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1. Introduction
In 20th century, Nevanlinna theory has emerged as one of the key advancements in complex
analysis. In complex plane, consider f as a meromorphic function, which is a finite order.
We suppose that fundamentals of Nevanlinna theory are known by readers as in (see Hayman [3],
Lo [5], and Yang and Hua [9]).

Consider a non-constant meromorphic function f of order

ρ( f )= lim
r→∞

log+ T0(r, f )
log r

.

The exponent of convergence of zeroes and poles of f are respectively,

λ= lim
r→∞

log+ N0
(
r, 1

f
)

log r
and

λ

(
1
f

)
= lim

r→∞
log+ N0(r, f )

log r
.

The exponent of convergence of fixed points of f is

τ( f )= lim
r→∞

log N0
(
r, 1

f−z
)

log r
.

For a ∈C∪ {∞}, Nevanlinna’s deficiency of f is

δ(a, f )= lim
r→∞

m0
(
r, 1

f−a
)

T0(r, f )
= 1− lim

r→∞
N0

(
r, 1

f−a
)

T0(r, f )
.

Replace N0
(
r, 1

f−a
)

by N0(r, f ), when a =∞.

We denote G= { f (z) : f is a transcendental meromorphic function of finite order},

Pd(z, f ) be difference polynomial in f with d ≤ n−2, n ≥ 2,

φ(z) = P∗
1 eQ∗

1 +P∗
2 eQ∗

2 +·· ·+P∗
k eQ∗

k = ∑k
u=1 P∗

u eQ∗
u exponential polynomial in z, with P∗

u(z) and
Q∗

u(z), u = 1,2, . . . ,k of degree q∗ =max{P∗
u(z), Q∗

u(z); u = 1,2, . . . ,k} are polynomials in z,

BeV as Borel exceptional value.

In 2015, Wu et al. [8] considered the functions in the annuli and obtained the following
result:

Theorem 1.1 ([8]). Consider meromorphic function f in annuli, then one of f or f ′ has several
fixed points infinitely.

In 2016, Zhang et al. [10], proved the following result by considering λ
(

1
f

)
< ρ( f ).

Theorem 1.2 ([10]). Consider f (z) ∈G and a, c(̸= 0) ∈C with λ( f −a)< ρ( f ) then

max{τ( f ),τ(∆c f )}= ρ( f ) ,

max{τ( f ),τ( fc(z)}= ρ( f ) ,

max{τ(∆c f ),τ( fc(z))}= ρ( f ).

In 2019, Wu and Wu [7], obtained the results for ∆c f (z), with order of f as an integer. In the
same year, Lan and Chen [4], studied the relationship among the convergence of exponent of

Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1355–1365, 2023



Fixed Points of Meromorphic Functions Concerning Exponential and Linear. . . : J. Pattar and N. Shilpa 1357

fixed points of f , forward differences and its shift. Also, Chen and Zheng [1], investigated the
results for higher order functions and also for a non-zero polynomials with Borel exceptional
value.

Theorem 1.3 ([7]). Let f ∈G, c( ̸= 0) ∈C so that ∆c f ̸= 0. If a ∈C with δ(∞, f )= 1 and δ(a, f )> 0,
then ∆c f have infinite several fixed points and τ(∆c f )= ρ( f ).

Theorem 1.4 ([4]). Let f ∈G with δ(a, f )> 0, c(̸= 0) ∈C hence
(i) max{τ( f ),τ(∆c f )}= ρ( f ),

max{τ( fc(z)), τ(∆c f )}= ρ( f ), (∆c( f − z) ̸= 0),

(ii) max{τ( f ), τ( fc(z))}= ρ( f ),

(iii) τ( f )= τ( fc(z))= τ(∆c f )= ρ( f )
with fc(z) ̸= f (z).

Theorem 1.5 ([1]). Consider f ∈G, c ∈C− {0}, n ∈ N . Suppose a ∈C is a BeV of f (z) then

max{τ( f ),τ(∆n
c f )}= ρ( f ),

max{τ( f ),τ( fnc(z)}= ρ( f ),

max{τ(∆n
c f ), τ( fnc(z))}= ρ( f ).

Theorem 1.6 ([1]). Consider c ∈ C− {0}, f ∈ G, m ∈N, P(z) = Pmzm +Pm−1zm−1 +·· ·+P0 be a
non-zero polynomial so that Pt ∈C with Pm ̸= 0 (t = 0,1, . . . ,m). If a ∈C is a BeV then

max{λ( f −P(z)),λ(∆c f −P(z))}= ρ( f ),

max{λ( f −P(z)),λ( fc(z)−P(z)}= ρ( f ),

max{λ(∆c f −P(z)), λ( fc(z)−P(z))}= ρ( f ).

In 2020, Fang et al. [2], investigated the outcomes on fixed points of meromorphic function
for non-constant rational function.

Theorem 1.7 ([2]). Let f ∈ G, a, c( ̸= 0) ∈ C so that λ( f − a) < ρ( f ). Consider a non-constant
rational function R1 in f . Hence

max{λ( f −R1),λ(∆n
c f −R1)}= ρ( f ),

max{λ( f −R1),λ( fnc(z)−R1)}= ρ( f ),

max{λ(∆n
c f −R1)λ( fnc(z)−R1)}= ρ( f ).

Inspired by the above results, We investigate the relation among the meromorphic functions
fixed points, linear difference polynomials, exponential polynomials and attain the subsequent
outcomes.

1.1 Lemmas
Lemma 1.1 ([7]). Consider f ∈G, then for n ∈Q+

m0

(
r,
∆c f

f

)
= S0(r, f ).
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Lemma 1.2 ([7]). Consider f ∈ G and P(z) = a0zn + a1zn−1 + ·· · + an be a polynomial with
constants a0 ( ̸= 0), a1, . . . ,an. Hence

T0(r,P( f ))= nT0(r, f )+S0(r, f ).

Lemma 1.3 ([6]). If f ∈G, then

N0(r, f (z+ c))= N0(r, f )+S0(r, f ),

T0(r, f (z+ c))= T0(r, f )+S0(r, f ).

Lemma 1.4 ([1]). Let H(z) be a meromorphic function and c(̸= 0) a constant. A polynomial h(z),
deg(h(z))≥ 1. Suppose ρ(H)< ρ(eh) then

T0(r,H)= S0(r, eh),

T0(r,H(z+ c))= S0(r, eh),

T0(r, eh(z+c)−h)= S0(r, eh).

Lemma 1.5 ([1]). Consider a finite order entire functions A0(z), . . . ,An(z), with ρ =
max{ρ(Ak : 0≤ k ≤ n} then

An f (z+ cn)+·· ·+A0 f (z)= 0,

for any solution of f we get ρ( f )≥ ρ+1.

Lemma 1.6 ([1]). Suppose g1, g2, . . . , gm are entire and f1, f2, . . . , fm are meromorphic functions
to satisfy:

(i)
∑m

l=1 f l egl ̸≡ 0;

(ii) for 1≤ l < k ≤ m; gl − gk are non constant;

(iii) T0(r, f l)= o{T0(r, egh−gk )} as r →∞, 1≤ l ≤ m, 1≤ h < k ≤ m, then, f l(z)= 0, l = 1,2, . . . ,m.

Lemma 1.7 ([10]). Consider a meromorphic function h(z) to satisfy

N0(r,h)+N0

(
r,

1
h

)
= S0(r,h).

Let χ(z) = a0(z)h(z)p+a1(z)h(z)p−1+···+ap(z)
b0(z)h(z)q+b1(z)h(z)q−1+···+bq(z) , where ap(z),bq(z) (i = 0,1, . . . , p, j = 0,1, . . . , q) small

functions of h, with a0,b0,ap and bq ̸= 0.
Hence λ(χ)= ρ(h) if T0(r,χ)≥ T0(r,h)+S0(r,h), p ≥ q.

Lemma 1.8 ([10]). Let f be a meromorphic function having a non-reducible rational function
R∗∗(z). Then

R∗∗(z, f (z))=
∑s1

a=0αa f a∑s2
b=0βb f b ,

having coefficients αa(z), a = 0,1, . . . , s1 and βb(z), b = 0,1, . . . , s2 so that

T0(r,αa)= S0(r, f ), a = 0,1, . . . , s1,

T0(r,βb)= S0(r, f ), b = 0,1, . . . , s2

then

T0(r,R∗∗(z, f (z)))=max{s1, s2}T0(r, f )+S0(r, f ).
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Lemma 1.9 ([1]). Let f (z) ∈G with ζ ∈C− {0}, ρ( f )<∞. Hence for ϵ> 0

T0(r, f (z+ζ))= T0(r, f )+O(rρ+ϵ−1)+O(log r).

Lemma 1.10 ([1]). Consider f with b,ζ(̸= 0) ∈C, λ( f −b)<∞. Hence for ϵ> 0

N0

(
r,

1
f (z+ζ)−b

)
= N0

(
r,

1
f (z)−b

)
+O(rλ( f−b)+ϵ−1)+O(log r).

2. Main Results
Theorem 2.1. Let f ∈G, a, c,m, s ∈C− {0} so that λ( f −a)< ρ( f ).
Let X (z, f )=∑l

i=0 ai(z) f (z+ si) a linear difference polynomial of f . If b0 ∈C is BeV of f (z) then

max{τ( f − X (z, f )),τ(∆m
c f − X (z, f ))}= ρ( f ),

max{τ( f − X (z, f )),τ( f (z+mc)− X (z, f ))}= ρ( f ),

max{τ(∆m
c f − X (z, f )),τ( f (z+mc)− X (z, f ))}= ρ( f ).

Proof. Let us assume τ( f − X (z, f ))< ρ( f ) then we show that τ{(∆m
c f − X (z, f ))}= ρ( f ).

But λ( f −a)< ρ( f ) and X (z, f ) is a linear difference polynomial. Hence
f (z)− X (z, f )

f (z)−b0
= κeP , (2.1)

where deg(P)= ρ( f )= p, ρ(κ)< ρ( f ) with κ(̸= 0,∞) as a meromorphic function.
Thus, T0(r,κ)= S0(r, eP ), T0(r, f )= T0(r, eP )+S0(r, f ).
From (2.1)

f = b0 + X (z, f )−b0

1−κ(z)eP(z) . (2.2)

Thus

∆m
c f =∆m

c ( f −b0)

=
m∑

h=0
(−1)hCh

m ( f (z+ (m−h)c)−b0)

=
m∑

h=0
(−1)hCh

m

[
X (z+ (m−h)c, f )−b0

1−κ(z+ (m−h)c)eP(z+(m−h)c)

]

=
m∑

h=0
(−1)hCh

m

[∑l
i=0 ai(z+ (m−h)c) f (z+ (m−h)c+ si)−b0

1−κ(z+ (m−h)c)eP(z+(m−h)c)

]

=
∑m

h=0(−1)hCh
m

[∑l
i=0 ai(z+ (m−h)c) f (z+ (m−h)c+ si)−b0

] ·H∏m
h=0

[
1−κ(z+ (m−h)c)eP(z+(m−h)c)

]
=

∑m
h=1 Am,h(z)ehP(z) +∑m

h=1 Bm,h(z)eP(z)∑m+1
h=1 Am,m+h(z)ehP(z) +1

, (2.3)

where

H =
m∏

k ̸=h
(1−κ(z+ (m−k)c)eP(z+(m−k)c)),

Am,h(z)=
[

(−1)m

(
m∑

h=0
(−1)hCh

m

[
l∑

i=0
ai(z+ (m−h)c) f (z+ (m−h)c+ si)

]
−b0

)]
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·
[

m∑
k ̸=h

eP(z+(m−k)c)−P(z)κ(z+ (m−k)c)

]
,

Bm,h(z)=
m∑

h=0

[
l∑

i=0
ai(z+ (m−h)c) f (z+ (m−h)c)+ si)−b0

]
e−P(z),

Am,m+h(z)= (−1)m+1
m∏

h=0
eP(z+(m−h)c)−hP(z)κ(z+ (m−h)c).

From (2.3)

∆m
c f (z)− X (z, f )=

∑m
h=1 Am,h(z)ehP(z) +∑m

h=1 Bm,h(z)eP(z)∑m+1
h=1 Am,m+h(z)ehP(z) +1

− X (z, f )

=
∑m

h=1 Am,h(z)ehP(z) +∑m
h=1 Bm,h(z)eP(z) −H1∑m+1

h=1 Am,m+h(z)ehP(z) +1
, (2.4)

where H1 = X (z, f )
∑m+1

h=1 Am,m+h(z)ehP(z) − X (z, f ).
By Lemma 1.4 and from (2.3) and (2.4) we observe ∆m

c f (z) and ∆m
c f (z)− X (z, f ) as rational

functions in eP and the coefficients as small functions of eP(z). Hence

ρ(Am,h)≤max{ρ(κ),ρ(eP(z+(m−k)c)−P )}< ρ(P)= p, h = 1,2, . . . ,2m+1, k = 1,2, . . . ,m.

Therefore, eP has small functions Am,h (h = 1,2, . . . ,2m+1). Then, to justify Am,1, rephrase it as

Am,1(z)=−
m∑

h=0

m∑
k ̸=h

(−1)kCk
m

[
l∑

i=0
ai(z+ (m−k)c) f (z+ (m−k)c+ si)−b0

]
· eP(z+(m−h)c)−P(z)κ(z+ (m−h)c).

Clearly, we have

ρ(eP(z+(m−h)c)−P(z))= p−1, h = 0,1,2, . . . ,m−1

and

ρ(eP(z+mc)−P(z))> ρ(eP(z+(m−h)c)−P(z)).

Obviously
m−1∑
k=0

(−1)kCk
m

[
l∑

i=0
ai(z+ (m−k)c) f (z+ (m−k)c+ si)−b0

]
̸= 0.

Thus, if Am,h(z)= 0, from Lemma 1.5, ρ(κ)= p, this contradicts ρ(κ)< p.
Therefore, Am,h(z) ̸= 0 holds.
By Lemma 1.6 and Am,h(z) ̸= 0, we obtain

m∑
h=1

Am,h(z)eP(z) ̸= 0.

Thus, from (2.3) one can get

T0(r,∆m
c f (z))≥ T0(r, eP(z))+S0(r, eP(z)).

Consequently

T0(r,∆m
c f (z)− X (z, f ))≥ T0(r, eP(z))+S0(r, eP(z)). (2.5)
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From (2.4), (2.5) and Lemma 1.7

τ(∆m
c f (z)− X (z, f ))=λ(∆m

c f (z)− X (z, f ))= ρ(eP(z))= ρ( f )= p, (2.6)

which is

max{τ( f (z)− X (z, f )),τ(∆m
c f (z)− X (z, f ))}= ρ( f ).

From (2.2)

f (z+mc)− X (z, f )= b0 + X (z+mc, f )−b0

1−κ(z+mc)eP(z+mc) − X (z, f )

= (X (z, f )−b0)κ(z+mc)eP(z+mc) + X (z+mc, f )− X (z, f )
1−κ(z+mc)eP(z+mc) . (2.7)

Since

(X (z, f )−b0)κ(z+mc)+ [X (z+mc, f )− X (z, f )] ·κ(z+mc)= [X (z+mc, f )−b0] ·κ(z+mc) ̸= 0.

Therefore, f (z+mc)− X (z, f ) is a non-reducible rational function in eP(z+mc).
But

ρ(κ(z+mc))= ρ(κ)< ρ(eP(z+mc))= ρ(eP(z)) .

Using Lemma 1.4

T0(r,κ(z+mc))= S0(r, eP(z+mc)). (2.8)

Using (2.7), (2.8), and Lemma 1.8

T0(r, f (z+mc)− X (z, f ))= T0(r, eP(z+mc))+S0(r, eP(z+mc)).

Using Lemma 1.7 one can get

τ( f (z+mc)− X (z, f ))=λ( f (z+mc)− X (z, f ))= ρ(eP(z+mc))= ρ(eP(z))= ρ( f )

which is

max{τ( f (z)− X (z, f )),τ( f (z+mc)− X (z, f ))}= ρ( f ).

Next, suppose

τ( f (z+mc)− X (z, f ))=λ( f (z+mc)− X (z, f ))< ρ( f )

then to show

τ(∆m
c f (z)− X (z, f ))= ρ( f ).

Represent

ω(z)= f (z+mc)− X (z, f )
f (z+mc)−b0

(2.9)

and hence

f (z)= b0 − X (z−mc, f )
ω(z−mc)−1

+b0 .

From (2.9) and Lemma 1.9

ρ(ω(z))= ρ( f (z+mc))= ρ(ω(z−mc))= ρ( f ).

Since λ( f −b0)< ρ( f ) and using Lemma 1.10 we get

λ

(
1
ω

)
=λ( f (z+mc)−b0)=λ( f −b0)< ρ( f )= ρ(ω).
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Also,

λ(ω)=λ( f (z+mc)− X (z, f ))= τ( f (z+mc)− X (z, f ))< ρ( f )= ρ(ω).

In accordance with ω(z) has 0 and ∞ as Borel exceptional values. Succeeding the similar steps
as in (2.1) to (2.6) we get

τ(∆m
c f (z)− X (z, f ))=λ(∆m

c f (z)− X (z, f ))= ρ( f ).

Thus

max{τ(∆m
c f (z)− X (z, f )),τ( f (z+mc)− X (z, f ))}= ρ( f ).

Hence the proof.

Theorem 2.2. Let’s define f ∈ G in A(R) = {
z : 1

R < |z| < R
}
, 1 < R ≤∞. Suppose that Pd(z, f ),

φ(z) be not zero and a,b1, c ∈C− {0} with δ(a, f )> 0, δ(∞, f )= 1 then X1 = f nPd(z, f )+φ(z) has
several fixed points infinitely satisfying τ(∆cX1)= ρ( f ).

Proof. Let
1
f n = X1

b1 f n − ∆c(X1 −b1)
b1 f n

X1 −b1

∆c(X1 −b1)
. (2.10)

This leads to

m0

(
r,

1
f n

)
≤ m0

(
r,

X1

b1 f n

)
+m0

(
r,
∆c(X1 −b1)

b1 f n

)
+m0

(
r,

X1 −b1

∆c(X1 −b1)

)
. (2.11)

By Nevanlinna first fundamental theorem

m0

(
r,

1
f n

)
= T0(r, f n)−N0

(
r,

1
f n

)
+O(1). (2.12)

Next

m0

(
r,

X1

b1 f n

)
= m0

(
r,

f nPd(z, f )+φ(z)
b1 f n

)
≤ m0(r,Pd(z, f ))+m0(r,φ(z))+m0

(
r,

1
f n

)
+O(1)

≤ dm0(r, f )+m0(r,φ(z))+m0

(
r,

1
f n

)
+O(1)

≤ (n−2)m0(r, f )+ q∗km0(r, f )+nm0(r, f )+O(1)

≤ (2n+ q∗k−2)m0(r, f )+S0(r, f )

≤ (2n+ q∗k−2)T0(r, f )+S0(r, f ) (2.13)

and

m0

(
r,
∆c(X1 −b1)

b1 f n

)
≤ m0

(
r,
∆c(X1 −b1)
X1 −b1

)
+m0

(
r,
X1 −b1

b1 f n

)
+O(1).

From Lemma 1.1

m0

(
r,
∆c(X1 −b1)
X1 −b1

)
= S0(r, f ).

Using Lemma 1.3

m0

(
r,
X1 −b1

b1 f n

)
= m0

(
r,

f nPd(z, f )+φ(z)−b1

b1 f n

)
Communications in Mathematics and Applications, Vol. 14, No. 4, pp. 1355–1365, 2023



Fixed Points of Meromorphic Functions Concerning Exponential and Linear. . . : J. Pattar and N. Shilpa 1363

≤ m0

(
r,

f nPd(z, f )
b1 f n

)
+m0

(
r,
φ(z)−b1

b1 f n

)
+O(1)

≤ m0 (r,Pd(z, f ))+m0
(
r,φ(z)−b1

)+m0

(
r,

1
f n

)
+O(1)

≤ dm0 (r, f )+ q∗km0 (r, f )+nm0 (r, f )+O(1)

≤ (d+ q∗k+n)m0(r, f )+O(1). (2.14)

Again using Lemma 1.3

m0

(
r,

X1 −b1

∆c(X1 −b1)

)
= m0

(
r,
∆c(X1 −b1)
X1 −b1

)
+N0

(
r,
∆c(X1 −b1)
X1 −b1

)
−N0

(
r,

X1 −b1

∆c(X1 −b1)

)
+O(1)

≤ m0

(
r,
∆c(X1 −b1)
X1 −b1

)
+N0(r,∆c(X1 −b1))+N0

(
r,

1
X1 −b1

)
−N0(r,X1 −b1)−N0

(
r,

1
∆c(X1 −b1)

)
+O(1)

≤ m0

(
r,
∆c(X1 −b1)
X1 −b1

)
+ (n+d+ q∗k)N0 (r, f )+N0

(
r,

1
X1 −b1

)
−N0(r, f )−N0

(
r,

1
∆c(X1 −b1)

)
+O(1)

≤ (n+d+ q∗k)N0 (r, f )+N0

(
r,

1
X1 −b1

)
−N0(r, f )

−N0

(
r,

1
∆c(X1 −b1)

)
+S0(r, f ). (2.15)

Using (2.12) to (2.15) and Lemma 1.2 in (2.11)

nT0(r, f )≤ nN0

(
r,

1
f

)
+ (2n+ q∗k−2)T0(r, f )+ (n+d+ q∗k)T0(r, f )

+N0

(
r,

1
X1 −b1

)
−N0(r, f )−N0

(
r,

1
∆c(X1 −b1)

)
+S0(r, f )

≤ nN0

(
r,

1
f

)
+ (3n+2q∗k−2+d)T0(r, f )+N0

(
r,

1
X1 −b1

)
−N0(r, f )−N0

(
r,

1
∆c(X1 −b1)

)
+S0(r, f ). (2.16)

Indicating y= f −a, by (2.16) we get

nT0(r, f )≤ nT0(r,y)+O(1)

≤ nN0

(
r,

1
y

)
+ (3n+2q∗k−2+d)T0(r,y)+N0

(
r,

1
y−b1

)
−N0(r,y)−N0

(
r,

1
∆c(y−b1)

)
+S0(r, f )

≤ nN0

(
r,

1
f −a

)
+ (3n+2q∗k−2+d)T0(r, f )+N0

(
r,

1
f −b1

)
−N0(r, f )−N0

(
r,

1
∆c( f −b1)

)
+S0(r, f ), (2.17)
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whereas δ(a, f )> 0 and δ(∞, f )= 1, then for 0< θ < 1

N0

(
r,

1
f −a

)
< θT0(r, f ). (2.18)

Using (2.17) and (2.18) we can get

[2(1− q∗k)−d− (2+θ)n]T0(r, f )≤ N0

(
r,

1
f −b1

)
−N0(r, f )−N0

(
r,

1
∆c( f −b1)

)
+S0(r, f ).

This gives contradiction. Hence X1 has several fixed points infinitely, satisfying τ(∆cX1) =
ρ( f ).

3. Conclusion
The results of this study add a new dimension to existing findings of Fang et al. [2] by mainly
concentrating on exponential and linear difference polynomials.
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