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1. Introduction
Amini-Harandi [2] considered the concept of metric-like spaces and established some fixed
point results in the class of metric-like space. Very recently, several fixed point results on
metric-like space have been provided, for example see Alsamir et al. [1], Aydi et al. [4,5], and
Mishra et al. [11]. In 2012, Samet et al. [16] introduced the concept of α-contraction and α-
admissible mappings and proved various fixed point theorem in complete metric spaces. For
other results using different concepts of α-admissible mappings, see Aydi et al. [5], Cho [6],
Dewangan et al. [7], Felhi et al. [8], Mishra et al. [11], and Qawaqneh et al. [13]. In 2015,
Khojasteh et al. [10] introduced the notion of Z-contraction by using a new class of auxiliary
functions called simulation functions. Argoubi et al. [3] modified the definition [10] and proved
some fixed point theorems with nonlinear contractions.
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There are many fixed point results in the setting of simulation function (for instance, Cho [6],
Dewangan et al. [7], Felhi et al. [8], Karapınar [9], Mishra et al. [11], Rus [12], and Roldán-López-
de-Hierro et al. [14]). Padcharoen et al. [12] introduced the notion of generalized α-admissible
Z-contraction and established various fixed point theorems for such mappings in complete
metric spaces by using the concepts of Khojasteh et al. [10], Rus [15] and Samet [16].

In this paper, we consider some simulation functions to show the existence of fixed points of
generalized α-admissible Z-contraction mappings in metric-like spaces. Our results generalize
and extend some existing results in the literature. We modify and generalize the results of
Padcharoen et al. [12], Dewangan et al. [7], and Cho [6].

2. Preliminaries
Throughout this article, we assume the symbols R and N as a set of real numbers and set of
natural number, respectively.

Definition 2.1 ([2]). Let X be a non empty set. A function σ : X × X → [0,∞) is said to be a
metric-like (or a dislocated metric) on X , if for any x, y, z ∈ X the following conditions hold:

(σ1): σ(x, y)= 0⇒ x = y;

(σ2): σ(x, y)=σ(y, x);

(σ3): σ(x, z)≤σ(x, y)+σ(y, z).

The pair (X ,σ) is called a metric-like space. Then a metric-like on X satisfies all conditions
of a metric except that σ(x, x) may be positive for x ∈ X . Following [2], we have the following
topological concepts.

Each metric-like σ on X generates a topology τσ on X , whose base is the family of open
σ-balls, then for all x ∈ X and ϵ> 0,

Bσ(X ,ϵ)= {y ∈ X : |σ(x, y)−σ(x, x)| < ϵ}.

Now, let (X ,σ) be a metric-like space. A sequence {xn} in the metric-like space (X ,σ)
converges to a point x ∈ X if and only if

lim
n→∞σ(xn, x)=σ(x, x).

Let (X ,σ) be metric-like space, and let T : X → X be a continuous mapping. Then

lim
n→∞xn = x =⇒ lim

n→∞T(xn)= T(x).

A sequence {xn} is Cauchy in (X ,σ), if and only if lim
n,m→∞σ(xm, xn) exists and is finite.

Moreover, the metric-like space (X ,σ) is called complete, if and only if for every Cauchy sequence
{xn} in X , there exists x ∈ X such that

lim
n→+∞σ(xn, x)=σ(x, x)= lim

n,m→∞σ(xn, xm).

It is clear that every metric space and partial metric space is a metric-like space but the
converse is not true.
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Example 2.2. Let X = {0,1} and σ(x, y)=
{

2, if x = y= 0,
1, otherwise.

Then (X ,σ) is a metric-like space. It is neither a partial metric space (σ(0,0)≰σ(0,1)) nor a
metric space (σ(0,0)= 2 ̸= 0).

The following lemma is useful to prove our results.

Lemma 2.3 ([2]). Let (X ,σ) be a metric-like space. Let {xn} be a sequence in X such that xn → x,
where x ∈ X and σ(x, y)= 0. Then, for all y ∈ X we have

lim
n→∞σ(xn, y)=σ(x, y).

Definition 2.4 ([10]). A function ζ : [0,∞)×[0,∞)→R is called a simulation function if ζ satisfies
the following conditions:
(ζ1): ζ(0,0)= 0.

(ζ2): ζ(t, s)< s− t, for all t, s > 0.

(ζ3): If {tn}, {sn} are sequences in (0,∞) such that lim
n→∞ tn = lim

n→∞ sn = l ∈ (0,∞), then
limsup

n→∞
ζ(tn, sn)< 0.

We denote the set of all simulation function by Z .

The following unique fixed point theorem is established by Khojasteh et al. [10].

Theorem 2.5. Let (X ,d) be a metric space and T : X → X be a Z-contraction with respect to a
simulation function ζ, that is

ζ(d(Tx,T y),d(x, y))≥ 0, for all x, y ∈ X .

Then T has a unique fixed point.

It is worth mentioning that the Banach contraction is an example of z-contractions by
defining ζ : [0,∞)× [0,∞)→R via

ζ(t, s)=λs− t, for all s, t ∈ [0,∞),

where λ ∈ [0,1).

Argoubi et al. [3] modified Definition 2.4 as follows.

Definition 2.6 ([3]). A simulation function is a function ζ : [0,∞)× [0,∞)→R that satisfies the
following conditions:

(i) ζ(t, s)< s− t, for all s, t > 0.

(ii) If {tn} and {sn} are sequences in (0,∞) such that lim
n→∞ tn = lim

n→∞ sn = l ∈ (0,∞), then
limsup

n→∞
ζ(tn, sn)< 0.

It is clear that any simulation function in the sense of Khojasteh et al. [10] (Definition 2.4)
is also a simulation function in the sense of Argoubi et al. [3] (Definition 2.6). The converse is
not true.
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Remark 2.7 ([3, 10]). It is clear from the definition of simulation function that ζ(t, s) < 0, for
all t ≥ s > 0. Therefore, if T is a Z-contraction with respect to ζ, then d(Tx,T y)< d(x, y), for all
distinct x, y ∈ X .

Example 2.8 ([3]). Define a function ζ : [0,∞)× [0,∞)→R by

ζ(t, s)=
{

1, if (s, t)= (0,0),
λs− t, otherwise,

where λ ∈ (0,1). Then ζ is a simulation function in the sense of Argoubi et al. [3].

Let Ψ be the family of functions ψ : [0,∞)→ [0,∞) satisfying the following conditions:
(i) ψ is non decreasing,

(ii) there exists n0 ∈N and a ∈ (0,1) and a convergent series of non-negative terms
∞∑

n=1
vn such

that ψn+1(t)≤ aψn(t)+vn, for n ≥ n0 and any t ∈R+.

Lemma 2.9 ([15]). If ψ ∈Ψ, then the following hold:
(i) (ψn(t))n∈N converges to 0 as n →∞, for all t ∈R+,

(ii) ψ(t)< t, for any t ∈R+,

(iii) ψ is continuous at 0,

(iv) the series
∞∑

k=1
ψk(t) converges for any t ∈R+.

Definition 2.10 ([9]). Let T be a self mapping defined on a metric space (X ,d). If there exist
ζ ∈ Z and α : X × X → [0,∞) such that

ζ(α(x, y)d(Tx,T y),d(x, y))≥ 0, for all x, y ∈ X ,

then we say that T is an α-admissible Z-contraction with respect to ζ.

3. Main Results
Definition 3.1 ([12]). Let (x,σ) be a metric-like space and T : X → X be a self mapping. If there
exist ζ ∈ Z and α : X × X → [0,∞) such that

ζ(α(x,Tx)α(y,T y)σ(Tx,T y), M(x, y))≥ 0, (3.1)

for all distinct x, y ∈ X , where

M(x, y)=max
{
σ(x, y),

[1+σ(x,Tx)]σ(y,T y)
1+σ(x, y)

}
, (3.2)

then T is called generalized α-admissible Z-contraction with respect to ζ.

Remark 3.2. It is clear from the definition of simulation function that ζ(t, s)< 0, for all t ≥ s > 0.
Therefore, T is a generalized α-Z-contraction with respect to ζ, then

α(x,Tx)α(y,T y)σ(Tx,T y)< M(x, y),

for all distinct x, y ∈ X .
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Theorem 3.3. Let (X ,σ) be a complete metric-like space and T : X → X be a generalized α-
admissible Z-contraction with respect to a ζ simulation function if there exist ψ :R+ →R+ with
ψ(t)< t such that

ζ(ψ(α(x,Tx)α(y,T y)σ(Tx,T y)),ψ(M(x, y)))≥ 0, (3.3)

for all distinct x, y ∈ X , where

M(x, y)=max
{
σ(x, y),

[1+σ(x,Tx)]σ(y,T y)
1+σ(x, y)

}
.

Assume that,
(i) T is admissible,

(ii) there exists x0 ∈ X such that α(x0,T(x0))≥ 1,

(iii) for every sequence {xn} in X such that α(xn,Txn)≥ 1, for all n ∈N∪ {0} and {xn} converges
to x, then α(x,Tx)≥ 1,

(iv) α(x,Tx)≥ 1, for all x ∈Fix(T).
Then T has a unique fixed point u ∈ X with σ(u,u)= 0.

Proof. By (ii) of this theorem, there exists x0 ∈ X such that α(x0,Tx0)≥ 1. Define the sequence
{xn} by xn+1 = Txn, for all n ∈N. Since T is α-admissible, we obtain α(Tx0,Tx1)=α(x1, x2)≥ 1
implies α(Tx1,Tx2)=α(x2, x3)≥ 1.

By induction, we get

α(xn, xn+1)≥ 1, for all n ∈N∪ {0}. (3.4)

If xn = xn+1 for some n ∈ N∪ {0}, then xn = xn+1 = Txn and hence xn is a fixed point of
T . Therefore, we can assume that xn ̸= xn+1 for all n ∈N. Then, we get σ(xn, xn+1) > 0, so by
equations (3.1), (3.2) and (3.3), we have

0≤ ζ(ψ(α(xn,Txn)α(xn−1,Txn−1)σ(Txn,Txn−1)),ψ(M(xn, xn−1)))

= ζ(ψ(α(xn, xn+1)α(xn−1, xn)σ(xn+1, xn)),ψ(M(xn, xn−1))). (3.5)

Since

M(xn, xn−1)=max
{
σ(xn, xn−1),

[1+σ(xn,Txn)]σ(xn−1,Txn−1)
1+σ(xn, xn−1)

}
=max

{
σ(xn, xn−1),

[1+σ(xn, xn+1)]σ(xn−1, xn)
1+σ(xn, xn−1)

}
=max{σ(xn, xn−1),σ(xn, xn+1)}. (3.6)

It follows from (3.5) and (3.6) that

0≤ ζ(ψ(α(xn, xn+1)α(xn−1, xn)σ(xn+1, xn)),ψ(max{σ(xn, xn−1),σ(xn, xn+1)}))

<ψ(max{σ(xn, xn−1),σ(xn, xn+1)})−ψ(α(xn, xn+1)α(xn−1, xn)σ(xn+1, xn)). (3.7)

Consequently, we obtain that for all n = 0,1,2,3, . . .,

ψ(σ(xn, xn+1))<ψ(max{σ(xn, xn−1),σ(xn, xn+1)}).
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If max{σ(xn, xn−1),σ(xn, xn+1)} = σ(xn, xn+1) for some n, then ψ(σ(xn, xn+1)) < ψ(σ(xn, xn+1)),
which is contradiction. Hence max{σ(xn, xn−1),σ(xn, xn+1)}=σ(xn, xn−1), for all n ≥ 0, and hence
from (3.7),

0<ψ(σ(xn, xn−1))−ψ(α(xn, xn+1)α(xn−1, xn)σ(xn+1, xn))

or

ψ(α(xn, xn+1)α(xn−1, xn)σ(xn+1, xn))<ψ(σ(xn, xn−1)), (3.8)

using the property of ψ, we get

α(xn, xn+1)α(xn−1, xn)σ(xn+1, xn)<σ(xn, xn−1), (3.9)

for all n ≥ 0. Thus, we conclude that the sequence {σ(xn, xn−1)} is monotonically decreasing
sequence of non-negative reals and bounded from below by zero. So there is some r ≥ 0 such
that lim

n→∞σ(xn, xn−1)= r. We will show that

lim
n→∞σ(xn, xn−1)= 0. (3.10)

Suppose that r > 0 and since T is a generalize α-admissible Z -contraction with respect to ζ ∈ Z ,
therefore by the properties of Ψ, (3.5), (3.8), (3.9) and the condition (ζ3), we have

0≤ limsup
n→∞

ζ(ψ(α(xn, xn+1)α(xn−1, xn)σ(xn, xn+1)),ψ(σ(xn, xn−1)))< 0.

This is a contradiction. Then we conclude that r = 0, that is lim
n→∞σ(xn, xn−1)= 0.

Now, we will show that sequence {xn} is a Cauchy sequence. Assume that {xn} is not a
Cauchy sequence. Thus, for all ϵ > 0, and subsequences {xm(k)} and {xn(k)} of {xn} with for all
m(k)> n(k)> k such that for every k,

σ(xn(k) , xm(k))≥ ϵ, (3.11)

that is

σ(xn(k) , xm(k)−1)< ϵ, (3.12)

for all m,n,k ∈N. Therefore, by the triangular inequality and using (3.11) and (3.12), we get

ϵ<σ(xn(k) , xm(k))≤σ(x(n(k)), xm(k)−1)+σ(xm(k)−1, xm(k))

< ϵ+σ(xm(k)−1, xm(k)).

Letting k →∞ in the above inequalities and by using (3.10) and (3.11), we have

lim
k→∞

σ(xn(k) , xm(k))= ϵ. (3.13)

Now from the triangular inequality, we have

σ(xn(k) , xm(k))≤σ(xn(k) , xn(k)+1)+σ(xn(k)+1 , xm(k)),

|σ(xn(k)+1 , xm(k))−σ(xn(k) , xm(k))| ≤σ(xn(k) , xn(k)+1).

On taking limit as k →∞ on both sides of above inequality and using (3.10) and (3.13), we get

lim
k→∞

σ(xn(k)+1, xm(k))= ϵ. (3.14)

Similarly, it is easy to show that

lim
k→∞

σ(xn(k)+1, xm(k)+1)= lim
k→∞

σ(xn(k) , xm(k)+1)= ϵ. (3.15)
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Moreover, T is a generalized α-admissible Z-contraction with respect to ζ, we have

α(xn(k) , xn(k)+1)≥ 1 and α(xm(k) , xm(k)+1)≥ 1. (3.16)

We deduce

M(xn(k) , xm(k))=max
{
σ(xn(k) , xm(k)),

[1+σ(xn(k) , xn(k)+1)]σ(xm(k) , xm(k)+1)
1+σ(xn(k) , xm(k))

}
.

Taking k →∞ and using (3.10), (3.13) and (3.14), we obtain

lim
k→∞

ψ(M(xn(k) , xm(k)))= ϵ. (3.17)

By (3.13), (3.17) and the condition (ζ3), we get

0≤ limsup
k→∞

ζ(ψ(α(xn(k) , xn(k)+1)α(xm(k) , xm(k)+1)σ(xn(k)+1, xm(k)+1)), ψ(M(xn(k) , xm(k))))< 0,

which is a contradiction. Hence {xn} is a Cauchy sequence. Thus, lim
n,m→∞σ(xn, xm) exists and is

equal to 0. Since (X ,σ) is a complete metric-like space, there exists u ∈ X such that

lim
n→∞σ(xn,u)=σ(u,u)= lim

n,m→∞σ(xn, xm)= 0, (3.18)

and α(u,Tu)≥ 1. Moreover,

0≤ ζ(ψ(α(xn,Txn)α(u,Tu)σ(Txn,Tu)),ψ(M(xn,u)))

= ζ(ψ(α(xn, xn+1)α(u,Tu)σ(xn+1,Tu)),ψ(M(xn,u)))

<ψ(M(xn,u))−ψ(α(xn, xn+1)α(u,Tu)σ(xn+1,Tu)), (3.19)

where

M(xn,u)=max
{
σ(xn,u),

[1+σ(xn, xn+1)]σ(u,Tu)
1+σ(xn,u)

}
≤max

{
σ(xn,u),

[1+σ(xn,u)+σ(u, xn+1)]σ(u,Tu)
1+σ(xn,u)

}
=σ(u,Tu), for large n.

Consequently, we have

σ(xn+1,Tu)=σ(Txn,Tu)

≤α(xn,Txn)α(u,Tu)σ(Txn,Tu)

<σ(u,Tu). (3.20)

By (3.19), (3.20) and the condition (ζ3), we get

0≤ limsup
n→∞

ζ(ψ(α(xn,Txn)α(u,Tu)σ(Txn,Tu)),ψ(M(xn,u)))< 0.

This is a contradiction. Hence, therefore u is a fixed of T . To prove the uniqueness of the
fixed point, suppose that there exists w ∈ X such that Tw = w and w ̸= u that is u,w ∈Fix(T).
By (3.3), we have

0≤ ζ(ψ(α(u,Tu)α(w,Tw)σ(Tu,Tw)),ψ(M(u,w))), (3.21)

where

M(u,w)=max
{
σ(u,w),

[1+σ(u,Tu)]σ(w,Tw)
1+σ(u,w)

}
=σ(u,w) (3.22)
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from (3.21), (3.22) and (ζ2), we have

0≤ ζ(ψ(α(u,u)α(w,w)σ(u,w)),ψ(σ(u,w)))

<ψ(σ(u,w))−ψ(α(u,u)α(w,w),σ(u,w)). (3.23)

By using the property of ψ, we have

0<σ(u,w)−α(u,u)α(w,w)σ(u,w).

This is contradiction. Thus, we have u = w. Hence T has a unique fixed point u ∈ X with
σ(u,u)= 0. This completes the proof.

Theorem 3.4. Let (X ,σ) be a complete metric-like space and T : X → X be a generalized α-
admissible Z-contraction with respect to ζ simulation function, if there exists ψ :R+ →R+ with
ψ(t)< t such that

ζ(ψ(α(x,Tx)α(y,T y),σ(Tx,T y)),ψ(M(x, y)))≥ 0,

for all distinct x, y ∈ X , where M(x, y)=max
{
σ(x, y), [1+σ(x,Tx)]σ(y,T y)

1+σ(x,y)

}
.

Assume that
(i) T is admissible,

(ii) there exists x0 ∈ X such that α(x0,Tx0)≥ 1,

(iii) X is α regular and for every sequence {xn} in X such that α(xn, xn+1)≥ 1, for all n ∈N∪ {0},
and we have α(xm, xn)≥ 1, for all m,n ∈N with m < n,

(iv) α(x, y)≥ 1, for all x, y ∈Fix(T).
Then T has a unique fixed point u in X .

Proof. By (ii), let x0 ∈ X such that α(x0,Tx0)≥ 1. There exists xn ∈ X such that xn = Txn−1, for
all n ∈ N. We have by Theorem 3.3, {xn} is a Cauchy sequence such that lim

n→∞σ(xn, xn+1) = 0.
Thus, lim

n,m→∞σ(xn, xm) exists and is equal to 0. Since (X ,σ) is complete, there exists u ∈ X such

that

lim
n→∞σ(xn,u)= 0, (3.24)

then

lim
n,m→∞σ(xm, xn)= lim

n→∞σ(xn,u)=σ(u,u)= 0. (3.25)

Since X is regular, therefore there exists a subsequence {xn(k)} of {xn} such that α(xn(k) ,u)≥ 1,
for all k ∈N. Therefore,

0≤ ζ(ψ(α(xn(k) ,Txn(k))α(u,Tu)σ(Txn(k) ,Tu)),ψ(M(xn(k) ,u)))

= ζ(ψ(α(xn(k) , xn(k)+1)α(u,Tu)σ(xn(k)+1,Tu)),ψ(M(xn(k) ,u)))

<ψ(M(xn(k) ,u))−ψ(α(xn(k) , xn(k)+1)α(u,Tu)σ(xn(k)+1,Tu)),

using the property of ψ, we get

= M(xn(k) ,u)−α(xn(k) , xn(k)+1)α(u,Tu)σ(xn(k)+1,Tu), (3.26)

where

M(xn(k) ,u)=max
{
σ(xn(k) ,u),

[1+σ(xn(k) ,Txn(k))]σ(u,Tu)
1+σ(xn(k) ,u)

}
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≤max
{
σ(xn(k) ,u),

[1+σ(xn(k) ,u)+σ(u, xn(k)+1)]σ(u,Tu)
1+σ(xn(k) ,u)

}
=σ(u,Tu), for large k.

Consequently, we have

σ(xn(k)+1,Tu)=σ(Txn(k) ,Tu)

≤α(xn(k) ,Txn(k))α(u,Tu)σ(Txn(k) ,Tu)

<σ(u,Tu), for all k ∈N. (3.27)

By (3.19), (3.27) and the condition (ζ3), we get

0≤ limsup
k→∞

ζ(ψ(α(xn,Txn)α(u,Tu)σ(Txn,Tu)),ψ(M(xn,u)))< 0.

This is a contradiction. Hence, therefore u is a fixed point of T . Suppose that u and u∗ be two
fixed points of T and hence, u,u∗ ∈Fix(T) which is a generalized α-admissible Z-contraction
self-mappings of a metric-like space (X ,σ). By (3.3), we have that

0≤ ζ(ψ(α(u,Tu)α(u∗,Tu∗)σ(Tu,Tu∗)),ψ(M(u,u∗))), (3.28)

where

M(u,u∗)=max
{
σ(u,u∗),

[1+σ(u,Tu)]σ(u∗,Tu∗)
1+σ(u,u∗)

}
=σ(u,u∗). (3.29)

From (3.28) and (3.29), we have

0≤ ζ(ψ(α(u,Tu)α(u∗,Tu∗)σ(Tu,Tu∗)),ψ(M(u,u∗)))

= ζ(ψ(α(u,u),α(u∗,u∗)σ(u,u∗)),ψ(σ(u,u∗))).

This is a contradiction. Thus, we have u = u∗. Hence T has a unique fixed point.

Corollary 3.5. Let (X ,σ) be a complete metric-like space and T : X → X be a self-mapping,
there exist ζ ∈ Z and α : X × X → [0,∞) be a function with α(x, y) = 1 for all x, y ∈ X such that
ζ(σ(Tx,T y), M(x, y))≥ 0 for all distinct x, y ∈ X , where

M(x, y)=max
{
σ(x, y),

[1+σ(x,Tx)]σ(y,T y)
1+σ(x, y)

}
.

Then T has a unique fixed point u ∈ X .

4. Conclusion
In this attempt, we studied generalized α-admissible mappings embedded in the simulation
function and proved some fixed point theorems in metric-like spaces. Our results are generalized
and extended form of recent results in the literature.
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