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Abstract. An epidemic is defined as an unusually large, short-term disease outbreak. Various factors
influence a disease’s spread from person to person. These include the infectious again itself, its mode
of transmission, infectious period and its susceptibility and resistance. In this work, we consider a
system of non-linear differential equations which constructed as a mathematical model of disease
due to Ebola Virus Disease. This model is divided into five compartments as SIRDP (Susceptible-
Infected-Recovered-Deceased-Pathogens). Further, we solve this model by one of the novel techniques
the Differential Transform Method (DTM). Moreover, the simulation of solution derived by DTM is
compared with VIM.
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1. Introduction
In 1976, near the Ebola river is now the Democratic Republic of Congo, the Ebola virus was
initially detected (Ndanguza et al. [25], and Rachah and Torres [26]). Since then, the virus
has infected humans on a sporadic basis,causing outbreaks in a number of African countries.
The origin of the Ebola virus is unknown to scientists. They believe that EVD is animal-borne,
with bats or nonhuman primates as the most likely source based on similar viruses. Virus
carrying in animals such as apes, monkeys, duikers and humans can spread the virus to other
animal and humans. Only four of the viruses have caused sickness in humans (Ebola, Sudan,
Ta Forest, Bundibugyo). Individuals get diagnosed with the disease by close interaction with
animal carcasses, biological fluids and cells. The Infection then replicates to more persons by
direct contact with the body fluids of an EVD patient or a person who has died from the disease.
When a person communicates with infectious bodily excretions or objects that are contaminated,
it could occur. The virus then penetrates via cracks in the skin or mucous membranes in the eyes,
nose and mouth. Physical intercourse with those who are sick with EVD or has rehabilitated
with it can alert individuals to the virus. After healing from the sickness, the disease can be
observed in various bodily fluids. Furthermore, the Ebola virus is not recognized to still be
spread through food. Moreover, in certain parts of the world, the Ebola virus can be transmitted
by touching and eating wild animal meat or hunting Ebola-infected wild creatures. There seems
to be no evidence that mosquitoes or other insects may spread the Ebola virus. Signs can develop
somewhere between 12 and 20 days after viral transmission, with just an average of 8 to 10
days. As the individual goes worse, the illness generally develops from ‘dry’ symptoms (fever,
aches and pains, and weariness) to ‘wet’ symptoms (diarrhea and vomiting) (Agusto et al. [2],
Area et al. [4], Berge et al. [7], Bibby et al. [9], Chowell et al. [10], Fisman et al. [11], Ivorra et
al. [16], Juga et al. [17], and Leroy et al. [22,23], 1).

The keynotes of the transmission of the disease helps us to frame SIR (Susceptible-Infected-
Recovered) model, which usually shows the flow design linking the compartments. The origin of
such model works start began by Ross [27] in 1910, Ross and Hudson [28] in 1917, Kermack
and McKendic [19] in 1927, and Kendall [18] in 1956. Furthermore, SIRD-SIRV-MSIR-SEIR-
SEIS-MSEIR-MSEIRS etc. epidemological model has been developed by many with ordinary
differential equation either in deterministic or in stochastic (random) (Legrand et al. [20], and
Lekone et al. [21]).

In this paper, SIRDP (Susceptible-Infected-Recovered-Deceased-Pathogens) model is proposed
by Differential Transform Method (DTM) for analytical solution and Variation Iteration Method
(VIM) for numerical solution with their initial and parametric values. The linear and nonlinear
differential equation can be solved by DTM. The calculations are carried out by using DTM
and VIM to show the efficiency of the proposed model. The finding discloses that the DTM can
achieve more suitable results in predicting the solution of such problems (Akinboro et al. [3],
Ayaz [5], and Hatami et al. [13]).

1UNO - African Region, Ebola Disease, external situation report, (2022), https://www.afro.who.int/health-topics/
ebola-virus-disease
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2. Mathematical Formulation
The Ebola virus in the habitat is classified into five compartments: susceptible population f(t),
infected individuals l(t), recovered q(t), infected deceased w(t), and the Ebola virus pathogen in
the environment is classified as g(t). Various equations have been used to explain the model
and its behavior, including [24]

df(t)
dt

=α1 − [β1 l(t)+β2 w(t)+γ g(t)] f(t)−ς f(t) ;

dl(t)
dt

=α2 + [β1 l(t)+β2 w(t)+γ g(t)] f(t)− (ς+θ+ϵ ) l(t) ;

dq(t)
dt

= ϵ l(t)−ς q(t) ;

dw(t)
dt

= (ς+θ ) l(t)−ωw(t) ;

dg(t)
dt

= ν+χ l(t)+ρw(t)−ξ g(t), (2.1)

where the susceptible cases are increasing by migrant and new births at a constant rate α1, the
susceptible infectious one valued as β1, the diseased individual β2 and the polluted environment
γ might acquire infection. Natural death was computed as ς, and infectious human death was
calculated as θ. The ϵ is seen as a recovered person. The infected population may expand as a
result of the birth of an infected infant or the migration of an infected person, as demonstrated
by a constant rate α2. The rate of human entombing after death is ω. The constant rate at
which the Ebola virus disease is adulterate the environment through all possible ways such as
wildlife, fruit bats and so on is ν. Furthermore, χ, ξ and ρ are the rates at which infectious and
deceased persons gather the environment.

Table 1. Ebola virus pathobiology initial values 1

Initial value Values

f (0) 3470
l (0) 3317
q (0) 2287
w (0) 1171
g (0) 0

Table 2. Parametric values for Ebola Virus Disease (EVD) (Nazir et al. [24]

Variable Values Variable Values

α1 10.000 γ 0.01
α2 3.000 θ 0.05
β1 0.006 ρ 0.04
β2 0.012 ς 0.50
ν 0.000 ϵ 0.06
ω 0.800 χ 0.04
ξ 0.030
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3. Differential Transform Method and its Properties
In this section, we discussed about the basic definitions and operation properties of differential
transformation method. This method consists of a given system of differential equations and
related initial conditions. These are transformed into a system of recurrence equations that
finally leads to a system of algebraic equations whose solutions are the coefficients of a power
series solution.

The differential transformation of a function is defined as follows:

Y (p)= 1
p!

[
dp y(t)

dtp

]
t=t0

. (3.1)

In equation (3.1), y(t) is the original function and Y (p) is the transformed function, which is
called T-function. Differential inverse transform for Y (p) is defined as:

y(t)=
∞∑

p=0
Y (p)(t− t0)p . (3.2)

From equations (3.1) and (3.2), we obtain

y(t)=
∞∑

p=0

(t− t0)p

p!

[
dp y(t)

dtp

]
t=t0

. (3.3)

Equation (3.3) implies that the concept of differential transform is derived from the Taylor
series expansion and relative derivatives are calculated by an iterative way which is described
by the transformed equations of the original functions. The function y(t) is expressed as finite
series then (3.2) can be written

y(t)≈
N∑

p=0
Y (p)(t− t0)p (3.4)

with N is a convergence of natural frequency. For the properties and its applications one can
refer [5,13,30]

4. Variational Iteration Method
In 1997, He [15] introduced another semi-analytical method namely Variational Iteration
Method (VIM) (also see He [14]) to solve large class of non-linear differential equations effectively
and it is observed that this method helps to get fast convergence. Following He [15], there are
numerous works among those [1,3,8,12,29] have been considered and applied the VIM to solve
the system of linear or non-linear ODEs and obtained solutions.

Now, consider the non-linear equation:

Lβ(τ)+Nβ(τ)=α(τ),

where L is a linear operator, N is non-linear operator and α(τ) is analytic function. Due to VIM,
we take the correction functional as

β(n+1)(τ)=β(n)(τ)+
∫ τ

0
λ(t)(Lβ(t)+Nβ(t)−α(t))dt,

where λ is known as a general Lagrange multiplier and evaluated by variational theory, β(0)(τ)
is an initial approximation with possible unknowns and β̃(n)(τ) is a restricted variation, that is
δβ̃(n)(τ)= 0 (He [15]).
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5. DTM Proposal
Let F(t), L(t), Q(t), W(t) and G(t) represent the differential transform of f(t), l(t), q(t), w(t) and
g(t), respectively. With the properties of differential transform method, the recurrence relations
to each equation in Section 2 can be written as:

F(p+1)= 1
(p+1)

[
α1δ(p)−

p∑
r=0

F(r)(β1L(p− r)+β2W(p− r)+γG(p− r))−ςF(p)

]
;

L(p+1)= 1
(p+1)

[
α2δ(p)+

p∑
r=0

F(r)(β1L(p− r)+β2W(p− r)+γG(p− r))− (ς+θ+ϵ)L(p)

]
;

Q(p+1)= 1
(p+1)

[ϵL(p)−ςQ(p)];

W(p+1)= 1
(p+1)

[(ς+θ)L(p)−ωW(p)];

G(p+1)= 1
(p+1)

[νδ(p)+χL(p)+ρW(p)−ξG(p)]. (5.1)

Additionally, applying the initial values and parameter values from Table 1 and Table 2 to form
the series of f(t), l(t), q(t), w(t) and g(t) upto certain orders by inverse differential transform
method we get:

f(t)= 3470−116075.3800 t+714521.3145 t2 +24337984.34 t3 +·· · ;

l(t)= 3317+115800.0100 t−778859.1625 t2 −24060529.42 t3 +·· · ;

q(t)= 2287−944.4800000 t+3710.120300 t2 −16195.53663 t3 +·· · ;

w(t)= 1171+887.5500000 t+31489.98275 t2 −151188.1752 t3 +·· · ;

g(t)= 179.5200000 t+2331.058400 t2 −9988.232980 t3 +·· · . (5.2)

6. VIM Proposal
Now we apply the variational iteration method to solve the equation (2.1) and we write the
correction functional as:

fn+1(t)= fn(t)+
∫ t

0
λ1(τ)

[
dfn(τ)

dτ
−α1 + (β1ln(τ)+β2wn(τ)+γ gn(τ))fn(τ)+ς fn(τ)

]
dτ,

ln+1(t)= ln(t)+
∫ t

0
λ2(τ)

[
dln(τ)

dτ
−α2 − (β1ln(τ)+β2wn(τ)+γgn(τ))fn(τ)+ (ς+θ+ϵ)ln(τ)

]
dτ,

qn+1(t)= qn(t)+
∫ t

0
λ3(τ)

[
dqn(τ)

dτ
−ϵ ln(τ)+ς qn(τ)

]
dτ,

wn+1(t)=wn(t)+
∫ t

0
λ4(τ)

[
dwn(τ)

dτ
− (ς+θ) ln(τ)+ωwn(τ)

]
dτ,

gn+1(t)= gn(t)+
∫ t

0
λ5(τ)

[
dgn(τ)

dτ
−ν−χ ln(τ)−ρwn(τ)+ξgn(τ)

]
dτ. (6.1)
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Here λi , i = 1,2,3,4,5 are general Lagrange multipliers. By making the above equations
stationary with respect to fn(t), ln(t), qn(t), wn(t), and gn(t) and by definition δfn(τ)= δln(τ)=
δqn(τ)= δwn(τ)= δgn(τ)= 0, provides

δfn+1(t)= δfn(t)+δ
∫ t

0
λ1(τ)

[
dfn(τ)

dτ
−α1 + (β1ln(τ)+β2wn(τ)+γ gn(τ))fn(τ)+ς fn(τ)

]
dτ ;

δln+1(t)= δln(t)+δ
∫ t

0
λ2(τ)

[
dln(τ)

dτ
−α2 − (β1ln(τ)+β2wn(τ)+γgn(τ))fn(τ)+ (ς+θ+ϵ)ln(τ)

]
dτ ;

δqn+1(t)= δqn(t)+δ
∫ t

0
λ3(τ)

[
dqn(τ)

dτ
−ϵ ln(τ)+ς qn(τ)

]
dτ ;

δwn+1(t)= δwn(t)+δ
∫ t

0
λ4(τ)

[
dwn(τ)

dτ
− (ς+θ) ln(τ)+ωwn(τ)

]
dτ ;

δgn+1(t)= δgn(t)+δ
∫ t

0
λ5(τ)

[
dgn(τ)

dτ
−ν−χ ln(τ)−ρwn(τ)+ξgn(τ)

]
dτ. (6.2)

Hence, the Lagrange multiplier can be easily identified as λi(τ)=−1, where i = 1,2,3,4,5. As a
result, the iterations are obtained as follows:

fn+1(t)= fn(t)−
∫ t

0

[
dfn(τ)

dτ
−α1 + (β1ln(τ)+β2wn(τ)+γ gn(τ))fn(τ)+ς fn(τ)

]
dτ ;

ln+1(t)= ln(t)−
∫ t

0

[
dln(τ)

dτ
−α2 − (β1ln(τ)+β2wn(τ)+γ gn(τ))fn(τ)+ (ς+θ+ϵ)ln(τ)

]
dτ ;

qn+1(t)= qn(t)−
∫ t

0

[
dqn(τ)

dτ
−ϵ ln(τ)+ς qn(τ)

]
dτ ;

wn+1(t)=wn(t)−
∫ t

0

[
dwn(τ)

dτ
− (ς+θ) ln(τ)+ωwn(τ)

]
dτ ;

gn+1(t)= gn(t)−
∫ t

0

[
dgn(τ)

dτ
−ν−χ ln(τ)−ρwn(τ)+ξ gn(τ)

]
dτ . (6.3)

Applying the initial approximations and parametric values, which in turn yields the successive
approximations for the above equations as:

f(t)= 3470.0−116075.3800 t+714521.3142 t2 +27364610.65 t3 +·· · ;

l(t)= 3317.0+115800.0100 t−778859.1622 t2 −27364610.65 t3 +·· · ;

q(t)= 2287.0−1073.240000 t+294.9365000 t2 +580.6435717 t3 +·· · ;

w(t)= 1171.0+887.5500000 t+31489.98275 t2 −151188.1751 t3 +·· · ;

g(t)= 179.5200000 t+2331.058400 t2 −9988.232977 t3 +·· · . (6.4)

7. Result And Discussion
As this work is proceeded by two methods, one by getting analytical solutions and another by
obtaining numerical solutions in the form of series expansion by differential transform method
and variation iteration method respectively. Comparison of both the methods (5.2) and (6.4)
gives the closest form of solution. Graphical representation (Figures 1–5) shows the behaviour
of the considered subclasses.
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Figure 1. Graphical representation for venera-
ble population f(t) at time t by DTM
and VIM

Figure 2. Graphical representation for infected
individuals l(t) at time t by DTM and
VIM

Figure 3. Graphical representation for recovered
population q(t) at time t by DTM and
VIM

Figure 4. Graphical representation for recovered
population q(t) at time t by DTM and
VIM

Figure 5. Graphical representation for spread
disease g(t) at time t by DTM and VIM
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8. Conclusion
The EVD (Ebola Virus Disease) model is considered for evaluation. Real-time situation has been
discussed and the spreading of virus is considered as the main stage, the disease transmission
stages and the rate of change that occurs while transmitting from one stage to another with
more infectious which causes the virus more efficient leading to death. Finally, the burial stage
takes important part in controlling the disease transmission. All these aspects are given in
the form of differential equations which are solved by using differential transform method to
acquire the analytic solution and graphical representation shows the situation and controlling
in spread of disease.

This Ebola virus has come across more than 15 outbreaks, either to end this epidemic or to
bring under control there are two ways:

(i) Instantaneous isolation of the infected individuals, and

(ii) Careful burial of deceased bodies.
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