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1. Introduction
Fixed point theory is an significant tool in study of nonlinear analysis. It is considered to
be the key association between pure and applied mathematics. It is also widely applied in
different fields of study such as Economics, Chemistry, Physics and almost all Engineering areas.
The contraction mapping principle, introduced by Banach [6] has wide scope of applications
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in fixed point theory. The Banach contraction principle has been extended and generalized
in distinct way by different researchers (see [5–22]). In 2014, Lin et al. [19] introduced the
concept of rectangular quasi metric space and proved fixed point theorem for the Meir-Keeler
contractive mappings. Also, Karapinar and Lakzian [15] acquaint (α,ψ)-contractive mapping
in rectangular quasi metric space and proved fixed point theorems for the maps introduced.
In 2015, George et al. [12] declared the notion of rectangular b-metric space as a generalization
of b-metric space and rectangular metric space.

Recently, Alharbi et al. [3] defined (α)-contractive mapping and proved fixed point theorems
in rectangular b-metric space. Afterward, several research papers were published on the
existence of fixed point results for single valued and multi valued mappings in the setting of
rectangular quasi metric spaces. Very recently, Khuangsatung et al. [16] introduced the notion
(ψ) contraction mappings in complete rectangular quasi metric spaces and proved the existence
and uniqueness of fixed points.

2. Preliminaries
We present some definitions which will be useful in the sequel.

Definition 2.1 ([9]). Let (X ,d) be a b-metric space with coefficient s ≥ 1 be a given real number.
A function d : X × X → R+ is a b-metric space if and only if for all x, y, z ∈ X , the following
conditions are satisfied:

(I) d(x, y)= 0 if and only if x = y;

(II) d(x, y)= d(y, x);

(III) d(x, z)≤ s[d(x, y)+d(y, z)].

The pair (X ,d) is called a b-metric space.

Definition 2.2 ([8]). Let X be a non empty set and d : X × X → R+ be a function satisfying the
following conditions:

(I) d(x, y)= 0 if and only if x = y;

(II) d(x, y)= d(y, x);

(III) d(x, y)≤ d(x,u)+d(u,v)+d(v, y). for all x, y ∈ X and all distinct point u,v ∈ X /{x, y}.

Then d is called rectangular metric on X , and the pair (X ,d) is called rectangular metric space.

Definition 2.3 ([12]). Let X be a non empty set, s ≥ 1 be a given real number and d : X×X → R+

be a function satisfying the following conditions:

(I) d(x, y)= 0 if and only if x = y;

(II) d(x, y)= d(y, x);

(III) d(x, y)≤ s[d(x,u)+d(u,v)+d(v, y)], for all x, y ∈ X and all distinct point u,v ∈ X /{x, y}.
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Then d is called rectangular b-metric on X , and the pair (X ,d) is called rectangular b-metric
space.

Inspired and motivated by the works of Karapinar and Lakzian [15], Alharbi et al. [3] and
Khuangsatung et al. [16], the main purpose of this paper is to introduce (α,ψ) contraction
mapping of quadratic type and establish fixed point results in the setting of rectangular quasi
b-metric spaces. Further, an application of our result is furnished.

3. Main Result
We introduce the following:

Definition 3.1. Let (X ,d) be a rectangular quasi b-metric space and T : X → X be a given
mapping. We say that T is a generalized (α,ψ)-contraction mapping of quadratic type if there
exist two functions α : X × X → R+ and ψ ∈Ψ such that

α(x, y)d(Tx,T y)≤ψ(M(x, y)), for all x, y ∈ X , (3.1)

where M(x, y)=max
{
d2(x, y),d(x,Tx) ·d(y,T y),d(x,Tx) ·d(x,T y)

}
.

Now, we state and prove the following fixed point theorem.

Theorem 3.2. Let (X ,d) be a complete rectangular quasi b-metric space and T : X → X be
generalized (α,ψ)-contraction of quadratic type mapping. Suppose that

(I) T is an α admissible mapping;

(II) there exists x0∈X such that α(x0,Tx0)≥1, α(Tx0, x0)≥1, α(x0,T2x0)≥1 and α(T2x0, x0)≥1;

(III) T is continuous.

Then T has a fixed point.

Proof. By (ii) above, there exists x0 ∈ X such that α(x0,Tx0) ≥ 1 and α(Tx0, x0) ≥ 1. Now, we
produce sequence {xn} in X by xn+1 = Txn = Tn+1x0, for all n ≥ 0. Suppose that xn0 = xn0+1 for
some n0 ≥ 0. Since Txn0 = xn0+1, the point u = xn0 forms a fixed point of T . That completes the
proof. We assume that xn ̸= xn+1 for all n ≥ 0.

Since T is a α-admissible, we have α(x0, x1)=α(x0,Tx0)≥ 1 =⇒ α(Tx0,Tx1)=α(x1, x2)≥ 1.
Applying the expression above, we obtain that

α(xn, xn+1)≥ 1, for all n = 0,1,2, . . . (3.2)

and

α(x1, x0)=α(Tx0, x0)≥ 1 implies α(Tx1,Tx0)=α(x2, x1)≥ 1.

We obtain

α(xn+1, xn)≥ 1, for all n = 0,1,2, . . . . (3.3)

Likewise, we derive that

α(x0, x2)=α(x0,T2x0)≥ 1 implies α(Tx0,Tx2)=α(x1, x3)≥ 1.
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Recursively, we get

α(xn, xn+2)≥ 1m for all n = 0,1,2, . . . . (3.4)

Similarly, we can easily derive that

α(xn+2, xn)≥ 1, for all n = 0,1,2 . (3.5)

Step 1: We show that

lim
n→∞d(xn, xn+1)= 0= lim

n→∞d(xn+1, xn)

and

lim
n→∞d(xn, xn+2)= 0= lim

n→∞ d(xn+2, xn).

from (3.1), we have

d(xn, xn+1)= d(Txn−1, xn)

≤α(xn1 , xn)d(Txn1 ,Txn)

≤ψ
(
M(xn1 , xn)

)
, for all n ≥ 1, (3.6)

where

M(x, y)=max{d2(x, y),d(x,Tx) ·d(y,T y),d(x,Tx) ·d(x,T y)},

M(xn−1, xn)=max{d2(xn−1, xn),d(xn−1,Txn−1) ·d(xn,Txn),d(xn−1,Txn−1) ·d(xn−1,Txn−1)}

=max{d2(xn−1, xn),d(xn−1, xn) ·d(xn, xn+1),d(xn−1, xn) ·d(xn−1, xn)}

=max{d2(xn−1, xn),d(xn−1, xn) ·d(xn, xn+1),d(xn−1, xn) ·d(xn−1, xn)

=max{d2(xn−1, xn), xn),d(xn−1, xn) ·d(xn, xn+1)}

=max{d2(xn−1, xn),d2(xn, xn+1)}.

If M(xn−1, xn)= d2(xn, xn+1), then from (3.6), we get

d2(xn, xn+1)≤ψ(d2(xn, xn+1))

≤ s ψ(d2(xn, xn+1))

< d2(xn, xn+1),

which is a contradiction. Hence, M(xn−1, xn)= d2(xn−1, xn).
We let en = d2(xn, xn+1), ln = d2(xn+1, xn), e∗n = d2(xn, xn+2) and l∗n = d2(xn+2, xn), for all n ≥ 0.

By using (3.6), we get

en = d2(xn, xn+1)

= d2(Txn−1,Txn)

≤ψ(d2(xn−1, xn))

=ψ(d2(Txn−2,Txn−1))

≤ψ2(d2(xn−2, xn−1))
...

≤ψn(d2(x0, x1))=ψn(e0)→ 0 as n →∞. (3.7)
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Also,

ln = d2(xn+1, xn)

= d2(Txn,Txn−1)

≤α(xn, xn−1)d2(Txn,Txn−1)

≤ψ(M(xn, xn−1)), for all n ≥ 1, (3.8)

where

M(xn, xn−1)=max{d2(xn, xn−1),d(xn,Txn) ·d(xn−1,Txn−1),d(xn,Txn) ·d(xn,Txn−1)}.

We deal with three different cases as follows:

Case (i): If M(xn, xn−1)= d2(xn−1, xn) then using (3.8), we get

d2(xn+1, xn)≤ψ(d2(xn−1, xn))

≤ψn(d2(x0, x1))

=ψn(e0)→ 0 as n →∞.

Case(ii): If M(xn, xn−1)= d(xn,Txn) ·d(xn−1,Txn−1), then using (3.8), we get

d2(xn+1, xn)≤ψ(d2(xn, xn+1))

≤ψn(d2(x0, x1))

=ψn(e0)→ 0 as n →∞.

Case(iii) If M(xn, xn−1)= d(xn,Txn) ·d(xn,Txn−1) then using (3.8) we get

ln = d2(xn+1, xn)= d2(Txn,Txn−1)

≤ψ(d(xn, xn−1)

=ψ(d2(Txn−1,Txn −2)

≤ψ2(d2(xn−1, xn−2))
...

≤ψn(d2(x1, x0))

=ψn(l0)→ 0 as n →∞.

From Case (i)-Case (iii), we get

ln = d2(xn+1, xn)→ 0 as n →∞. (3.9)

From (3.7) and (3.9), we deduce that

lim
n→∞d2(xn, xn+1)= 0= lim

n→∞d2(xn+1, xn). (3.10)

Now, we show that

lim
n→∞d2(xn, xn+2)= 0= lim

n→∞d2(xn+2, xn).

Also,

e∗n = d2(xn, xn+2)
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= d2(Txn−1,Txn+1)

≤α(xn−1, xn+1) ·d2(Txn−1,Txn+1)

≤ψ(M(xn−1, xn+1)), for all n ≥ 1, (3.11)

where

M(xn−1, xn+1)=max{d2(xn−1, xn+1),d(xn−1,Txn−1) ·d(xn+1,Txn+1),

d(xn−1,Txn−1) ·d(xn+1,Txn+1)}

=max{d2(xn−1, xn+1),d(xn−1, xn) ·d(xn+1, xn+2),d(xn−1, xn) ·d(xn+1, xn+2)}

=max{d2(xn−1, xn+1),d(xn−1, xn) ·d(xn+1, xn+2)}.

Again, we deal with three different cases as follows:

Case (i): If M(xn, xn−1)= d2(xn−1, xn+1), then using (3.11), we get

d2(xn, xn+2)≤ψ(d2(xn−1, xn+1))

≤ψn−1(d2(x0, x2))

=ψn−1(e∗0)→ 0 as n →∞.

Case (ii): If M(xn, xn−1)= d(xn−1, xn) ·d(xn+1, xn+2) then using (3.11), we get

d2(xn, xn+2)≤ψ(d(xn−1, xn) ·d(xn+1, xn+2))

≤ψn−1(d(x0, x1))

=ψn−1(e0)→ 0 as n →∞.

Case (iii): If M(xn−1, xn+1)= d(xn−1, xn) ·d(xn+1, xn+2) then by (3.11), we get

d2(xn, xn+2)≤ψ(d2(xn+1, xn+2))

≤ψn+1(d(x0, x1))

=ψn+1(e0)→ 0 as n →∞
From Case (i)-Case (iii), we get

e∗n = d2(xn, xn+2)→ 0 as n →∞. (3.12)

d2(xn+2, xn)= d2(Txn+1,Txn−1)

≤α(xn+1, xn−1)d2(Txn+1,Txn−1)

≤ψ(M(xn+1, xn−1)), for all n ≥ 1, (3.13)

where

M(xn+1, xn−1)=max{d2(xn+1, xn−1),d(xn+1,Txn+1) ·d(xn−1,Txn−1),

d(xn+1,Txn+1) ·d(xn+1,Txn−1)}

=max{d2(xn+1, xn−1),d(xn+1, xn+2) ·d(xn−1, xn),d(xn+1, xn+2) ·d(xn+1, xn)}

=max{d2(xn+1, xn−1),d(xn+1, xn+2) ·d(xn−1, xn),d(xn+1, xn+2) ·d(xn+1, xn)}.

Again, we deal with three different cases as follows:
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Case (i): If M(xn+1, xn−1)= d2(xn+1, xn−1) then using (3.13), we get

d2(xn+2, xn)≤ψ(d2(xn+1, xn−1))

≤ψn+1(d(x2, x0))

=ψn+1(l∗0)→ 0 as n →∞.

Case (ii): If M(xn+1, xn−1)= d(xn+1, xn+2) ·d(xn−1, xn) then using (3.13), we get

d2(xn+2, xn)≤ψ(d2(xn+1, xn+2))

≤ψn+1(d2(x0, x1))

=ψn+1(e0)→ 0 as n →∞.

Case (iii): If M(xn+1, xn−1)= d(xn+1, xn+2) ·d(xn+1, xn) then using (3.13), we get

d2(xn+2, xn)≤ψ(d2(xn−1, xn))

≤ψn−1((d2(x0, x1))

=ψn−1(e0)→ 0 as n →∞. (3.14)

From (3.12) and (3.14), we deduce that

lim
n→∞d2(xn, xn+2)= 0= lim

n→∞d2(xn+2, xn).

Step 2: We shall prove that {xn} is a rectangular quasi b-Cauchy sequence, that is,

lim
n→∞d2(xn, xn+p)= 0= lim

n→∞d2(xn+p, xn), for all p ∈ N.

Case (i): Suppose that for some n,m ∈ N with m > n and xn = xm, using (3.10),

d2(xn, xn+1)= d2(xn,Txn)

= d2(xm,Txm)

= d2(xm, xm+1)

≤ψm−n(d2(xn, xn+1))

≤ sψ(d2(xn, xn+1))

< d2(xn, xn+1),

which is a contradiction.

Case (ii): Suppose that for some n,m ∈ N with m > n, and xn = xm, using (3.10),

d2(xm+1, xm)= d2(Txm, xm)

= d2(Txn, xn)

= d2(xn+1, xn)

≤ψn−m(d2(xm+1, xm))

≤ sψ(d2(xm+1, xm))

< d2(xm+1, xm),

which is a contradiction.
Therefore, from Case (i) and Case (ii), xn ̸= xm for n ̸= m. The case p = 1 and p = 2 is proved.
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Now we take p ≥ 3; arbitrary. We discriminate four different cases as follows:

Case (i): Let p = 2m, where m ≥ 2. By rectangular inequality, we get

d2(xn, xn+2m)≤ s[d2(xn, xn+2)+ sd2(xn+2, xn+3)+ sd2(xn+3, xn+2m)]

≤ sd2(xn, xn+2)+ sd2(xn+2, xn+3)+ sd2(xn+3, xn+2m)

+ s2[xn+3, xn+4)+d(xn+4, xn+5)+d(xn+5, xn+2m)

= sd(xn, xn+2)+ sd(xn+2, xn+3)+ s2d2(xn+3, xn+4)+ s2d2(xn+4, xn+5)

+ s2d2(xn+5, xn+2m)
...

≤ sd2(xn, xn+2)+ s3d2(xn+2, xn+3)+ s4d2(xn+3, xn+4)

+ s5d2(xn+4, xn+5)+ s2md2(xn+2m−1, xn+2m)

= sd2(xn, xn+2)+
n+2m−1∑
k=n+2

sk−n+1d2(xk, xk+1)

≤ sd2(xn, xn+2)+
n+2m−1∑
k=n+2

skψk(e0)

= sd2(xn, xn+2)+
∞∑

k=n+2
skψk(e0).

From (3.14),

lim
n→∞d2(xn, xn+2)= 0

and
∞∑

k=n+2
skψk(e0)→ 0 as n →∞.

Therefore,

lim
n,m→∞d2(xn, xn+2)= 0.

Case (ii): Let p = 2m+1, where m ≥ 1. By rectangular inequality, we get

d2(xn, xn+2m+1)≤ s[d2(xn, xn+1)+ sd2(xn+1, xn+2)+ sd2(xn+2, xn+2m+1)]

≤ sd2(xn, xn+1)+ sd2(xn+1, xn+2)+ sd2(xn+1, xn+2)+ s2d2(xn+2, xn+3)

+ s2d2(xn+3, xn+4)+ s2d2(xn+4, xn+2m+1)]
...

≤ sd2(xn, xn+1)+ s2d2(xn+1, xn+2)

+ s3d2(xn+2, xn+3)+ s4d2(xn+3, xn+4) . . .+ s2m+1d2(xn+2m, xn+2m+1)

=
n+2m∑
k=n

sk−n+1d2(xk, xk+1)

=
n+2m∑
k=n

sk−n+1ψk(e0)
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≤
n+2m∑
k=n

skψk(e0)

=
∞∑

k=n
skψk(e0)→ 0 as n →∞.

Thus, we obtain

d2(xn, xn+2m+1)= 0.

Case (iii): Let p = 2m, where m ≥ 2. By rectangular inequality, we get

d2(xn+2m, xn)≤ s[d2(xn+2m, xn+2m−2)+ sd2(xn+2m−2, xn+2m−3)+ sd2(xn+2m−3, xn)]

≤ sd2(xn+2m, xn+2m−2)+ sd2(xn+2m−2, xn+2m−3)+ s2d2(xn+2m−3, xn+2m−4)

+ s2d2(xn+2m−4, xn+2m−5)+ s2d2(xn+2m−5, xn)
...

≤ sd2(xn+2m, xn+2m−2)+ sn+2m−2d2(xn+2m−2, xn+2m−3)

+ sn+2m−3d2(xn+2m−3, xn+2m−4)+ sn+2m−4d2(xn+2m−4, xn+2m−5) . . .

+ sn−1d2(xn−1, xn)

= sd2(xn+2m, xn+2m−2)+
n+2m−1∑
k=n−1

skd2(xk, xk+1)

≤ sd2(xn+2m, xn+2m−2)+
n+2m−1∑
k=n−1

skψk(l∗0)

≤ sd2(xn+2m, xn+2m−2)+
∞∑

k=n−1
skψk(l∗0).

Since

lim
n,m→∞d2(xn+2m, xn+2m−2)= 0 and

∞∑
k=n−1

skψk(l∗0)→ 0 as n →∞,

we have

lim
n,m→∞d2(xn+2m, xn)= 0.

Case (iv): Let p = 2m+1, where m ≥ 1. By the rectangular inequality, we get

d2(xn+2m+1, xn)≤ s[d2(xn+2m+1, xn+2m)+ sd2(xn+2m, xn+2m−1)+ sd2(xn+2m−1, xn)]

≤ sd2(xn+2m+1, xn+2m)+ sd2(xn+2m, xn+2m−1)+ s2d2(xn+2m−1, xn+2m−2)

+ s2d2(xn+2m−2, xn+2m−3)+ s2d2(xn+2m−3, xn)

= sd2(xn+2m, xn+2m−2)+ sd2(xn+2m, xn+2m−1)

+ s2d2(xn+2m−1, xn+2m−2)+ s2d2(xn+2m−2, xn+2m−3)+ s2d2(xn+2m−3, xn)
...

≤ sn+2m−1d2(xn+2m+1, xn+2m)+ sn+2md2(xn+2m, xn+2m−1)

+ sn+2m−1d2(xn+2m−1, xn+2m−2)+ sn+2m−2d2(xn+2m−2, xn+2m−3) . . .
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+ sn+1d2(xn+1, xn)

=
n+2m∑
k=n+1

skd2(xk+1, xk)

=
n+2m∑
k=n+1

sk−n+1ψk(l0)

≤
n+2m∑
k=n+1

skψk(l0)

≤
∞∑

k=n+1
skψk(l0)→ 0 as n →∞.

Thus, we obtain

d2(xn+2m+1, xn)= 0.

Finally, from Case (i)–Case (iv), we get

lim
n→∞d2(xn, xn+p)= 0= lim

n→∞d2(xn+p, xn), for all p ≥ 3.

Thus, {xn} is a rectangular quasi b-sequence in (X ,d).
Since X is a complete rectangular quasi b-metric space, there exists u ∈ X such that

lim
n→∞xn = u, i.e., lim

n→∞d2(xn,u)= 0= lim
n→∞d2(u, xn). (3.15)

Now, we show that u is a fixed point of T .
Since T is a continuous, from (3.15), we have u = lim

n→∞xn+1 = lim
n→∞Txn = T( lim

n→∞xn) = Tu,
which gives Tu = u. Thus u is fixed point of T .

Now, we provide the succeeding fixed point theorem by withdraw the continuity supposition
of T from Theorem 3.2.

Theorem 3.3. Let (X ,d) be a complete rectangular quasi b-metric space and T : X → X be
generalized (α,ψ)-contraction mapping. Suppose that

(I) T is an α admissible mapping;

(II) there exists x0 ∈ X such that α(x0,Tx0)≥ 1, α(Tx0, x0)≥ 1, α(x0,T2x0)≥ 1 and
α(T2(x0, x0))≥ 1;

(III) if {xn} is a sequence in X such that α(xn, xn+1) for all n ≥ 0 and xn → x ∈ X as n →∞, then
α(xn, x)≥ 1, for all n ≥ 0. Then, T has a fixed point.

Proof. Succeeding the proof of Theorems 3.2, we know that the sequence {xn} defined by
xn+1 = Txn for all n ≥ 0 is a rectangular quasi b-convergence to a point u ∈ X . It is sufficient to
show that T acknowledge a fixed point. By rectangular inequality property of ψ, and (iii), we
have

d2(u,Tu)≤ sd2(u, xn)+ sd2(xn, xn+1)+ sd2(xn+1,Tu)

= sd2(u, xn)+ sd2(xn, xn+1)+ sd2(Txn,Tu)

≤ sd2(u, xn)+ sd2(xn, xn+1)+ sα(xn,u)d2(Txn,Tu)
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≤ sd2(u, xn)+ sd2(xn, xn+1)+ sψM(xn,u), (3.16)

where

M(xn,u)=max{d2(xn,u),d(xn, xn+1) ·d(y,T y),d(x,Tx) ·d(x,T y)}

=max{d2(xn,u),d(xn,Txn) ·d(y,T y),d(x,Tx) ·d(x,T y)}

=max{d2(xn,u),d(xn,Txn) ·d(u,Tu),d(xn,Txn) · (xn,Tu)}.

We deal with three different cases as follows:

Case (i): If M(xn,u)= d2(xn,u), then using (3.16), we get

d2(u,Tu)≤ sd2(u, xn)+ sd2(xn, xn+1)+ sψ(d2(u, xn))

< sd2(u, xn)+ sd2(xn, xn+1)+ (d2(u, xn)).

Letting n →∞ in the above inequality, from (3.10) and (3.15), we get d2(Tu,u)≤ 0.

Case (ii): If M(xn,u)= d(xn, xn+1) ·d(u,Tu), then by (3.16), we get

d2(u,Tu)≤ sd2(u, xn)+ sd2(xn, xn+1)+ s2ψ(d2(xn, xn+1))

< sd2(u, xn)+ sd2(xn, xn+1)+ (d2(xn, xn+1)).

Letting n →∞ in the above inequality, from (3.10) and (3.15), we get d2(u,Tu)≤ 0.

Case (iii): If M(xn,u)= d(xn,Txn) ·d(xn,Tu), then by (3.16), we get

d2(u,Tu)≤ sd2(u, xn)+ sd2(xn, xn+1)+ sψ(d2(xn,Tu))

< sd2(u, xn)+ sd2(xn, xn+1)+ (d2(xn,Tu)).

Letting n →∞ in the above inequality, from (3.10) and (3.15), we get 0≤ 0, which is trivial.
Clearly, d2(u,Tu)≥ 0, from Case (i)-Case (iii), we obtain

d2(u,Tu)= 0. (3.17)

Also,

d2(Tu,u)≤ sd2(Tu, xn)+ sd2(xn, xn+1)+ sd2(xn+1,u)

= sd2(Tu,Txn−1)+ sd2(xn, xn+1)+ sd2(xn+1,u)

≤ sα(u, xn−1)d2(Tu,Txn−1)+ sd2(xn, xn+1)+ sd2(xn+1,u)

≤ sψ(M(u, xn−1))+ sd2(xn, xn+1)+ sd2(xn+1,u), (3.18)

where

M(u, xn−1)=max{d2(u, xn−1),d(u,Tu) ·d(xn−1,Txn−1),d(u,Tu) ·d(u,Txn−1)}

=max{d2(u, xn−1),d(u,Tu) ·d(xn−1, xn),d(u,Tu) ·d(u, xn)}.

Again, we deal with three different cases as follows:

Case (i): If M(u, xn−1)= d2(u, xn−1), then using (3.18), we get

d2(Tu,u)≤ sψ(d2(u, xn−1))+ sd2(xn, xn+1)+ sd2(xn+1,u)

< d2(u, xn−1))+ sd2(xn, xn+1)+ sd2(xn+1,u).
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Letting n →∞ in the above inequality, using from (3.10) and (3.15), we get d2(u,Tu)≤ 0.

Case (ii): If M(u, xn−1)= d(u,Tu) ·d(xn−1, xn), then by (3.18), we get

d2(Tu,u)≤ sψ(d(u,Tu)d(xn−1, xn))+ sd(u,Tu) ·d(xn−1, xn)+ sd2(xn,u)

< d(u,Tu) ·d(xn−1, xn))+ sd(xn−1, xn)+ sd2(xn,u).

Letting n →∞ in the above inequality, using (3.10) and (3.15), we get

d2(u,Tu)≤ 0.

Case (iii): If M(u, xn−1)= d(u,Tu) ·d(u, xn), then (3.18), we get

d2(Tu,u)≤ sψ(d(u,Tu)d(u, xn))+ sd2(xn, xn+1)+ sd2(xn+1,u)

< d(u,Tu) ·d(u, xn))+ sd(u, xn)+ sd2(xn+1,u).

Letting n →∞ in the above inequality, using (3.10), (3.15) and (3.17), we get 0 ≤ 0 which is
trivial. Clearly, d2(Tu,u)≥ 0, from Case (i)–Case (iii), we obtain

d2(Tu,u)= 0. (3.19)

From (3.17) and (3.19), it follows that d2(u,Tu)= 0= d2(Tu,u). So that, Tu = u. Thus u has a
fixed point of T .

To confirm the uniqueness of fixed point of T, we will consider the following condition.

Property U. For all x, y ∈ Fix(T), we have α(x, y)≥ 1 and α(y, x)≥ 1, where Fix T denotes the
set of all fixed points of T .

Theorem 3.4. Adding property U to the hypothesis of Theorem 3.2 (resp., Theorem 3.3) one
obtain uniqueness of the fixed point of T .

Proof. From the proofs of Theorem 3.2 and Theorem 3.3, Fix (T) ̸=φ. Suppose that u and v are
two distinct fixed points of T . By property U , α(Tu,Tv)=α(u,v)≥ 1 and α(Tv,Tu)=α(v,u)≥ 1.

Thus, by α-admissibility of T and the above relation, we obtain

d2(u,v)≤α(u,v)d2(u,v)=α(Tu,Tv) ·d2(u,v)≤ψ(M(u,v)),

where

M(u,v)=max{d2(u,v),d(u,Tu) ·d(v,Tv),d(u,Tu) ·d(u,Tv)}

=max{d2(u,v),d(u,u) ·d(v,v),d(u,u) ·d(u,v)}

=max{d2(u,v)}.

Since sψ(t)< t, for all t > 0, and the inequality above, we get

d2(u,v)≤ψ(d2(u,v))≤ sψ(d2(u,v))< d2(u,v), (3.20)

which is a contradiction. Similarly,

d2(v,u)≤α(v,u)d2(v,u)=α(Tv,Tu) ·d2(v,u)≤ψ(M(v,u)),
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where

M(v,u)=max{d2(v,u),d(v,Tv) ·d(u,Tu),d(u,Tv) ·d(u,Tu)}

=max{d2(v,u), ·d(v,v) ·d(u,u),d(u,u) ·d(v,u)}

=max{d2((v,u))}.

Since sψ(t)< t, for all t > 0, and the inequality above, we get

d2(v,u)≤ψ(d2(v,u))≤ sψ(d2(v,u))< d2(v,u), (3.21)

which is a contradiction. From (3.20) and (3.21), we get that d2(u,v)= d2(v,u)= 0. Therefore,
u = v.

Thus T has a unique fixed point.

Corollary 3.5. Let (X ,d) be a complete rectangular quasi b-metric space and T : X → X be an
(α,ψ)-contraction quadratic type mapping, that is,

α(x, y)d2(Tx,T y)≤Ψ(d2(x, y)), for all x, y ∈ X .

Then T has a fixed point.

Remark 3.6. By taking s = 1 in Corollary 3.5, we get similar results of Karapinar [13] and
Lakzian [18] in quadratic version.

Proof. The results follows by taking M(x, y)= d2(x, y), for all x, y ∈ X in the proof of Theorem 3.2
(or Theorem 3.3).

Remark 3.7. By taking s = 1 in Corollary 3.5, we get the works by Khuangsatung et al. [16] in
quadratic form as follows:

Corollary 3.8. Let (X ,d) be a complete rectangular quasi b-metric space and T : X → X be a
continuous quadratic type mapping if there exists function ψ ∈Ψ such that

d2(Tx,T y)≤Ψ(d2(x, y)), for all x, y ∈ X .

Then T has a unique fixed point.

Proof. The results follows by taking α(x, y)= 1 and M(x, y)= d2(x, y), for all x, y ∈ X in the proof
of Theorem 3.2.

Corollary 3.9. Let (X ,d) be a complete rectangular quasi b-metric space and T : X → X be a
continuous quadratic type mapping. Suppose that there exists k ∈ [0,1) such that

d2(Tx,T y)≤ k(d2(x, y)), for all x, y ∈ X .

Then T has a unique fixed point.

Proof. The results follows by taking ψ(t)= kt, where k ∈ [0,1) and t ≥ 0 in Corollary 3.5.
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4. Application to Integral Equation
In this section, we provide an existence theorem for a solution of the following integral equation,

x(t)=
∫ 1

0
K(t, r, x(r)) dr, (4.1)

where K : [0,1]× [0,1]×R → R is continuous functions.
Throughout this section, let X = (C[0,1],R) be the set of real continuous functions defined

on [0,1]. Take the rectangular quasi b-metric d : X × X → [0,∞) given by

d(x, y)=
{
∥(x− y)∥4∞+∥x∥2∞, if x ̸= y,
0, if x = y,

where

∥u∥∞ = max
r∈[0,1]

|u(s)|, for all u ∈ X .

It is know that (X ,d) is a complete rectangular quasi b-metric space s = 3
2 . Now we prove the

following result.

Theorem 4.1. Suppose the following hypotheses hold

(I) there exists k ∈ (0,1) and g : X × X → [0,∞) such that for all x, y ∈ X with x(t)≤ y(t) for all
t ∈ [0,1] and for every r ∈ [0,1], we have

0≤ |K(t, r, x(r))−K(t, r, y(r))| ≤ g(t, r)|x− r|,
and

sup
t∈[0,1]

∫ 1

0
g(t, r) dr = k.

(II) K is a non-decreasing in its third variable;

(III) there exists x0 ∈ X such that for all t ∈ [0,1], we have

x0(t)≤
∫ 1

0
K(t, r, x0(r))dr

and

x0(t)≤
∫ 1

0
K(t, r,

∫ 1

0
K(t, r, x0(r)dr) dr.

Then (4.1) has a solution in X .

Proof. For all x ∈ X and t ∈ [0,1], acquaint the mapping T : X → X by Tx(t)= ∫ 1
0 K(t, r, x(r))dr,

and α : X × X → [0,∞) by

α(x, y)=
{

1, if x ≤ y,
0, otherwise.

Take ψ(t) = kt, so ψ(t) < t
s (since s = 3

2 ). We give x, y ∈ X , x ≤ y if and only if x(t) ≤ y(t), for all
t ∈ [0,1]. Let x, y ∈ X such that α(x, y) ≥ 1, so x ≤ y, hence x(t) ≤ y(t) for all t ∈ [0,1]. Thus, by
condition (i),

|Tx(t)−T y(t)|2 ≤
∫ 1

0
|K(t, r, xr −K(t, r, yr|2dr
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≤
∫ 1

0
g(t, r)|x(r)− y(r)|2dr

=
∫ 1

0
g(t, r)

√
(x(r)− y(r))4dr

≤ k4√∥x− y∥4
∞.

Again,

|Tx(t)|2 ≤
∫ 1

0
|K(t, r, xr|2dr

≤
∫ 1

0
g(t, r)|x(r)|2dr

≤ k2∥x∥2
∞.

We deduce that for all x, y ∈ X with x ≤ y,

d2(Tx−T y)= ∥Tx(t)−T y(t)∥4
∞+∥x∥2

∞
≤ k4∥x− y∥4

∞+k2∥x∥2
∞

≤ k2d2(x, y)

=ψ(d2(x, y))

=ψ(M(x, y)).

Since K is non decreasing in its third variable, so for all x, y ∈ X with x ≤ y, we get
T2x(t) ≤ T2 y(t) for all t ∈ [0,1], that is if α(x, y) ≥ 1, we obtain α(Tx,T y) ≥ 1. Furthermore
the condition (iii) yields that there exists x0 ∈ X such that α(x0,Tx0) ≥ 1, α(Tx0, x0) ≥ 1 and
α(x0,T2x0)≥ 1 and α(T2x0, x0)≥ 1. Therefore, all conditions of Theorem 3.3 are confirmed with
s = 3

2 and hence T has a fixed point, which is a solution of (4.1) in X .
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