Communications in Mathematics and Applications

Vol. 15, No. 2, pp. 765–775, 2024 ISSN 0975-8607 (online); 0976-5905 (print) Published by RGN Publications DOI: 10.26713/cma.v15i2.2558

Research Article

Some Fixed Point Theorems for Generalized α -Admissible Z-Contraction via Simulation Function

Manoj Kumar Shriwas¹, Anil Kumar Dubey² and Urmila Mishra^{*3}

¹Department of Mathematics, Dr. C.V. Raman University, Kargi Road Kota, Bilaspur, Chhattisgarh, India ²Department of Applied Mathematics, Bhilai Institute of Technology, Bhilai House Durg, Chhattisgarh, India ³Department of Mathematics, Vishwavidyalaya Engineering College, Ambikapur, Chhattisgarh, India *Corresponding author: mishra.urmila@gmail.com

Received: February 28, 2024 Accepted: April 20, 2024

Abstract. In this paper, we prove some fixed point theorems in metric-like space by using generalized α -admissible mapping embedded in the simulation function. Our results generalize and extend several known results on literature.

Keywords. Metric-like space, Fixed point, Generalized α -admissible mapping, Simulation function, *Z*-contractions

Mathematics Subject Classification (2020). 54H25, 47H10

Copyright © 2024 Manoj Kumar Shriwas, Anil Kumar Dubey and Urmila Mishra. *This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

1. Introduction

Amini-Harandi [2] considered the concept of metric-like spaces and established some fixed point results in the class of metric-like space. Very recently, several fixed point results on metric-like space have been provided, for example see Alsamir *et al.* [1], Aydi *et al.* [4,5], and Mishra *et al.* [11]. In 2012, Samet *et al.* [16] introduced the concept of α -contraction and α -admissible mappings and proved various fixed point theorem in complete metric spaces. For other results using different concepts of α -admissible mappings, see Aydi *et al.* [5], Cho [6], Dewangan *et al.* [7], Felhi *et al.* [8], Mishra *et al.* [11], and Qawaqneh *et al.* [13]. In 2015, Khojasteh *et al.* [10] introduced the notion of Z-contraction by using a new class of auxiliary functions called simulation functions. Argoubi *et al.* [3] modified the definition [10] and proved some fixed point theorems with nonlinear contractions.

There are many fixed point results in the setting of simulation function (for instance, Cho [6], Dewangan *et al.* [7], Felhi *et al.* [8], Karapınar [9], Mishra *et al.* [11], Rus [12], and Roldán-Lópezde-Hierro *et al.* [14]). Padcharoen *et al.* [12] introduced the notion of generalized α -admissible Z-contraction and established various fixed point theorems for such mappings in complete metric spaces by using the concepts of Khojasteh *et al.* [10], Rus [15] and Samet [16].

In this paper, we consider some simulation functions to show the existence of fixed points of generalized α -admissible Z-contraction mappings in metric-like spaces. Our results generalize and extend some existing results in the literature. We modify and generalize the results of Padcharoen *et al.* [12], Dewangan *et al.* [7], and Cho [6].

2. Preliminaries

Throughout this article, we assume the symbols \mathbb{R} and \mathbb{N} as a set of real numbers and set of natural number, respectively.

Definition 2.1 ([2]). Let *X* be a non empty set. A function $\sigma : X \times X \to [0,\infty)$ is said to be a metric-like (or a dislocated metric) on *X*, if for any $x, y, z \in X$ the following conditions hold:

$$(\sigma_1): \ \sigma(x,y) = 0 \Rightarrow x = y;$$

 $(\sigma_2): \ \sigma(x,y) = \sigma(y,x);$

 $(\sigma_3): \ \sigma(x,z) \le \sigma(x,y) + \sigma(y,z).$

The pair (X, σ) is called a metric-like space. Then a metric-like on X satisfies all conditions of a metric except that $\sigma(x, x)$ may be positive for $x \in X$. Following [2], we have the following topological concepts.

Each metric-like σ on X generates a topology τ_{σ} on X, whose base is the family of open σ -balls, then for all $x \in X$ and $\epsilon > 0$,

 $B_{\sigma}(X,\epsilon) = \{y \in X : |\sigma(x,y) - \sigma(x,x)| < \epsilon\}.$

Now, let (X, σ) be a metric-like space. A sequence $\{x_n\}$ in the metric-like space (X, σ) converges to a point $x \in X$ if and only if

$$\lim_{n\to\infty}\sigma(x_n,x)=\sigma(x,x).$$

Let (X, σ) be metric-like space, and let $T: X \to X$ be a continuous mapping. Then

$$\lim_{n\to\infty} x_n = x \implies \lim_{n\to\infty} T(x_n) = T(x).$$

A sequence $\{x_n\}$ is Cauchy in (X, σ) , if and only if $\lim_{n,m\to\infty} \sigma(x_m, x_n)$ exists and is finite. Moreover, the metric-like space (X, σ) is called complete, if and only if for every Cauchy sequence $\{x_n\}$ in X, there exists $x \in X$ such that

$$\lim_{n \to +\infty} \sigma(x_n, x) = \sigma(x, x) = \lim_{n, m \to \infty} \sigma(x_n, x_m).$$

It is clear that every metric space and partial metric space is a metric-like space but the converse is not true.

Example 2.2. Let $X = \{0, 1\}$ and $\sigma(x, y) = \begin{cases} 2, & \text{if } x = y = 0, \\ 1, & \text{otherwise.} \end{cases}$

Then (X, σ) is a metric-like space. It is neither a partial metric space $(\sigma(0, 0) \leq \sigma(0, 1))$ nor a metric space $(\sigma(0, 0) = 2 \neq 0)$.

The following lemma is useful to prove our results.

Lemma 2.3 ([2]). Let (X, σ) be a metric-like space. Let $\{x_n\}$ be a sequence in X such that $x_n \to x$, where $x \in X$ and $\sigma(x, y) = 0$. Then, for all $y \in X$ we have

 $\lim_{n\to\infty}\sigma(x_n,y)=\sigma(x,y).$

Definition 2.4 ([10]). A function $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ is called a simulation function if ζ satisfies the following conditions:

 $(\zeta_1): \zeta(0,0) = 0.$

 (ζ_2) : $\zeta(t,s) < s-t$, for all t,s > 0.

(ζ_3): If $\{t_n\}$, $\{s_n\}$ are sequences in $(0,\infty)$ such that $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n = l \in (0,\infty)$, then $\limsup_{n\to\infty} \zeta(t_n,s_n) < 0$.

We denote the set of all simulation function by Z.

The following unique fixed point theorem is established by Khojasteh et al. [10].

Theorem 2.5. Let (X,d) be a metric space and $T: X \to X$ be a Z-contraction with respect to a simulation function ζ , that is

 $\zeta(d(Tx,Ty),d(x,y)) \ge 0, \quad for \ all \ x,y \in X.$

Then T has a unique fixed point.

It is worth mentioning that the Banach contraction is an example of *z*-contractions by defining $\zeta : [0,\infty) \times [0,\infty) \to \mathbb{R}$ via

 $\zeta(t,s) = \lambda s - t$, for all $s, t \in [0,\infty)$,

where $\lambda \in [0, 1)$.

Argoubi et al. [3] modified Definition 2.4 as follows.

Definition 2.6 ([3]). A simulation function is a function $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ that satisfies the following conditions:

- (i) $\zeta(t,s) < s t$, for all s, t > 0.
- (ii) If $\{t_n\}$ and $\{s_n\}$ are sequences in $(0,\infty)$ such that $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n = l \in (0,\infty)$, then $\limsup \zeta(t_n, s_n) < 0$.

It is clear that any simulation function in the sense of Khojasteh *et al*. [10] (Definition 2.4) is also a simulation function in the sense of Argoubi *et al*. [3] (Definition 2.6). The converse is not true.

Remark 2.7 ([3, 10]). It is clear from the definition of simulation function that $\zeta(t,s) < 0$, for all $t \ge s > 0$. Therefore, if *T* is a *Z*-contraction with respect to ζ , then d(Tx, Ty) < d(x, y), for all distinct $x, y \in X$.

Example 2.8 ([3]). Define a function $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ by

$$\zeta(t,s) = \begin{cases} 1, & \text{if } (s,t) = (0,0), \\ \lambda s - t, & \text{otherwise,} \end{cases}$$

where $\lambda \in (0, 1)$. Then ζ is a simulation function in the sense of Argoubi *et al.* [3].

Let Ψ be the family of functions $\psi: [0,\infty) \to [0,\infty)$ satisfying the following conditions:

- (i) ψ is non decreasing,
- (ii) there exists $n_0 \in \mathbb{N}$ and $a \in (0, 1)$ and a convergent series of non-negative terms $\sum_{n=1}^{\infty} v_n$ such that $\psi^{n+1}(t) \le a \psi^n(t) + v_n$, for $n \ge n_0$ and any $t \in \mathbb{R}^+$.

Lemma 2.9 ([15]). If $\psi \in \Psi$, then the following hold:

- (i) $(\psi^n(t))_{n \in \mathbb{N}}$ converges to 0 as $n \to \infty$, for all $t \in \mathbb{R}^+$,
- (ii) $\psi(t) < t$, for any $t \in \mathbb{R}^+$,
- (iii) ψ is continuous at 0,
- (iv) the series $\sum_{k=1}^{\infty} \psi^k(t)$ converges for any $t \in \mathbb{R}^+$.

Definition 2.10 ([9]). Let *T* be a self mapping defined on a metric space (X, d). If there exist $\zeta \in \mathbb{Z}$ and $\alpha : X \times X \to [0, \infty)$ such that

 $\zeta(\alpha(x, y)d(Tx, Ty), d(x, y)) \ge 0, \text{ for all } x, y \in X,$

then we say that *T* is an α -admissible *Z*-contraction with respect to ζ .

3. Main Results

Definition 3.1 ([12]). Let (x, σ) be a metric-like space and $T: X \to X$ be a self mapping. If there exist $\zeta \in \mathbb{Z}$ and $\alpha: X \times X \to [0, \infty)$ such that

$$\zeta(\alpha(x, Tx)\alpha(y, Ty)\sigma(Tx, Ty), M(x, y)) \ge 0, \tag{3.1}$$

for all distinct $x, y \in X$, where

$$M(x,y) = \max\left\{\sigma(x,y), \frac{[1+\sigma(x,Tx)]\sigma(y,Ty)}{1+\sigma(x,y)}\right\},\tag{3.2}$$

then T is called generalized α -admissible Z-contraction with respect to ζ .

Remark 3.2. It is clear from the definition of simulation function that $\zeta(t,s) < 0$, for all $t \ge s > 0$. Therefore, *T* is a generalized α -*Z*-contraction with respect to ζ , then

 $\alpha(x, Tx)\alpha(y, Ty)\sigma(Tx, Ty) < M(x, y),$

for all distinct $x, y \in X$.

Theorem 3.3. Let (X, σ) be a complete metric-like space and $T : X \to X$ be a generalized α admissible Z-contraction with respect to a ζ simulation function if there exist $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(t) < t$ such that

$$\zeta(\psi(\alpha(x,Tx)\alpha(y,Ty)\sigma(Tx,Ty)),\psi(M(x,y))) \ge 0,$$
(3.3)

for all distinct $x, y \in X$, where

$$M(x, y) = \max\left\{\sigma(x, y), \frac{[1 + \sigma(x, Tx)]\sigma(y, Ty)}{1 + \sigma(x, y)}\right\}$$

Assume that,

- (i) T is admissible,
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, T(x_0)) \ge 1$,
- (iii) for every sequence $\{x_n\}$ in X such that $\alpha(x_n, Tx_n) \ge 1$, for all $n \in \mathbb{N} \cup \{0\}$ and $\{x_n\}$ converges to x, then $\alpha(x, Tx) \ge 1$,
- (iv) $\alpha(x, Tx) \ge 1$, for all $x \in Fix(T)$.

Then T has a unique fixed point $u \in X$ with $\sigma(u, u) = 0$.

Proof. By (ii) of this theorem, there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. Define the sequence $\{x_n\}$ by $x_{n+1} = Tx_n$, for all $n \in \mathbb{N}$. Since *T* is α -admissible, we obtain $\alpha(Tx_0, Tx_1) = \alpha(x_1, x_2) \ge 1$ implies $\alpha(Tx_1, Tx_2) = \alpha(x_2, x_3) \ge 1$.

By induction, we get

$$\alpha(x_n, x_{n+1}) \ge 1, \quad \text{for all } n \in \mathbb{N} \cup \{0\}.$$
(3.4)

If $x_n = x_{n+1}$ for some $n \in \mathbb{N} \cup \{0\}$, then $x_n = x_{n+1} = Tx_n$ and hence x_n is a fixed point of *T*. Therefore, we can assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then, we get $\sigma(x_n, x_{n+1}) > 0$, so by equations (3.1), (3.2) and (3.3), we have

$$0 \leq \zeta(\psi(\alpha(x_n, Tx_n)\alpha(x_{n-1}, Tx_{n-1})\sigma(Tx_n, Tx_{n-1})), \psi(M(x_n, x_{n-1})))$$

= $\zeta(\psi(\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_{n+1}, x_n)), \psi(M(x_n, x_{n-1}))).$ (3.5)

Since

$$M(x_{n}, x_{n-1}) = \max\left\{\sigma(x_{n}, x_{n-1}), \frac{[1 + \sigma(x_{n}, Tx_{n})]\sigma(x_{n-1}, Tx_{n-1})}{1 + \sigma(x_{n}, x_{n-1})}\right\}$$
$$= \max\left\{\sigma(x_{n}, x_{n-1}), \frac{[1 + \sigma(x_{n}, x_{n+1})]\sigma(x_{n-1}, x_{n})}{1 + \sigma(x_{n}, x_{n-1})}\right\}$$
$$= \max\{\sigma(x_{n}, x_{n-1}), \sigma(x_{n}, x_{n+1})\}.$$
(3.6)

It follows from (3.5) and (3.6) that

$$0 \leq \zeta(\psi(\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_{n+1}, x_n)), \psi(\max\{\sigma(x_n, x_{n-1}), \sigma(x_n, x_{n+1})\})) \\ < \psi(\max\{\sigma(x_n, x_{n-1}), \sigma(x_n, x_{n+1})\}) - \psi(\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_{n+1}, x_n)).$$
(3.7)

Consequently, we obtain that for all n = 0, 1, 2, 3, ...,

 $\psi(\sigma(x_n, x_{n+1})) < \psi(\max\{\sigma(x_n, x_{n-1}), \sigma(x_n, x_{n+1})\}).$

If $\max\{\sigma(x_n, x_{n-1}), \sigma(x_n, x_{n+1})\} = \sigma(x_n, x_{n+1})$ for some *n*, then $\psi(\sigma(x_n, x_{n+1})) < \psi(\sigma(x_n, x_{n+1}))$, which is contradiction. Hence $\max\{\sigma(x_n, x_{n-1}), \sigma(x_n, x_{n+1})\} = \sigma(x_n, x_{n-1})$, for all $n \ge 0$, and hence from (3.7),

$$0 < \psi(\sigma(x_n, x_{n-1})) - \psi(\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_{n+1}, x_n))$$

or

$$\psi(\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_{n+1}, x_n)) < \psi(\sigma(x_n, x_{n-1})),$$
(3.8)

using the property of ψ , we get

$$\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_{n+1}, x_n) < \sigma(x_n, x_{n-1}),$$
(3.9)

for all $n \ge 0$. Thus, we conclude that the sequence $\{\sigma(x_n, x_{n-1})\}$ is monotonically decreasing sequence of non-negative reals and bounded from below by zero. So there is some $r \ge 0$ such that $\lim_{n \to \infty} \sigma(x_n, x_{n-1}) = r$. We will show that

$$\lim_{n \to \infty} \sigma(x_n, x_{n-1}) = 0. \tag{3.10}$$

Suppose that r > 0 and since T is a generalize α -admissible Z-contraction with respect to $\zeta \in Z$, therefore by the properties of Ψ , (3.5), (3.8), (3.9) and the condition (ζ_3), we have

$$0 \leq \limsup_{n \to \infty} \zeta(\psi(\alpha(x_n, x_{n+1})\alpha(x_{n-1}, x_n)\sigma(x_n, x_{n+1})), \psi(\sigma(x_n, x_{n-1}))) < 0$$

This is a contradiction. Then we conclude that r = 0, that is $\lim_{n \to \infty} \sigma(x_n, x_{n-1}) = 0$.

Now, we will show that sequence $\{x_n\}$ is a Cauchy sequence. Assume that $\{x_n\}$ is not a Cauchy sequence. Thus, for all $\epsilon > 0$, and subsequences $\{x_{m_{(k)}}\}$ and $\{x_{n_{(k)}}\}$ of $\{x_n\}$ with for all m(k) > n(k) > k such that for every k,

$$\sigma(x_{n_{(k)}}, x_{m_{(k)}}) \ge \epsilon, \tag{3.11}$$

that is

$$\sigma(x_{n_{(k)}}, x_{m_{(k)-1}}) < \epsilon, \tag{3.12}$$

for all $m, n, k \in \mathbb{N}$. Therefore, by the triangular inequality and using (3.11) and (3.12), we get

$$\epsilon < \sigma(x_{n_{(k)}}, x_{m_{(k)}}) \le \sigma(x_{(n_{(k)})}, x_{m_{(k)}-1}) + \sigma(x_{m_{(k)}-1}, x_{m_{(k)}})$$

< \epsilon + \sigma(x_{m_{(k)}-1}, x_{m_{(k)}}).

Letting $k \to \infty$ in the above inequalities and by using (3.10) and (3.11), we have

$$\lim_{k \to \infty} \sigma(x_{n_{(k)}}, x_{m_{(k)}}) = \epsilon.$$
(3.13)

Now from the triangular inequality, we have

$$\sigma(x_{n_{(k)}}, x_{m_{(k)}}) \le \sigma(x_{n_{(k)}}, x_{n_{(k)}+1}) + \sigma(x_{n_{(k)+1}}, x_{m_{(k)}}),$$

$$|\sigma(x_{n_{(k)+1}}, x_{m_{(k)}}) - \sigma(x_{n_{(k)}}, x_{m_{(k)}})| \le \sigma(x_{n_{(k)}}, x_{n_{(k)}+1}).$$

On taking limit as $k \to \infty$ on both sides of above inequality and using (3.10) and (3.13), we get

$$\lim_{k \to \infty} \sigma(x_{n_{(k)}+1}, x_{m_{(k)}}) = \epsilon.$$
(3.14)

Similarly, it is easy to show that

$$\lim_{k \to \infty} \sigma(x_{n_{(k)}+1}, x_{m_{(k)}+1}) = \lim_{k \to \infty} \sigma(x_{n_{(k)}}, x_{m_{(k)}+1}) = \epsilon.$$
(3.15)

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 765–775, 2024

Moreover, *T* is a generalized α -admissible *Z*-contraction with respect to ζ , we have

$$\alpha(x_{n_{(k)}}, x_{n_{(k)}+1}) \ge 1 \quad \text{and} \quad \alpha(x_{m_{(k)}}, x_{m_{(k)}+1}) \ge 1.$$
 (3.16)

We deduce

$$M(x_{n_{(k)}}, x_{m_{(k)}}) = \max\left\{\sigma(x_{n_{(k)}}, x_{m_{(k)}}), \frac{[1 + \sigma(x_{n_{(k)}}, x_{n_{(k)}+1})]\sigma(x_{m_{(k)}}, x_{m_{(k)}+1})}{1 + \sigma(x_{n_{(k)}}, x_{m_{(k)}})}\right\}.$$

Taking $k \rightarrow \infty$ and using (3.10), (3.13) and (3.14), we obtain

$$\lim_{k \to \infty} \psi(M(x_{n_{(k)}}, x_{m_{(k)}})) = \epsilon.$$
(3.17)

By (3.13), (3.17) and the condition (ζ_3), we get

$$0 \leq \limsup_{k \to \infty} \zeta(\psi(\alpha(x_{n_{(k)}}, x_{n_{(k)}+1})\alpha(x_{m_{(k)}}, x_{m_{(k)}+1})\sigma(x_{n_{(k)}+1}, x_{m_{(k)}+1})), \quad \psi(M(x_{n_{(k)}}, x_{m_{(k)}}))) < 0,$$

which is a contradiction. Hence $\{x_n\}$ is a Cauchy sequence. Thus, $\lim_{n,m\to\infty} \sigma(x_n, x_m)$ exists and is equal to 0. Since (X, σ) is a complete metric-like space, there exists $u \in X$ such that

$$\lim_{n \to \infty} \sigma(x_n, u) = \sigma(u, u) = \lim_{n, m \to \infty} \sigma(x_n, x_m) = 0,$$
(3.18)

and $\alpha(u, Tu) \ge 1$. Moreover,

$$0 \leq \zeta(\psi(\alpha(x_n, Tx_n)\alpha(u, Tu)\sigma(Tx_n, Tu)), \psi(M(x_n, u)))$$

= $\zeta(\psi(\alpha(x_n, x_{n+1})\alpha(u, Tu)\sigma(x_{n+1}, Tu)), \psi(M(x_n, u)))$
< $\psi(M(x_n, u)) - \psi(\alpha(x_n, x_{n+1})\alpha(u, Tu)\sigma(x_{n+1}, Tu)),$ (3.19)

where

$$M(x_n, u) = \max\left\{\sigma(x_n, u), \frac{[1 + \sigma(x_n, x_{n+1})]\sigma(u, Tu)}{1 + \sigma(x_n, u)}\right\}$$
$$\leq \max\left\{\sigma(x_n, u), \frac{[1 + \sigma(x_n, u) + \sigma(u, x_{n+1})]\sigma(u, Tu)}{1 + \sigma(x_n, u)}\right\}$$
$$= \sigma(u, Tu), \quad \text{for large } n.$$

Consequently, we have

$$\sigma(x_{n+1}, Tu) = \sigma(Tx_n, Tu)$$

$$\leq \alpha(x_n, Tx_n)\alpha(u, Tu)\sigma(Tx_n, Tu)$$

$$< \sigma(u, Tu).$$
(3.20)

By (3.19), (3.20) and the condition (ζ_3), we get

$$0 \leq \limsup_{n \to \infty} \zeta(\psi(\alpha(x_n, Tx_n)\alpha(u, Tu)\sigma(Tx_n, Tu)), \psi(M(x_n, u))) < 0.$$

This is a contradiction. Hence, therefore u is a fixed of T. To prove the uniqueness of the fixed point, suppose that there exists $w \in X$ such that Tw = w and $w \neq u$ that is $u, w \in Fix(T)$. By (3.3), we have

$$0 \le \zeta(\psi(\alpha(u, Tu)\alpha(w, Tw)\sigma(Tu, Tw)), \psi(M(u, w))), \tag{3.21}$$

where

$$M(u,w) = \max\left\{\sigma(u,w), \frac{[1+\sigma(u,Tu)]\sigma(w,Tw)}{1+\sigma(u,w)}\right\}$$
$$= \sigma(u,w)$$
(3.22)

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 765–775, 2024

from (3.21), (3.22) and (ζ_2), we have

$$0 \le \zeta(\psi(\alpha(u, u)\alpha(w, w)\sigma(u, w)), \psi(\sigma(u, w))) < \psi(\sigma(u, w)) - \psi(\alpha(u, u)\alpha(w, w), \sigma(u, w)).$$
(3.23)

By using the property of ψ , we have

 $0 < \sigma(u,w) - \alpha(u,u)\alpha(w,w)\sigma(u,w).$

This is contradiction. Thus, we have u = w. Hence T has a unique fixed point $u \in X$ with $\sigma(u, u) = 0$. This completes the proof.

Theorem 3.4. Let (X, σ) be a complete metric-like space and $T : X \to X$ be a generalized α admissible Z-contraction with respect to ζ simulation function, if there exists $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ with $\psi(t) < t$ such that

 $\zeta(\psi(\alpha(x,Tx)\alpha(y,Ty),\sigma(Tx,Ty)),\psi(M(x,y))) \ge 0,$

for all distinct $x, y \in X$, where $M(x, y) = \max\left\{\sigma(x, y), \frac{[1+\sigma(x,Tx)]\sigma(y,Ty)}{1+\sigma(x,y)}\right\}$. Assume that

- (i) T is admissible,
- (ii) there exists $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$,
- (iii) X is a regular and for every sequence $\{x_n\}$ in X such that $\alpha(x_n, x_{n+1}) \ge 1$, for all $n \in \mathbb{N} \cup \{0\}$, and we have $\alpha(x_m, x_n) \ge 1$, for all $m, n \in \mathbb{N}$ with m < n,
- (iv) $\alpha(x, y) \ge 1$, for all $x, y \in Fix(T)$.

Then T has a unique fixed point u in X.

Proof. By (ii), let $x_0 \in X$ such that $\alpha(x_0, Tx_0) \ge 1$. There exists $x_n \in X$ such that $x_n = Tx_{n-1}$, for all $n \in \mathbb{N}$. We have by Theorem 3.3, $\{x_n\}$ is a Cauchy sequence such that $\lim_{n \to \infty} \sigma(x_n, x_{n+1}) = 0$. Thus, $\lim_{n,m\to\infty} \sigma(x_n, x_m)$ exists and is equal to 0. Since (X, σ) is complete, there exists $u \in X$ such that

$$\lim_{n \to \infty} \sigma(x_n, u) = 0, \tag{3.24}$$

then

$$\lim_{n,m\to\infty}\sigma(x_m,x_n) = \lim_{n\to\infty}\sigma(x_n,u) = \sigma(u,u) = 0.$$
(3.25)

Since *X* is regular, therefore there exists a subsequence $\{x_{n_{(k)}}\}$ of $\{x_n\}$ such that $\alpha(x_{n_{(k)}}, u) \ge 1$, for all $k \in \mathbb{N}$. Therefore,

$$\begin{split} 0 &\leq \zeta(\psi(\alpha(x_{n_{(k)}}, Tx_{n_{(k)}})\alpha(u, Tu)\sigma(Tx_{n_{(k)}}, Tu)), \psi(M(x_{n_{(k)}}, u))) \\ &= \zeta(\psi(\alpha(x_{n_{(k)}}, x_{n_{(k)}+1})\alpha(u, Tu)\sigma(x_{n_{(k)}+1}, Tu)), \psi(M(x_{n_{(k)}}, u))) \\ &< \psi(M(x_{n_{(k)}}, u)) - \psi(\alpha(x_{n_{(k)}}, x_{n_{(k)}+1})\alpha(u, Tu)\sigma(x_{n_{(k)}+1}, Tu)), \end{split}$$

using the property of ψ , we get

$$= M(x_{n_{(k)}}, u) - \alpha(x_{n_{(k)}}, x_{n_{(k)}+1})\alpha(u, Tu)\sigma(x_{n_{(k)}+1}, Tu),$$
(3.26)

where

$$M(x_{n_{(k)}}, u) = \max\left\{\sigma(x_{n_{(k)}}, u), \frac{[1 + \sigma(x_{n_{(k)}}, Tx_{n_{(k)}})]\sigma(u, Tu)}{1 + \sigma(x_{n_{(k)}}, u)}\right\}$$

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 765-775, 2024

$$\leq \max\left\{\sigma(x_{n_{(k)}}, u), \frac{[1 + \sigma(x_{n_{(k)}}, u) + \sigma(u, x_{n_{(k)}+1})]\sigma(u, Tu)}{1 + \sigma(x_{n_{(k)}}, u)}\right\}$$

= $\sigma(u, Tu)$, for large k.

Consequently, we have

$$\sigma(x_{n_{(k)}+1}, Tu) = \sigma(Tx_{n_{(k)}}, Tu)$$

$$\leq \alpha(x_{n_{(k)}}, Tx_{n_{(k)}})\alpha(u, Tu)\sigma(Tx_{n_{(k)}}, Tu)$$

$$< \sigma(u, Tu), \quad \text{for all } k \in \mathbb{N}.$$
(3.27)

By (3.19), (3.27) and the condition (ζ_3), we get

 $0 \leq \limsup_{k \to \infty} \zeta(\psi(\alpha(x_n, Tx_n)\alpha(u, Tu)\sigma(Tx_n, Tu)), \psi(M(x_n, u))) < 0.$

This is a contradiction. Hence, therefore u is a fixed point of T. Suppose that u and u^* be two fixed points of T and hence, $u, u^* \in Fix(T)$ which is a generalized α -admissible Z-contraction self-mappings of a metric-like space (X, σ) . By (3.3), we have that

$$0 \le \zeta(\psi(\alpha(u, Tu)\alpha(u^*, Tu^*)\sigma(Tu, Tu^*)), \psi(M(u, u^*))),$$
(3.28)

where

$$M(u,u^*) = \max\left\{\sigma(u,u^*), \frac{[1+\sigma(u,Tu)]\sigma(u^*,Tu^*)}{1+\sigma(u,u^*)}\right\} = \sigma(u,u^*).$$
(3.29)

From (3.28) and (3.29), we have

$$\begin{split} 0 &\leq \zeta(\psi(\alpha(u,Tu)\alpha(u^*,Tu^*)\sigma(Tu,Tu^*)),\psi(M(u,u^*))) \\ &= \zeta(\psi(\alpha(u,u),\alpha(u^*,u^*)\sigma(u,u^*)),\psi(\sigma(u,u^*))). \end{split}$$

This is a contradiction. Thus, we have $u = u^*$. Hence *T* has a unique fixed point.

Corollary 3.5. Let (X, σ) be a complete metric-like space and $T : X \to X$ be a self-mapping, there exist $\zeta \in Z$ and $\alpha : X \times X \to [0, \infty)$ be a function with $\alpha(x, y) = 1$ for all $x, y \in X$ such that $\zeta(\sigma(Tx, Ty), M(x, y)) \ge 0$ for all distinct $x, y \in X$, where

$$M(x, y) = \max\left\{\sigma(x, y), \frac{[1 + \sigma(x, Tx)]\sigma(y, Ty)}{1 + \sigma(x, y)}\right\}$$

Then T has a unique fixed point $u \in X$.

4. Conclusion

In this attempt, we studied generalized α -admissible mappings embedded in the simulation function and proved some fixed point theorems in metric-like spaces. Our results are generalized and extended form of recent results in the literature.

Acknowledgments

The authors are thankful to the learned referee for his/her deep observations and their suggestions, which greatly helped us to improve the paper significantly.

Competing Interests

The authors declare that they have no competing interests.

Communications in Mathematics and Applications, Vol. 15, No. 2, pp. 765-775, 2024

Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

References

- H. Alsamir, M. S. Noorani, W. Shatanawi, H. Aydi, H. Akhadkulov, H. Qawaqneh and K. Alanazi, Fixed point results in metric-like spaces via Sigma-simulation functions, *European Journal of Pure* and Applied Mathematics 12(1) (2019), 88 – 100, DOI: 10.29020/nybg.ejpamv12i1.3331.
- [2] A. Amini-Harandi, Metric-like spaces, partial metric spaces and fixed points, *Fixed Point Theory* and Applications **204** (2012), Article number: 204, DOI: 10.1186/1687-1812-2012-204.
- [3] H. Argoubi, B. Samet and C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, *Journal of Nonlinear Sciences and Applications* 8(6) (2015), 1082 1094, DOI: 10.22436/jnsa.008.06.18.
- [4] H. Aydi, A. Felhi and S. Sahmim, Common fixed points via implicit contractions on b-metriclike spaces, Journal of Nonlinear Sciences and Applications 10(4) (2017), 1524 – 1537, DOI: 10.22436/jnsa.010.04.20.
- [5] H. Aydi, A. Felhi and S. Sahmim, On common fixed points for (α, ψ) -contractions and generalized cyclic contractions in *b*-metric-like spaces and consequences, *Journal of Nonlinear Sciences and Applications* **9**(5) (2016), 2492 2510, DOI: 10.22436/jnsa.009.05.48.
- [6] S.-H. Cho, Fixed point theorem for (α, β) -Z-contractions in metric spaces, International Journal of Mathematical Analysis 13(4) (2019), 161 174, DOI: 10.12988/ijma.2019.9318.
- [7] A. Dewangan, A. K. Dubey, M. D. Pandey and R. P. Dubey, Fixed points for (α, β) -admissible mapping via simulation functions, *Communications in Mathematics and Applications* **12**(4) (2021), 1101 1111, DOI: 10.26713/cma.v12i4.1615.
- [8] A. Felhi, H. Aydi and D. Zhang, Fixed points for α-admissible contractive mappings via simulation functions, *Journal of Nonlinear Sciences and Application* 9(10) (2016), 5544 – 5560, DOI: 10.22436/jnsa.009.10.05.
- [9] E. Karapınar, Fixed points results via simulation functions, *Filomat* 30(8) (2016), 2343 2350, DOI: 10.2298/FIL1608343K.
- [10] F. Khojasteh, S. Shukla and S. Radenović, A new approach to the study of fixed point theory for simulation functions, *Filomat* 29(6) (2015), 1189 – 1194, DOI: 10.2298/FIL1506189K.
- [11] S. Mishra, A. K. Dubey, U. Mishra and R. P. Dubey, On some fixed point results for cyclic (α, β) admissible almost *z*-contraction in metric like space with simulation function, *Communications in Mathematics and Applications* 13(1) (2022), 223 233, DOI: 10.26713/cma.v13i1.1666.
- [12] A. Padcharoen and P. Sukprasert, On admissible mapping via simulation function, Australian Journal of Mathematical Analysis and Applications 18(1) (2021), Art. 14, 10 pages, URL: https://ajmaa.org/searchroot/files/pdf/v18n1/v18i1p14.pdf.
- [13] H. Qawaqneh, M. S. M. Noorani, W. Shatanawi and H. Alsamir, Common fixed points for pairs of triangular α-admissible mappings, *Journal of Nonlinear Sciences and Applications* 10 (12) (2017), 6192 – 6204, DOI: 10.22436/jnsa.010.12.06.
- [14] A.-F. Roldán-López-de-Hierro, E. Karapınar, C. Roldán-López-de-Hierro and J. Martínez-Moreno, Coincidence point theorems on metric spaces via simulation functions, *Journal of Computational* and Applied Mathematics 275 (2015), 345 – 355, DOI: 10.1016/j.cam.2014.07.011.

- [15] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca (2001).
- [16] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α - ψ -contractive type mappings, Nonlinear Analysis: Theory, Methods & Applications **75**(4) (2012), 2154 2165, DOI: 10.1016/j.na.2011.10.014.

