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1. Introduction
In the early time, describing the characteristics of fluid with micro-elements was challenging.
The classical Navier-Stokes model failed to incorporate the effect of micro-rotation of suspended-
elements. A. C. Eringen ([6, 7]) proposed theory of micropolar fluid, which is a subclass of
microfluids. The micropolar fluid equations are derived by taking into account the micro-
rotation of suspended-elements, that resulted in addition of one extra equation to classical
Newtonian model — conservation of angular momentum. These fluids are considered non-
Newtonian because of the presence of micro-elements that rotate on their own axis altering the
fluid’s behaviour. The early insights concerning the study on Rayleigh-Bénard convection in
a micropolar fluid began by Datta and Sastry [4], Ahmadi [1], Rao [17], Bhattacharyya and
Jena [2], Payne and Straughan [15], and Qin and Kaloni [16].

Siddheshwar and Pranesh [22] investigated magneto-convection in a micropolar fluid.
The study reveals that, comparison of electrically conducting Newtonian-fluid with micropolar
fluid, the fluid with micro-elements is more stable. The other important works on micropolar
fluid can be seen on the works of Siddheswar and Pranesh [21]. Considering various applications
of micropolar fluid, Sastry et al. [19] studied drug delivery in cardiovascular-system, where they
considered blood particles as micropolar particles and drug carrier particles as nanoparticles.

Enclosures are finite spaces that are bounded and filled with liquids or gases. Internal
convection is yet another term for natural convection in enclosures. Natural convection in
enclosures has become one of the active area for current research due to it’s several applications
in the field of engineering. The early incites on flow inside a rectangular cavity is explored by
authors Gill [9], Ostrach [13], Kimura and Bejan [11], Trevisan and Bejan [25], Gelfgat [8],
and D’Orazio et al. [5]. The heat transfer characteristics of buoyancy-driven nanofluids inside
rectangular enclosures with differentially heated vertical walls are investigated theoretically by
Corcione [3]. It’s interesting to note that increasing the aspect ratio of the enclosure enhances
heat transfer.

Rayleigh-Bénard convection in Newtonian liquids-nanoliquids occupying different enclosures
was investigated by Siddheshwar and Kanchana [20]. They used the multiscale method to
convert Lorenz-model to a tractable GLE (Ginzburg-Landau Equation), whose solution measures
the heat-transport. Kanchana et al. [10] conducted an analytical investigation of Rayleigh-
Bénard convection in four types of enclosures in NIFR (non-inertial frame of reference). The
NIFR effect resulted a stable system and thereby reduced heat-transport. The other recent
works on enclosures can be seen in Mikhailenko [12], Santos et al. [18], and Olayemi et al. [14].

Unsteady-natural-convection in an enclosure with liquid-saturated-porous medium using
LTNE (local thermal non-equilibrium) is studied by Siddheshwar and Siddabasappa [23].
In their investigation, it is observed that, heat transfer is greatest in shallow and least in tall
enclosure. Siddheshwar and Sushma [24] performed non-linear analysis of Rayleigh-Bénard
convection for rigid isothermal boundaries. While comparing heat transfer, they discovered that
the rigid isothermal boundary has less heat transfer rate than the free isothermal case.
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There are no reported works on Rayleigh-Bénard convection in a micropolar fluid occupying
enclosures with realistic boundaries. Therefore, the main objective of the paper is to study
the linear and non-linear analysis of Rayleigh-Bénard convection in a micropolar fluid occupying
enclosures with F-F, R-F, and R-R boundaries.

2. Mathematical Formulation
The physical configuration of the problem consists of (i) shallow, (ii) square and (iii) tall
enclosures filled with micropolar fluid as shown in Figure 1. The horizontal boundaries at
z = −h

2 and z = +h
2 are taken either as stress-free, no spin and isothermal or rigid, no-spin

and isothermal or rigid-free, no-spin and isothermal. The vertical boundaries at x =− b
2 and

x =+ b
2 are taken as stress-free, no-spin and adiabatic or rigid, no-spin and adiabatic or rigid-

free, no-spin and adiabatic. Temperatures are kept fixed at the bottom (T0+∆T) and the top
(T0) boundaries, where the temperature difference is ∆T (> 0). All the parameters are taken
independent of y-co-ordinate, as we limit ourselves to the xz-plane for mathematical tractability,
with gravity acting vertically downwards.

Figure 1. Physical representation of the problem with (a) shallow (Ar < 1), (b) square (Ar = 1), and
(c) tall (Ar > 1) enclosures

The basic equations that governs the problem modelled above are:

Conservation of Mass:

∇· q⃗= 0 . (2.1)

Conservation of Linear Momentum:

ϱo

(
∂⃗q

∂t
+ (⃗q ·∇)⃗q

)
=−(∇p)− (ϱg)k̂+ (2ξ+η)∇2⃗q+ξ(∇×ω⃗ ) . (2.2)

Conservation of Angular Momentum:

ϱoI
(
∂ω⃗

∂t
+ (⃗q ·∇)ω⃗

)
= (η′+λ′)∇(∇·ω⃗)+η′∇2ω⃗+2ξ((∇× q⃗)−2ω⃗) . (2.3)
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Conservation of Energy:
∂T
∂t

+ (⃗q ·∇)T =
(

β

ϱ0Cv
(∇×ω⃗) ·∇T

)
+χ∇2T . (2.4)

Equation of State:

ϱ= ϱ0(1−α[T −T0]). (2.5)

The quantities in eqns. (2.1)–(2.5) are, q⃗ : velocity, ϱ0 : reference-density, p : pressure,
g : gravitational-acceleration, ξ : coupling-viscosity-coefficient, ϱ : density, η : shear-kinematic-
viscosity-coefficient, ω⃗ : angular-velocity, T : temperature, I : inertia, α : coefficient-of-thermal-
expansion, β : micropolar-heat-conduction-parameter, η′ and λ′ : shear and bulk spin-viscosity-
coefficients, and Cv : specific-heat.

In the motionless state, the quantities velocity, pressure, density, angular velocity and
temperature are given by:

q⃗b = (0,0), p= pb(z), ϱ= ϱb(z), ω⃗b = (0,0), T = Tb(z) . (2.6)

Substituting eqn. (2.6) into eqns. (2.2), (2.4) and (2.5), we obtain the motionless state solutions
as:

0=−dpb

dz
−ϱb g , (2.7)

0= d2Tb

dz2 (2.8)

and

ϱb = ϱ0[1−α(Tb −T0)], (2.9)

where the subscript b denotes the motionless state. Eqns. (2.1) and (2.3) are satisfied by
eqn. (2.6). Isothermal and adiabatic temperature conditions are assumed for horizontal and
vertical boundaries respectively and are given by:

T = T0, at z =+h
2

T = T0 +∆T, at z =−h
2

}
− b

2
< x <+b

2
, (2.10)

∂T
∂x = 0, at x =− b

2 ,+ b
2

}− h
2
< z <+h

2
. (2.11)

On solving eqn. (2.8) using constraints given in eqn. (2.10) yields,

Tb =
[

1
2
− z

h

]
∆T +T0 . (2.12)

The motionless state solutions are super imposed by an infinitesimal perturbation given by:

q⃗= q⃗b + q⃗′, p= pb +p′, ϱ= ϱb +ϱ′,
ω⃗= ω⃗b +ω⃗′, T = Tb +T ′ ,

}
(2.13)

where, prime, (′) represents the slight disturbance imposed on system. In order to lessen
the number of variables bring in stream function, Ψ (for velocity component) that satisfies
the continuity equation as follows:

u′ = ∂

∂z
(Ψ′) and w′ =− ∂

∂x
(Ψ′). (2.14)

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1405–1419, 2023



Linear & Non-Linear Analysis of Rayleigh-Bénard Convection in a Micropolar. . . : S. Jestine & S. Pranesh 1409

Introduce the non-dimensional quantities as given below:

(x∗, z∗)= ( x
b , z

h
)
, ω∗ = ω′

(χ/h2) , Ψ∗ = Ψ′
χ ,

T∗ = T ′
∆T , t∗ = t

(h2/χ) .

 (2.15)

Substituting eqn. (2.13), introducing eqn. (2.14), applying eqn. (2.15) to resulting equation and
neglecting the pressure term by cross-differentiation, we obtain the system of non-dimensional
equations as:

(1+N1)∇4
Ar

−N1∇2
Ar

−RaAr (Ar)4 ∂
∂x

N1∇2
Ar

(N3∇2
Ar

−2N1) 0

−(Ar) ∂
∂x −(Ar)N5

∂
∂x ∇2

Ar



Ψ

ωy

T



= ∂

∂t


1
Pr∇2

Ar
Ψ

N2
Pr ωy

T

−


Ar
Pr J(∇2

Ar
Ψ,Ψ)

Ar
N2
Pr J(Ψ,ωy)

(Ar)J(Ψ,T)− (Ar)N5J(ωy,T)

 , (2.16)

where

∇Ar = Ar
∂

∂x
î+ ∂

∂z
k̂, J( , )= Jacobian .

The dimensionless quantities in eqn. (2.16) are given in Table 1.

Table 1. Dimensionless quantities

N1 Coupling parameter ξ
η+ξ

N2 Inertia parameter 1
h2

N3 Couple stress parameter η′

(η+ξ)h2

N5 Micropolar heat conduction parameter β

ϱ0Cvh2

Ra Rayleigh number αg∆Tb3ϱ0
(η+ξ)χ

Pr Prandtl number η+ξ
ϱ0χ

Ar Aspect ratio h
b

3. Linear Stability Theory
In this subsection, the linear stability-analysis is discussed by eliminating the Jacobians
in eqn. (2.16). The stationary-convection is performed on the system assuming principle of
(exchange-of) stability to be valid. The linearized version of the equation take the form:

(1+N1)∇4
Ar

−N1∇2
Ar

−Ra(Ar)4 ∂
∂x

N1∇2
Ar

(N3∇2
Ar

−2N1) 0

−Ar
∂
∂x −ArN5

∂
∂x ∇2

Ar


Ψωy

T

= 0 . (3.1)

The stability of the system depends upon boundaries bounding the fluid. In this paper,
the following boundary conditions on velocity and temperature are considered to inspect the
stability.
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1. Horizontal Free-Free Isothermal (HFFI) and Vertical Free-Free Adiabatic (VFFA)

Ψ= ∂2Ψ
∂x2 = ∂T

∂x = 0, at x =−1
2 , 1

2 , −1
2 < z < 1

2

Ψ= ∂2Ψ
∂z2 = T = 0, at z =−1

2 , 1
2 , −1

2 < x < 1
2

 (3.2)

2. Horizontal Rigid-Free Isothermal (HRFI) and Vertical Rigid-Free Adiabatic (VRFA)

Ψ= ∂Ψ
∂x = ∂T

∂x = 0, at x =−1
2 , −1

2 < z < 1
2

Ψ= ∂2Ψ
∂z2 = ∂T

∂x = 0, at x =+1
2 , −1

2 < z < 1
2

}
,

Ψ= ∂Ψ
∂x = T = 0, at z =−1

2 , −1
2 < x < 1

2

Ψ= ∂2Ψ
∂z2 = T = 0, at z =+1

2 , −1
2 < x < 1

2

}
(3.3)

3. Horizontal Rigid-Rigid Isothermal (HRRI) and Vertical Rigid-Rigid Adiabatic (VRRA)

Ψ= ∂Ψ
∂x = ∂T

∂x = 0, at x =−1
2 , 1

2 , −1
2 < z < 1

2

Ψ= ∂Ψ
∂z = T = 0, at z =−1

2 , 1
2 , −1

2 < x < 1
2

}
(3.4)

The normal mode solutions of Ψ, ωy and T satisfying the boundary conditions are assumed to
take the form:

Ψ=ΨaG1(x, z),
ωy =ωyaG1(x, z),
T = TaG2(x, z).

 (3.5)

The trial functions G1(x, z) and G2(x, z) are chosen such that it satisfies the eqns. (3.2)–(3.4) and
are as shown in Table 2:

Table 2. Trial functions for linear analysis

F-F R-F R-R

G1(x, z)= cos(πx)cos(πz) G1(x, z)= S f (x) S f (z) G1(x, z)= C f (x) C f (z)
G2(x, z)= cos(πx)sin(πz) G2(x, z)= cos(2πx)sin(2πz) G2(x, z)= sin(πx)cos(πz)

— µ= 7.85320462 µ= 4.73004074

where S f (x)= sinh(µx)
sinh( µ2 ) −

sin(µx)
sin( µ2 ) , S f (z)= sinh(µz)

sinh( µ2 ) −
sin(µz)
sin( µ2 ) , C f (x)= cosh(µx)

cosh( µ2 ) −
cos(µx)
cos( µ2 ) , C f (z)= cosh(µz)

cosh( µ2 ) −
cos(µz)
cos( µ2 )

Substituting eqn. (3.5) in eqn. (3.1), orthogonalizing with corresponding eigen function,
integrating with respect to x and z between the limits −1

2 and +1
2 and following the usual

procedure of stability we get Rayleigh number, (Ra) as follows:

Ra =
[ 〈G2(x, z)∇2

Ar
G2(x, z)〉

(Ar)5
〈
G1(x, z) ∂

∂xG2(x, z)
〉][

(1+N1)〈G1(x, z)∇4
Ar
G1(x, z)〉+N2

1 X1〈
G2(x, z) ∂

∂xG1(x, z)
〉− X2

]
, (3.6)

where

〈. . .〉 =
∫ 1

2

− 1
2

∫ 1
2

− 1
2

(. . .)dz dx ,

X1 =
〈G1(x, z)∇2

Ar
G1(x, z)〉2

N3〈G1(x, z)∇2
Ar
G1(x, z)〉−2N1〈G1(x, z)2〉 ,

X2 =
N1N5〈G1(x, z)∇2

Ar
G1(x, z)〉〈G2(x, z) ∂

∂xG1(x, z)
〉

N3〈G1(x, z)∇2
Ar
G1(x, z)〉−2N1〈G1(x, z)2〉 .
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The amount of heat transfer in the system cannot be determined with the help of linear
stability-analysis. Therefore, in the next section, a weak non-linear analysis is performed to
study heat transfer in the system using minimal representation of Fourier-series for stream
function, micro-rotation and temperature. Through this, the physics of the problem can be well
understood with simplified mathematical expression.

4. A Weak Non-Linear Analysis
The minimal-mode-representation to study weak non-linear analysis is taken as shown below.
Comparing with the linear analysis two terms are considered in temperature in order to get the
non-linearity:

Ψ=C1(t) G1(x, z),

ωy =C2(t) G1(x, z),

T =C3(t) G2(x, z)+C4(t) G3(z),

 (4.1)

where C1, C2, C3 and C4 are amplitudes (dependent on time) that are to be calculated from
dynamics of system. G1(x, z) and G2(x, z) are taken as defined in Table 2 and G3(z) is taken as
sin(2πz) for all the three types of boundaries. Using eqn. (4.1) in eqn. (2.16) and orthogonalizing
with respect to eigen functions we get the following non-linear autonomous Lorenz system:

dC1

dt
=−

[
(1+N1)I3 Pr

I1

]
C1 − [N1 Pr] C2 −

[
Ra(Ar)4I2 Pr

I1

]
C3 , (4.2)

dC2

dt
=−

[
N1I1 Pr

N2I4

]
C1 −

[
N3I1 Pr

N2I4
− 2N1 Pr

N2

]
C2 , (4.3)

dC3

dt
=−

[
Ar I6

I5

]
C1 −

[
Ar I6N5

I5

]
C2 +

[
(Ar)2I7 + I8

I5

]
C3 +

[
Ar I9

I5

]
C1C4 +

[
Ar I9N5

I5

]
C2C4 ,

(4.4)
dC4

dt
=

[
I11

I10

]
C4 + Ar

[
I12 − I13

I5

]
C3C1 + ArN5

[
I12 − I13

I5

]
C2C3 , (4.5)

where

I1 = 〈G1(x, z)∇2
Ar

(G1(x, z))〉 , I2 =
〈
G1(x, z)

∂

∂x
(G2(x, z))

〉
,

I3 = 〈G1(x, z)∇4
Ar

(G1(x, z))〉 , I4 = 〈(G1(x, z))2〉 , I5 = 〈(G2(x, z))2〉 ,

I6 =
〈
G2(x, z)

∂

∂x
(G1(x, z))

〉
, I7 =

〈
G2(x, z)

∂2

∂x2 (G2(x, z))
〉

,

I8 =
〈
G2(x, z)

∂2

∂z2 (G2(x, z))
〉

, I9 =
〈
G2(x, z)

∂

∂x
(G1(x, z))

∂

∂z
G3(z)

〉
,

I10 = 〈(G3(z))2〉 , I11 =
〈
G3(z)

∂2

∂z2 (G3(z))
〉

, I12 =
〈
G3(z)

∂

∂x
(G1(x, z))

∂

∂z
(G2(x, z))

〉
,

I13 =
〈
G3(z)

∂

∂z
(G1(x, z))

∂

∂x
(G2(x, z))

〉
.
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5. Nusselt Number
The heat transfer is quantified by Nusselt number, Nu(t) and is defined as:

Nu(t)=Heat transport by
[

conduction + convection
conduction

]

= 1+
∫ 1

2

− 1
2

∂T
∂z dx∫ 1

2

− 1
2

dTb
dz dx

∣∣∣∣∣∣∣∣
z=− 1

2

(5.1)

On performing differentiation and integration in eqn. (5.1), by taking values of T from
eqn. (2.12) and on solving Lorenz model in eqns. (4.2)–(4.5), we get the expression for Nu(t) as:

Table 3. Nusselt number for different boundary conditions

F-F R-F R-R

1+2πC4 1−4πC4 1+2πC4

Average-Nusselt number, Nu(t) is calculated from Nu(t) expression given in Table 3 for different
boundaries using the following:

Nu(t)= 1
t

∫ t

o
(Nu(t))dt . (5.2)

6. Results and Discussions
Linear and non-linear stability-analysis of Rayleigh-Bénard convection in three different types
of enclosures filled with micropolar fluid (MPF) are studied in this paper. To investigate the
problem, Free-Free, Rigid-Rigid and Rigid-Free conditions on boundaries of the enclosures
are considered. Also, isothermal-horizontal and adiabatic-vertical boundaries with no-spin
conditions are assumed in the problem. In the case of linear analysis, the stability of the system
in three different enclosures are investigated through Ra, expressed as the function of Ar ,
N1, N3 and N5. The amount of heat transfer in three different enclosures and boundaries are
studied through Nu(t) by considering non-linear analysis.

Physically, the parameters Ar , Pr, N1, N3 and N5 are respectively representing ratio
of height to breadth of the enclosure (aspect ratio), relative measure of viscosity and heat
conduction in a fluid flow (Prandtl number), concentration of micro-elements (coupling-
parameter), micropolar-diffusion (couple-stress-parameter) and coupling of heat flux and spin
(micropolar-heat-conduction-parameter). The range of N1, N3 and N5 according to Clausius-
Duhem-inequality are taken as 0≤ N1 ≤ 1, 0≤ N3 ≤ a and 0≤ N5 ≤ b, where a and b are finite
real numbers. Higher values of Pr is taken due to the presence of micro-elements. The value
of Ar is taken in the range of 0.8≤ Ar ≤ 1.2, with Ar = 0.8 for shallow, Ar = 1 for square and
Ar = 1.2 for tall enclosure.

The impact of N1, N3 and N5 on the on-set-of-convection is plotted in Figures 2–4
respectively for different boundaries and different enclosures. From Figure 2 we see that
increase in N1 increases Ra, micro-elements consume the major part of the energy to form
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circular motion in it’s own axis and thereby on-set-of-convection is delayed. Figure 3 captures
the effect of N3 on Ra, it is noticed that with increase in N3 decreases the micro-rotation
of micro-elements, which advances the on-set-of-convection and thereby N3 destabilizes the
system. The impact of N5 is given in Figure 4. As N5 increases, heat induced into fluid by
micro-elements also increases, which delays the convection, thus N5 stabilizes the system.

Figure 2. The impact of N1 on Rayleigh-number for different boundaries

Figure 3. The impact of N3 on Rayleigh-number for different boundaries

Figure 4. The impact of N5 on Rayleigh-number for different boundaries

The above results can be summarized as:
(i) RaN1=0.1 < RaN1=0.8

(ii) RaN3=0.4 > RaN3=1.0

(iii) RaN5=1.0 < RaN5=4

Also, following are observed from these figures:
(i) RaR-R > RaR-F > RaF-F

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1405–1419, 2023
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The above inequality shows that R−R boundaries are more stable compared to the other
two combinations of boundaries, due to their sticky nature.

(ii) RaAr=0.8 > RaAr=1 > RaAr=1.2

The above shows that on-set-of-convection in shallow enclosure is delayed and in tall
enclosure it advances. This is due to the fact that the energy supply from the lower plate is
the same in all the three enclosures but the width of the lower plate on which this supply
is made determines the extend of instability.

(a) F-F (b) R-F (c) R-R

(d) F-F (e) R-F (f) R-R

(g) F-F (h) R-F (i) R-R

Figure 5. The impact of Nu(t) on Rayleigh-number for variation of N1 for different boundaries and
enclosures

In this section, the findings from the non-linear analysis is discussed, which quantifies the
heat transfer in terms of Nu(t). Figure 5 illustrates the amount of heat transport in different
enclosures with the variation of N1 for F-F, R-F and R-R boundaries, respectively. The following
are observed from the subfigures:
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(i) Nu(t)
N1=0.1 >Nu(t)

N1=0.5 >Nu(t)
N1=0.8

, i.e., increase in the amount of micro-elements
decreases Nu(t), this is because, increase in concentration of micro-elements stabilizes
the system.

(ii) Nu(t)
Ar=0.8 <Nu(t)

Ar=1.0 <Nu(t)
Ar=1.2

, i.e., tall enclosures transport maximum heat on
comparing with other (square and shallow) enclosures. This is due to the fact that tall
enclosures requires less amount of energy in forming convection cell and thereby transfers
more heat.

(iii) Nu(t)
R-R <Nu(t)

R-F <Nu(t)
F-F

, i.e., heat transport with R-R boundaries is less compared
to R-F and F-F because for R-R boundaries, more energy is required to form convection
cell thereby less energy is transported.

(a) F-F (b) R-F (c) R-R

(d) F-F (e) R-F (f) R-R

(g) F-F (h) R-F (i) R-R

Figure 6. The impact of Nu(t) on Rayleigh-number for variation of N3 for different boundaries and
enclosures
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(a) F-F (b) R-F (c) R-R

(d) F-F (e) R-F (f) R-R

(g) F-F (h) R-F (i) R-R

Figure 7. The impact of Nu(t) on Rayleigh-number for variation of N5 for different boundaries and
enclosures

The impact of N3 and N5 on Nu(t) is studied from Figure 6 and Figure 7, respectively for
all three types of boundary combinations. The following are observed:

(i) Nu(t)
N3=0.5 >Nu(t)

N3=2 >Nu(t)
N3=5

(ii) Nu(t)
N5=1 <Nu(t)

N5=5 <Nu(t)
N5=10

i.e. N3 facilitates more heat transfer as it destabilizes the system and less heat transfer in N5

as it stabilizes the system.

7. Conclusion
The present paper deals with analytical study of Rayleigh-Bénard convection in three types of
enclosures and boundary combinations. The following are the main observations from the study:
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(1) Addition of micro-elements with micro-structure to the Newtonian fluid increases the
stability and thereby decreases the heat transport of the system.

(2) Shallow enclosure is more stable than square and tall enclosure which implies that heat
transfer in tall enclosure is greater compared to square and shallow enclosure.

(3) Comparison of F-F, R-F, R-R boundary conditions, we conclude that F-F boundary is less
stable compared to other two (R-F, R-R) and facilitates more heat transport.

(4) N1 and N5 stabilizes the system and decrease the heat transport, whereas increase in N3

destabilizes the system and enhances the heat transport.

8. Conclusion
The study of Rayleigh-Bérnard convection in three types of enclosures and boundary
combinations are carried out in micropolar fluid. Both the linear and non-linear analysis
of the problem is investigated. When the amount of micro-elements increases, the system
becomes more stable and thereby heat transfer is reduced. Shallow enclosure moves the system
more stable on comparison with other two enclosures. On the other hand tall enclosure promotes
more heat transfer than the square and tall enclosure. The micropolar fluid elements N1 and N5

helps in stabilizing the system and N3 destablizes the system. The study on boundary condition
shows that Rigid-Rigid boundary move the system stable and heat transfer is more in free-free
boundary condition.
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