(Wχ,Wχ,Wψ)+GJS(Uχ,Uχ,Wχ)],

φ(GJS(Wχ,Wχ,Wψ))[GJS(Uχ,Uχ,Wχ)+GJS(Vψ,Vψ,Wψ)],

φ(GJS(Uχ,Uχ,Wχ))[GJS(Wχ,Wχ,Wψ)+GJS(Vψ,Vψ,Wψ)]}, (3.12)

where φ is a contractive modulus.
Then U ,V and W has one and only one common fixed point as ξ.

Proof. Using (3.12), we know that

GJS(UWχ2n,UWχ2n,Vχ2n+1)

≤max{φ(GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1))[GJS(W2χ2n,W2χ2n,Wχ2n+1)+GJS(UWχ2n,UWχ2n,W2χ2n)],
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φ(GJS(W2χ2n,W2χ2n,Wχ2n+1))[GJS(UWχ2n,UWχ2n,W2χ2n)+GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1)],

φ(GJS(UWχ2n,UWχ2n,W2χ2n))[GJS(W2χ2n,W2χ2n,Wχ2n+1)+GJS(Vχ2n+1,Vχ2n+1,Wχ2n+1)]}.

Letting n →∞, we get

GJS(Wξ,Wξ,ξ)≤max{φ(GJS(ξ,ξ,ξ))[GJS(Wξ,Wξ,ξ)+GJS(Wξ,Wξ,Wξ)],

φ(GJS(Wξ,Wξ,ξ))[GJS(Wξ,Wξ,Wξ)+GJS(ξ,ξ,ξ)],

φ(GJS(Wξ,Wξ,Wξ))[GJS(Wξ,Wξ,ξ)+GJS(ξ,ξ,ξ)]}

≤max{φ(0)[GJS(Wξ,Wξ,ξ)+0],φ(GJS(Wξ,Wξ,ξ))[0+0],

φ(0)[GJS(Wξ,Wξ,ξ)+0]}

≤max{0,0,0}.

Thus, GJS(Wξ,Wξ,ξ)= 0, this implies

Wξ= ξ. (3.13)

Following the same procedure, we can easily show that GJS(Uξ,Uξ,ξ)= 0 and

GJS(ξ,ξ,Vξ)= 0 which implies, Uξ= ξ and Vξ= ξ, respectively. (3.14)

Thus, from (3.13) and (3.14), we can see that

Uξ=Vξ=Wξ= ξ.
Clearly, ξ is the common fixed point of U ,V and W .
If ξ and ξ′are two common fixed points of U ,V and W , by following the same procedure as
above, we can prove that GJS(ξ,ξ,ξ′)= 0.
This implies ξ= ξ′.
Thus, the common fixed points of three self-maps U ,V and W on GJS-metric space is unique.

Remark 3.1. The result of Corollary 3.3 remains same even if we replace ‘+’ sign with ‘−’ sign
in inequality (3.12).

4. Conclusion
We proved a theorem on GJS-metric space using the contractive modulus, in which we have
shown that a common fixed point for three self-maps can be found if they satisfy certain
conditions. An example is given to support the theorem in which all possible cases were
discussed.
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