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Abstract. Metaheuristic algorithms are invented or modified in order to solve complex optimization
problems at the global level. With the development of technology, almost every domain such as
engineering, industrial, medical etcetera is facing the problem of optimization. In order to solve
these problems, a number of algorithms have been discovered. One of the most recent optimization
algorithms is Sparrow Search Algorithm (SSA) which is famous for its good optimal ability along
with fast convergence, Although, the SSA has a lot of merits, it is still facing numerous drawbacks
namely falling into the local optima, steady convergence, etc. Therefore, we have proposed Niching
SSA (NSSA) by introducing the Niching technique in SSA for updating the position of followers and
scouters. This NSSA has been tested on 18 benchmark functions, speed reducer design, and also on
Himmelblau’s nonlinear optimization problem. In this work, we have examined NSSA from various
aspects like optimal value, average mean for convergence accuracy, and the standard deviation for
stability, and also have drawn the convergence curves through Matlab to check the convergence rate.
Moreover, we have applied the Wilcoxon Signed rank test on NSSA. In all these aspects, computational
results reveal that the performance of NSSA is superior with respect to SSA, GWO, PSO, and GSA.
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1. Introduction
Optimization is gaining the best in the company of accessible resources, although fascinating
the constraints. There is no limitation to optimization problems. If we take our sight on all
over the world then the maximum number of things need to be optimized. We also optimize our
day-to-day life such as we need the best job with more salary, the best house, etc. Similarly, in
every field such as doctoral, engineering, agriculture, stock marketing, data science, scientists,
mathematics, etc., we can see optimization problems. Mathematically there are various types of
optimization problems that depend upon the number of objective functions a problem have, types
of the objective function as well constraints, decision variable’s types, etc. We can understand
the types of optimization problems properly from Figure 1.

Figure 1. Types of optimization problems

In this paper, we are dealing with single-objective optimization problems. Consequently,
the standard non-linear optimization problem (Venter [29]) presented below in equation (1.1):

Minimize: f (x)

Subject to:


hi(x)≤ 0 i = 1, . . . ,n

g j(x)= 0 j = 1, . . . ,m

xL
k ≤ xk ≤ xU

k k = 1, . . . , p

(1.1)

In equation (1.1), f (x) displays the objective function which is going to be minimized
but sometimes it is going to be maximized, hi(x) are known as inequality constraints, g j(x)
represents equality constraints whereas the vector x = (x1, x2, . . . , xp) depicts the p design
variables. xL

k and xU
k are the lower and upper bounds of the design variables. After the discussion

on optimization problems, we can say there are various optimization problems in different fields.
So, to solve these different optimization problems there are many techniques exist in literature
namely exact algorithms, approximate algorithms, heuristic algorithms, and metaheuristic
algorithms (Desale et al. [4]). For each given optimization problem, exact algorithms always
offer the optimum answer. While a close optimum solution can be found using approximate
techniques. Heuristic algorithms are problem-specific and problem-dependent. A metaheuristic,
on the other hand, is a high-level, problem-independent algorithmic structure that provides a
set of recommendations or tactics. We can see the classification of optimization algorithms from
Figure 2.
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Figure 2. Classification of optimization algorithms

Even though there are many algorithms in the literature, as shown in Figure 2, researchers
continue to work on developing new algorithms and modifying or combining the ones that
already exist to find the best answer in terms of stability, convergence accuracy, and optimality.
There is a significant number of SI algorithms, like ABC (Karaboga [9]), GWO (Mirjalili et
al. [15]), ACO 1, PSO (Boeringer and Werner [3], and Sun et al. [27]), BBA (Nakamura et
al. [17]), etc. If we focus on the most current proposed SI algorithm then by Xue and Shen
in 2020 [36], the Sparrow Search Algorithm (SSA) is the most highlighted SI Algorithm. In
the optimization algorithm SSA, the goal is to find the best solution by exploring the search
space and adjusting the solutions iteratively. However, there are two common problems that
can arise in this algorithm:

Sliding into Local Optima: Optimization algorithms can sometimes get stuck in local optima,
which are suboptimal solutions that are better than their immediate neighbors but not the global
optimum.

Persistent Convergence: Some algorithms may converge too quickly or slowly, making it difficult
to find an optimal solution within a reasonable time frame.

Therefore, we presented a modified Niching Sparrow Search Algorithm (NSSA) to address
these drawbacks. In this NSSA, we present the SSA by using the Niching strategy for updating
follower and scouter positions. Niching strategy is incorporated into NSSA, is designed to
address these issues by promoting diversity in the solutions and encouraging exploration of
different regions of the search space of SSA. Here’s how NSSA can overcome these drawbacks:

1A. Akhtar, Evolution of ant colony optimization algorithm – a brief literature review, arXiv preprint
arXiv:1908.08007 (2019), DOI: 10.48550/arXiv.1908.08007.
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Sliding into Local Optima: NSSA incorporates Niching techniques to maintain multiple
candidate solutions in different niches (subregions of the search space). By doing so, it prevents
premature convergence toward a single local optimum. The Niching mechanism encourages the
algorithm to explore various niches, increasing the chances of discovering the global optimum.

Persistent Convergence: NSSA balances exploration and exploitation more effectively. The
Niching approach maintains a diverse set of solutions, preventing the algorithm from converging
too quickly. This allows NSSA to continue exploring the search space, especially if a better
solution exists outside the current niche.

Niching strategies in NSSA involves technique like fitness sharing. This technique ensure
that the algorithm does not focus exclusively on a single region of the search space but rather
spreads its search effort across multiple niches. This diversity helps NSSA to find high-quality
solutions efficiently and overcome the limitations associated with local optima and convergence.

In summary, NSSA addresses the drawbacks of SSA by incorporating Niching strategie that
promote diversity in the solutions, prevent premature convergence, and encourage exploration
of various niches within the search space. This allows NSSA to search for and potentially find
better solutions to complex optimization problems. The remaining paper is organized in the
manner shown below:

A summary of the literature on metaheuristic algorithms and also on SSA’s latest research is
shown in Section 2. Sparrow Search Algorithm is explained in Section 3 while Niching Technique
is covered in Section 4. Sections 5, 6, and 7 respectively discuss the Niching Sparrow Search
Algorithm, preparation of the experiment, and results of experiment and analysis. Section 8
provides an application of NSSA on engineering design problems. Section 9 ends the entire
effort at the end, and this paper presents the findings.

2. Literature Review
Researchers have developed, modified, and hybridized a variety of heuristic and metaheuristic
Swarm Intelligence (SI) optimization strategies to get the desired outcomes. As a result, we can
focus on the literature below for this. Rao et al. [22] presented the TLBO for solving optimization
problems of constrained mechanical design. By using a multiagent adaptive system known
as the SPARROW algorithm, Roopa [24] has conducted an inquiry to identify the component
cluster in parallel. The experiment’s findings were essential since they would be used to produce
effective component-based software architecture. By stabilizing the exploration techniques in
Cuckoo Search (CS), Mlakar [16] has given the hybrid cuckoo search algorithm as a solution
to engineering design optimization problems that include constraints. In order to address the
issue of low positioning accuracy relying on DV-Hop (positioning technique) in the Wireless
Sensor Network (WSN), Lei et al. [11] enhanced SSA. In order to strengthen SSA’s global search
capabilities, Peng et al. [19] applied it to the sensor network convergence problem for bridge
monitoring and achieved successful results. An Improved Sparrow Search Algorithm (ISSA) was
presented by Song et al. [26] to address the SSA’s shortcomings in beginning population quality,
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population variety, and searchability. In order to construct the initial population for a greater
quality of convergence, the ISSA used a chaotic method based on skew tent maps. Learning SSA
was recommended by Ouyang et al. [18] as a solution to the robot path planning issue and the
CEC 2017 test function. In order to study optimization problems and avoid the issue of local
minima dropping in the original SSA, Yang et al. [38] employed T-distribution mutation coupled
with chaotic mapping in adaptive SSA. An innovative sparrow search method was employed
by Wu et al. [34] to solve the problem of a TSP. Inadequate stagnation while applying to TSP
is another issue SSA faces in addition to falling into local optima. A cosine and sign search
approach based on a new greedy genetic SSA was employed to solve this issue. For the purpose
of forecasting the end-point phosphorus content of BOF, Quan et al.2 combined the SSA model
with the DELM model to create the ESSA-DELM. To avoid slipping into the local optimum and
to upgrade SSA’s ability to explore the world broadly, the Cauchy mutation and trigonometric
substitution mechanism were included. For managing issues such as dropping local minima and
a constant rate of convergence, Tang et al. [28] suggested a chaotic SSA. In order to overcome the
engineering difficulties, adaptive step and logarithmic spiral techniques were added to chaotic
SSA. The hybrid PSO and SSA were presented by Yang et al. [39] in order to anticipate software
problems. PSO and SSA were combined because SSA has great resilience, good stability, quick
convergence, and high search accuracy while PSO has a slow convergence but a high solution
accuracy. The best site for the wind turbine on the wind farm was discovered by SSA, according
to Kumar and Reddy [10]. Robot route planning issues have become a popular topic in the field
of research, according to Li [12]. To address the drawback of the traditional raster method
for path planning, SSA was developed. By employing a hybrid reverse learning technique
and iterative chaotic mapping that is indefinitely folded to address engineering optimization
problems with constraints, Wang et al. [31] updated SSA into the IHSSA algorithm. To address
issues with unmanned aerial vehicle path planning, Wang [30] has combined ESSA and PSO.
By incorporating a random walk method into SSA, Xie et al. [35] developed an enhanced SSA
with regard to local and global optimization problems. The Tent Lévy Flying Sparrow Search
Method (TFSSA), developed by Yan et al. [37], is used to choose the best subset of features in
the packing pattern for the reason of classification.Experimental findings support the benefits
of the given technique on other wrapper-based algorithms in relation to classification accuracy
improvement and feature selection reduction. A recent and reliable approach for tackling
optimization issues, the SSA, is reviewed by Gharehchopogh et al. [5]. They cover every article
on variations, enhancement, optimization, and hybridization in the SSA literature. Studies
show that the use of SSA has been equal to 32%, 36%, 28% and 4%, respectively, in the
aforementioned areas. Ren et al. [23] suggest the Multi-Strategy-Sparrow Search Algorithm
(MSSSA) as an enhanced optimization technique to address situations with extremely non-
linear optimization. An improved multi-strategies sparrow search algorithm (EMSSA) was given

2L. Quan, A. Li, G. Cui, and S. Xie, Using enhanced sparrow search algorithm-deep extreme learning
machine model to forecast end-point phosphorus content of BOF, Preprints 2021 (2021), 2021120192,
DOI: 10.20944/preprints202112.0192.v1.
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by Ma et al. [14] and is based on three strategies: the uniformity-diversification orientation
strategy, the dynamic evolutionary strategy, and the hazard-aware transfer strategy. These
three strategies particularly address the shortcomings of SSA. To overcome the problems that
SSA has, such as a propensity for zero locations and a tendency to slip into local optima, Huang
et al. [8] created a Non-uniform Mutation Sparrow Search Algorithm (NMSSA).

According to the literature mentioned above, Sparrow Search Algorithm (SSA)’s limitations
are continually being discovered by researchers. This inspired us to change SSA. For that reason
to address the drawbacks of SSA, we suggested a Niching Sparrow Search Algorithm (NSSA).
We use the Niching technique in traditional SSA. Then it was examined using 18 benchmark
test functions, the design of a speed reducer, and Himmelblau’s nonlinear optimization problem.

3. Sparrow Search Algorithm
The SSA algorithm primarily relies on the sparrows’ collective intelligence, ability to find
food, and anti-predator behaviour. There are numerous bird sparrow species, however, in this
experiment virtual sparrows were taken into account. They were divided into three groups:
leaders (producers), followers (scroungers), and scouters. Only 20% of the sparrows with high
levels of strength were employed as leaders, and the other 80% were followers. In order to
get food, the followers follow the leader’s directions. Leaders occasionally take on the role of
followers during this food-searching process, and vice versa, but the proportion of followers to
leaders does not change. In the meantime, when some sparrows sense danger nearby named
scouters, they direct the entire population to a safe region.

In this experiment, firstly initialization of the position of sparrows is needed. The population
(position of sparrows) can be expressed by the subsequent matrix:

X =


x1,1 x1,2 · · · x1,d
x2,1 x2,2 · · · x2,d

...
... . . . ...

xn,1 xn,2 · · · xn,d

 . (3.1)

In equation (3.1), n is the number of sparrows and d depicts the dimension of the variables to
be optimized. The position of leaders is updated by equation (3.2):

X t+1
i, j =

{
X t

i, j ·exp
( −i
α·itermax

)
if R2 < ST,

X t
i, j +Q ·L if R2 ≥ ST .

(3.2)

In equation (3.2), the index C j ranges from 1 to d, and the current iteration is denoted
as t. The value of α, which falls within the range of (0,1], is considered as a random number.
The notation X i, j represents the spatial position of the ith sparrow in the jth dimension.
The constant itermax signifies the maximum number of iterations. The term ST (ST ∈ [0.5,1.0])
serves as a safety threshold, while R2 (R2 ∈ [0,1]) functions as an alarm value. The symbol L
corresponds to a matrix of size 1×d, where each element is 1. The variable Q is generated as a
random number following a normal distribution.
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When R2 <ST, it indicates the absence of threats near the sparrows, enabling the locators
to search on a larger scale. On the other hand, when R2 ≥ST, it signifies the presence of threats
around the sparrows. In such cases, all sparrows immediately adjust their positions toward a
safe area.The position of followers is updated by equation (3.3):

X t+1
i, j =

Q ·exp
( X t

worst−X t
i, j

i2

)
if i > n

2 ,
X t+1

p +|X t
i, j − X t+1

p | · A+ ·L if i ≤ n
2 .

(3.3)

In equation (3.3), Xworst represents the current global worst position, while X p signifies the
optimal location chosen by the locator. The total count of sparrows is denoted as n. The matrix
A has a dimension of 1×d, where each element takes either the value 1 or −1. Furthermore, it
holds that A+ = AT(A · AT)−1. In cases, where i > n

2 , this indicates that the ith asker possesses
an unfavorable fitness value and consequently does not acquire any sustenance, potentially
leading to starvation. The update for the positions of scouters is governed by the subsequent
equation (3.4):

X t+1
i, j =

X t
best +β · |X t

i, j − X t
best| if f i > fg,

X t
i, j +K · ( |X t

i, j−X t
worst|

( f i− fw)+ε
)

if f i = fg.
(3.4)

In the provided equation (3.4), Xbest corresponds to the current global optimal location.
The parameter β, governing the step size, is drawn from a standard normal distribution of
random numbers, denoted as N(0,1). Additionally, K which lies within the range of [−1,1], is a
randomly generated number. The fitness value of the current sparrow is denoted as f i , while fw

and fg represent the present worst and global best fitness values, respectively. The constant ε
serves as the smallest value to prevent errors arising from division by zero. When f i > fg, it
indicates that the sparrows are situated at the periphery of the group. Conversely, when f i = fg ,
this signifies that the sparrows located in the population’s center are fully aware of potential
threats and should adjust their positions to be closer to others.

4. Niching Technique
Niching technique is a method used in evolutionary algorithms and optimization to address the
problem of premature convergence. It is also known as speciation, island model or multi-modal
optimization. Premature convergence occurs when the population in the evolutionary algorithm
converges too early to a suboptimal solution, and the algorithm is unable to explore the search
space further to find better solutions. Niching technique involves dividing the search space into
smaller subspaces or niches, where each niche represents a region that contains a potential
optimal solution. The goal is to maintain diversity in the population by assigning individuals
to different niches, where they can evolve and improve independently from each other. This
helps to avoid premature convergence and allows the algorithm to explore multiple regions of
the search space simultaneously. The Niching technique can be implemented using various
methods such as fitness sharing, crowding, and sharing trees. Fitness sharing is a method that
penalizes the fitness of individuals that are close to each other in the search space, to encourage
diversity. Crowding is a method that selects individuals in the population based on their distance
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from each other, where the individuals with the highest fitness and the largest distance are
selected. Sharing trees is a method that creates a hierarchical structure of subspaces, where
each subspace represents a niche, and the individuals are assigned to the niches based on their
position in the tree. Niching technique has been applied successfully in various optimization
problems, such as function optimization, clustering, and classification. It has been shown to
improve the performance of evolutionary algorithms, by maintaining diversity and exploring
multiple regions of the search space simultaneously. The advantage of Niching techniques
is that they have numerous solutions, allowing them to handle multi-modal functions and
successfully arrive at the global optimal basin.

In this research paper, the Niching technique is implemented by using fitness sharing
method. In fitness sharing method, the Fitness Euclidean-distance Ratio SSA (FER-SSA),
created in accordance with the FDR-PSO concept (Ahmed et al. [1], Liang et al. [13], Peram et
al. [20], and Qu et al. [21]), is used in the suggested technique to find the best neighborhood
solutions rather than the global best solution. The subsequent equation has been applied to
determine the FER between two sparrows, i as well as j:

FERi j =α · f (pi)− f (p j)
∥pi − p j∥

. (4.1)

In equation (4.1), pi and p j are the personal best positions of the ith and jth sparrows
respectively, and f (pi) and f (p j) illustrate their objective function values. The scaling factor α
is defined by the given equation (4.2):

α= ∥S∥
f (pb)− f (pw)

. (4.2)

In equation (4.2), f (pb) and f (pw) are the objective function values of best and worst
sparrows from the whole population, where ∥S∥ is the size of search space, which is evaluated
by diagonal distance as mentioned in equation (4.3), in which xu

r depicts the upper bound
whereas xl

r represents the lower bound of the search space’s rth dimension.

∥S∥ =
√√√√ D∑

r=1
(xu

r − xl
r)2 . (4.3)

Niching is an effective method that might satisfy the requirements of huge exploration
capability for solving optimization problems. To keep track of the best solutions found thus
far during the search process, we included the personal best features in the suggested
SSA algorithm. At each iteration, the sparrows will be directed towards more of the fittest
neighborhood values that can be determined by calculating the FER values. The advantage of
the FER value is that no parameter specification is required.

5. Niching Sparrow Search Algorithm
In each iteration time we calculate nbesti and the steps of determining the nbest for the ith
sparrow for FER-SSA are depicted below in Algorithm 1.
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Algorithm 1: The pseudocode of finding nbest for sparrow i for FER-SSA

Input: All sparrows from the whole the population

Output: Neighborhood best nbest depends upon the ith sparrow’s FER value

FER ← 0, tmp ← 0, nbesti ← pbesti

For i = 1 to n (total number of sparrows)

For j = 1 to n (total number of sparrows)

Calculate the FER using equation (4.1)

If j = 1

tmp = FER

Endif

If FER > tmp

tmp= FER

nbesti = pbest j

Endif

Endfor

Endfor

The nbesti is further used in order to modify the equations of followers as well as scouters.
Modification of the followers and scouters equations can be seen in equations 5.1 and (5.2),
respectively:

X t+1
i, j =

Q ·exp
(

X t
worst−X t

i, j
i2

)
if i > n

2 ,

nbesti +|X t
i, j −nbesti| · A+ ·L if i ≤ n

2 ,
(5.1)

X t+1
i, j =

nbesti +β · |X t
i, j −nbesti| if f i > fg,

X t
i, j +K ·

( |X t
i, j−X t

worst|
( f i− fw)+ε

)
if f i = fg.

(5.2)

Then, we define a Niching Constant (NC) as 0.5 and also create a random number (r i)
during every iteration period. If (r i) >NC, then followers and scouters are guided by nbesti

applying equations (5.1) and (5.2) respectively, if not, then followers and scouters are guided by
real equations (3.3) as well as (3.4) subsequently. We should keep one thing in our mind that
leaders always presented by real position update equation namely equation (3.2). The proper
working of the Niching Sparrow Search Algorithm is shown in Figure 3:

6. Preparation of the Experiment
6.1 Experimental Environment and Fixing Up the Parameters
Each of the five algorithms was executed on a Windows 10 platform, utilizing a 64-bit operating
system with 16.0 GB RAM, and operated on an Intel(R) Core(TM) i5-7300U CPU @ 2.60 GHz
processor. The implementation of all algorithms was carried out using MATLAB R2014a.

Communications in Mathematics and Applications, Vol. 15, No. 1, pp. 43–72, 2024



52 Niching Sparrow Search Algorithm for Solving Benchmark Problems. . . : G. K. Sidhu and J. Kaur

Figure 3. Flow chart of NSSA
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The assessment of the Niching Sparrow Search Algorithm’s (NSSA) optimality, effectiveness,
and convergence was conducted using eighteen standard benchmark functions. To validate
its performance, NSSA’s execution outcomes were compared against those of various other
metaheuristic techniques, including SSA, PSO, GWO, and GSA. Each technique employed an
identical number of search agents, totaling 100, and the maximum iterations were set at 1000
for all methods. The specific parameters for each algorithm are detailed in Table 1.

Table 1. Parameters of all five algorithms

Algorithm Parameter Value

Personal Learning Coefficient: c1 1.49445

PSO Global Learning Coefficient: c2 1.49445

Inertial weight: ω ω= 0.729

GWO Random numbers: r1, r2 [0,1], [0,1]

a⃗ Decrease linearly from 2 to 0

GSA G0 100

α 20

SSA Safety threshold: ST 0.8

NSSA Safety threshold: ST 0.8

6.2 Standard Test Functions
To check the algorithm appropriately, in every case then we run each algorithm 30 times
separately on every benchmark test function. Eighteen benchmark test functions (Song et
al. [25]) are taken out of which five are unimodal test functions, four multimodal test functions,
and nine fixed-dimension multimodal benchmark test functions corresponding to Tables 2-4,
respectively.

6.2.1 Unimodal Benchmark Test Functions
The unimodal test functions primarily represent the good exploitation and convergence
properties of an algorithm. In general, these test functions are intended to focus the algorithm
on exploiting while the optimization process is used to determine the global best.

6.2.2 Multimodal Benchmark Test Functions
Multimodal test functions personify multiple local optimal solutions. Through this, an algorithm
easily falls into the local optimal points. So, it can be used for evaluating the global and local
search abilities of the algorithm.

6.2.3 Fixed-dimension Multimodal Benchmark Test Functions
Fixed-dimension test functions are used to evaluate the full performance of the algorithm such
as convergence accuracy, convergence speed, and stability.
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Table 2. Unimodal benchmark test functions

FUNCTION DIM RANGE MIN

F1(z)=∑n
i=1 z2

i 30 [−100,100] 0

F2(z)=∑n
i=1 |zi|+∏n

i=1 |zi| 30 [−10,10] 0

F3(z)=max{|zi|, 1≤ i ≤ n} 30 [−100,100] 0

F4(z)=∑n−1
i=1 [100(zi+1 − z2

i )2 + (zi −1)2] 30 [−30,30] 0

F5(z)=∑n
i=1 iz4

i +random[0,1) 30 [−1.28,1.28] 0

Table 3. Multimodal benchmark test functions

FUNCTION DIM RANGE MIN

F6(z)=∑n
i=1−zi sin(

p|zi|) 30 [−500,500] −418.9829×DIM

F7(z)=∑n
i=1[z2

i −10cos(2πzi)+10] 30 [−5.12,5.12] 0

F8(z)=−20exp
(
−0.2

√
1
n

∑n
i=1 z2

i

)
−exp

( 1
n

∑n
i=1 cos(2πzi)

)+20+ e 30 [−32,32] 0

F9(z)= 1
4000

∑n
i=1 z2

i −
∏n

i=1 cos
(

zip
i

)
+1 30 [−600,600] 0

Table 4. Fixed-dimension multimodal benchmark test functions

FUNCTION DIM RANGE MIN

F10(z)=∑11
i=1

[
αi − z1(β2

i +βi z2)
β2

i +βi z3+z4

]2
04 [−5,5] 0.00030

F11(z)= 4z2
1 −2.1z4

1 + 1
3 z6

1 + z1z2 −4z2
2 +4z4

2 02 [−5,5] −1.0316

F12(z)=
(
z2 − 5.1

4π2 z2
1 + 5

π
z1 −6

)2 +10
(
1− 1

8π
)
cos z1 +10 02 [−5,5] 0.398

F13(z)= [1+ (z1 + z2 +1)2(19−14z1 +3z2
1 −14z2 +6z1z2 +3z2

2)]

×[30+ (2z1 −3z2)2(18−32z1 +12z2
1 +48z2 −36z1z2 +27z2

2)] 02 [−2,2] 3

F14(z)=−∑4
i=1 ci exp

(
−∑3

j=1αi j(z j − pi j)2
)

03 [0, 1] −3.86

F15(z)=−∑4
i=1 ci exp

(
−∑6

j=1αi j(z j − pi j)2
)

06 [0, 1] −3.32

F16(z)=−∑5
i=1

[
(z−αi)(z−αi)T + ci

]−1 04 [0, 10] −10.1532

F17(z)=−∑7
i=1[(z−αi)(z−αi)T + ci]−1 04 [0, 10] −10.4028

F18(z)=−∑10
i=1[(z−αi)(z−αi)T + ci]−1 04 [0, 10] −10.5363

7. Experimental Results and Its Analysis
In this paper, we performed 30 independent runs of all five algorithms namely NSSA, SSA, PSO,
GSA, and GWO on 18 standard benchmark test functions given in Tables 2-4 and calculated the
optimal value, worse value, average value (mean), and standard deviation also. The optimal
value and worse value test the optimality whereas the mean value resents convergence accuracy
and the standard deviation represents the stability of every algorithm. Implementation of all
algorithms on the benchmark problems has been done through MATLAB. The results of every
algorithm are represented in Tables 5-6.
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Table 5. Comparative output analysis of test functions (F1-F9)

Fun Algorithm Best Worse Ave Std
NSSA 0.0 0.0 0.0 0.0

F1 SSA 0.0 0.0 0.0 0.0
GWO 1.0991e-88 5.3324e-84 2.38075432e-85 9.68740481e-85
PSO 3.529e-24 1.0586e-20 5.80739203e-22 1.94032827e-21
GSA 2.4014e-18 5.8305e-18 3.9482867e-18 8.5399790e-19
NSSA 0.0 0.0 0.0 0.0

F2 SSA 0.0 2.4363e-265 7.6134375e-267 0.0
GWO 3.1362e-50 1.5025e-48 3.10268267e-49 4.41283557e-49
PSO 6.699e-14 4.8535e-08 3.074544767e-09 1.117369736e-08
GSA 8.246e-09 1.2888e-08 1.051743e-08 1.26887657e-09
NSSA 0.0 0.0 0.0 0.0

F3 SSA 0.0 4.6668e-292 1.5557e-293 0.0
GWO 3.5385e-23 7.1014e-21 1.16876584e-21 1.42176540e-21
PSO 0.020903 0.25476 0.08997477 0.06528445
GSA 7.9489e-10 1.3805e-09 1.014846e-09 1.4645425296e-10
NSSA 1.0957e-10 1.6682e-06 1.25957e-07 3.10374e-07

F4 SSA 1.5554e-10 1.5809e-05 1.467534258e-06 3.93947986e-06
GWO 24.7159 27.1108 26.13573 0.603258538
PSO 0.68972 85.6878 33.557804 25.56565453
GSA 25.6993 26.1444 25.9632600 0.118978678
NSSA 2.1848e-07 0.00013039 2.4344642e-05 3.7290395e-05

F5 SSA 4.6705e-06 0.00019127 9.392409e-05 5.31149469e-05
GWO 7.033e-05 0.00052936 0.0002425677 0.00011887
PSO 0.0026019 0.021313 0.008172467 0.003795079
GSA 0.0020925 0.0095959 0.005225633 0.0019031837
NSSA −12569.4866 −8522.3346 −9428.2056767 1092.9226710

F6 SSA −9370.0224 −7770.875 −8520.775323 406.14073504
GWO −7469.0088 −3879.5123 −6153.069257 812.77481648
PSO −9628.1914 −8009.4179 −8849.01495 379.53600727
GSA −4421.6216 −2458.2552 −3084.6380033 470.23092778
NSSA 0.0 0.0 0.0 0.0

F7 SSA 0.0 0.0 0.0 0.0
GWO 0.0 0.0 0.0 0.0
PSO 30.8437 72.6319 46.1992033 10.262628085
GSA 0.99496 11.9395 6.76573067 2.5251881
NSSA 8.8818e-16 8.8818e-16 8.8818e-16 0.0

F8 SSA 8.8818e-16 8.8818e-16 8.8818e-16 0.0
GWO 7.9936e-15 1.5099e-14 1.02435933e-14 3.02079341e-15
PSO 9.992e-13 2.0119 0.60989333 0.69234175
GSA 1.2624e-09 1.9214e-09 1.5908967e-09 1.754857720e-10
NSSA 0.0 0.0 0.0 0.0

F9 SSA 0.0 0.0 0.0 0.0
GWO 0.0 0.02255 0.0012708367 0.00447732370
PSO 0.0 0.087839 0.017435953 0.01831456557
GSA 1.0671 4.0935 1.76911667 0.7651032719
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Table 6. Comparative output analysis of test functions (F10-F18)

Fun Algorithm Best Worse Ave Std
NSSA 0.00030749 0.00030749 0.00030749 0.0

F10 SSA 0.00030749 0.00030749 0.00030749 0.0
GWO 0.00030749 0.020363 0.00106757834 0.0036549778
PSO 0.00030749 0.020595 0.001109698 0.003694602
GSA 0.00089935 0.002361 0.00189657 0.00035837667
NSSA −1.0316 −1.0316 −1.0316 0.0

F11 SSA −1.0316 −1.0316 −1.0316 0.0
GWO −1.0316 −1.0316 −1.0316 0.0
PSO −1.0316 −1.0316 −1.0316 0.0
GSA −1.0316 −1.0316 −1.0316 0.0
NSSA 0.39789 0.39789 0.39789 0.0

F12 SSA 0.39789 0.39789 0.39789 0.0
GWO 0.39789 0.39789 0.39789 0.0
PSO 0.39789 0.39789 0.39789 0.0
GSA 0.39789 0.39789 0.39789 0.0
NSSA 3 3 3 0.0

F13 SSA 3 3 3 0.0
GWO 3 3 3 0.0
PSO 3 3 3 0.0
GSA 3 3 3 0.0
NSSA −3.8628 −3.8628 −3.8628 0.0

F14 SSA −3.8628 −3.8628 −3.8628 0.0
GWO −3.8572 −3.8549 −3.86184 0.00251404
PSO −3.8628 −3.8628 −3.8628 0.0
GSA −3.8628 −3.8628 −3.8628 0.0
NSSA −3.322 −3.2031 −3.29425667 0.05114877

F15 SSA −3.322 −3.2031 −3.25858667 0.0603318
GWO −3.322 −3.0867 −3.23738 0.08154989
PSO −3.322 −3.2031 −3.26255 0.06046631
GSA −3.322 −3.322 −3.322 0.0
NSSA −10.1532 −10.1532 −10.1532 0.0

F16 SSA −10.1532 −10.1532 −10.1532 0.0
GWO −10.1532 −5.0552 −8.9710667 2.17910880
PSO −10.1532 −2.63 −7.46191 3.023418997
GSA −10.1532 −2.6829 −7.0141 3.445013967
NSSA −10.4029 −10.4029 −10.4029 0.0

F17 SSA −10.4029 −10.4029 −10.4029 0.0
GWO −10.4028 −5.1286 −10.05109 1.3380811599
PSO −10.4029 −2.7659 −8.07438 3.146336541
GSA −10.4029 −10.4029 −10.4029 0.0
NSSA −10.5364 −10.5364 −10.5364 0.0

F18 SSA −10.5364 −10.5364 −10.5364 0.0
GWO −10.5363 −10.536 −10.5362167 0.00011167
PSO −10.5364 −2.4217 −9.54799 2.293219724
GSA −10.5364 −10.5364 −10.5364 0.0
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7.1 Analysis of Optimality and Convergence Accuracy
From Table 5, it could be visible that although NSSA gives the same fitness values as SSA gives
for the functions F1-F3 but in terms of convergence accuracy the proposed NSSA is excellent.
For the functions F4 and F5, NSSA delivers the best optimal results as well as convergence
accuracy as opposed to SSA, GWO, and GSA. So, the performance of NSSA for solving unimodal
test functions is superior in relation to exploitation.

Secondly, to test local search and global search abilities of our proposed NSSA we tested it
on four multimodal benchmark probelms (F6-F9). In Table 5, NSSA shows good results than
the other algorithms. For the F6 function, NSSA finds excellently global optimal solution by
exploring the whole search space whereas other algorithms can not find such type of solution
for this test function. Convergence accuracy of this F6 test function is also better in comparison
with SSA, PSO, and GSA. Optimality and convergence accuracy of NSSA and SSA is same
for solving F7-F9 test functions but better from PSO, GSA, and GWO. By concluding the
performance of NSSA for solving multimodal benchmark functions, we can say that NSSA has
robust expoloration ability.

Thirdly, the obtained solution of fixed-dimension multimodal benchmark functions are
delinated in Table 6. All the five algorithms represents better performance among the
exploration and exploitation on F11, F12, F13. For F10 test function all the algorithms gives
optimal value except GSA but best convergence accuracy for this test function only represent
by NSSA and SSA. NSSA, SSA, PSO, and GSA not only displays the same optimal value but
also the same convergence accuracy for the F14 function, whereas GWO has worse value for it.
For F15 benchmark function all five algorithms depicts similar optimal value but best average
value only expressed by NSSA. In order to test F16 test function, the best optimal solution is
found by all the five algorithms but the good convergence accuracy only presented by NSSA
and SSA. On testing F17 test function, we are getting optimal value by all the algorithms such
as NSSA, SSA, PSO, GWO, and GSA but by analysing the convergence accuracy we can find
that PSO is worse in some extent. In F18 test function, every tested algorithm shows the good
optimal value but convergence accuracy only displayed by NSSA, SSA, and GSA.

7.2 Analysis of Stability
In order to test the stability of all the algorithms for all the test functions, firstly we have
discuss about unimodal test function. From Table 5, it can be seen that standard deviation of
NSSA and SSA is zreo for the test functions F1-F3 that means NSSA and SSA are more stable
as compare with other three algorithms such as GWO, PSO, and GSA. While dealing with F4
and F5 test functions, NSSA have better stability in relation with other four algorithms like
SSA, PSO, GWO, and GSA. Thus, for all the five unimodal test function NSSA depicts better
stability as opposed to other algorithms.

In the second place, stability of all techniques for four (F6-F9) multimodal test functions is
tested. In Table 5 for F6 test function, we can see that the NSSA has good soluition accuracy
but poor stability. For F7 test function, stability of NSSA, SSA, and GWO is better. For F8
and F9 test functions, both NSSA and SSA represents the good stability in relation with other
techniques.
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Finally, fixed-dimension multimodal test functions are taken to test the stability of all the
algorithms. From Table 6, it is crystel clear that sability of NSSA is superior in comparison with
other algorithms for the functions F10-F18.

Hence our proposed NSSA plays an extremely good role in terms of stability.

7.3 Analysis of Convergence Speed
If we move in the direction of convergence speed then we can see the fitness curves of unimodal
test functions, multimodal test functions, and fixed-dimension multimodal test functions from
Figures 4, 5, and 6, respectively.

From Figures 4, 5, and 6 we conclude that convergence speed of our proposed NSSA is
faster in comparison with SSA, GWO, PSO, and GSA. So, NSSA performs best in respect of
convergence and efficiency while dealing with unimodal, multimodal, and fixed-dimension
multimodal test functions in contrast with SSA, PSO, GWO, and GSA.

(a) F1 (b) F2

(c) F3 (d) F4

Contd. Figure
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(e) F5

Figure 4. Performance comparison of five algorithms on unimodal test functions

(a) F6 (b) F7

(c) F8 (d) F9

Figure 5. Performance comparison of five algorithms on multimodal test functions
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(a) F10 (b) F11

(c) F12 (d) F13

(e) F14 (f) F15

Contd. Figure
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(g) F16 (h) F17

(i) F18

Figure 6. Performance comparison of five algorithms on fixed-dimension test functions

7.4 The Trajectories of Sparrows in Different Test Functions
Figures 7, 8, and 9 represent the trajectories of sparrows in unimodal, multimodal, and fixed-
dimension multimodal test functions respectively. That means the path of the NSSA on the
3-D version of the test functions can be seen from these figures. We can clearly see most of
the sparrows combine towards the global optimum. Some sparrows are clustered at the local
minima in which most of the sparrows can avoid local minima for moving towards the global
best.

7.5 Wilcoxon Signed Rank-Test
The Wilcoxon signed-rank test operates as a statistical method centered around the arrangement
of observations within a sample (Wilcoxon et al. [32]). The algorithm with the smallest assigned
rank is identified as the top performer, while the opposite holds true as well. The outcomes
of this statistical ranking evaluation for all algorithms are detailed in Table 7, while Table 8
presents a summary of these ranks.
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(a) F1 (b) F2

(c) F3 (d) F4

(e) F5

Figure 7. NSSA trajectory in 3-dimensional unimodal test functions
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(a) F6 (b) F7

(c) F8 (d) F9

Figure 8. NSSA trajectory in 3-dimensional multimodal test functions

(a) F10 (b) F11

Contd. Figure
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(c) F12 (d) F13

(e) F14 (f) F15

(g) F16 (h) F17

Contd. Figure
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(i) F18

Figure 9. NSSA trajectory in 3-dimensional fixed-dimension test functions

The results indicate that NSSA, when compared to alternative optimization algorithms,
consistently secured the lowest rank across the majority of benchmark functions. This
underscores NSSA’s remarkable efficacy in contrast to its counterparts. Notably, SSA, PSO, and
GWO closely followed NSSA, occupying the second, third, and fourth positions, respectively. It’s
important to note that NSSA’s widespread success shouldn’t be misconstrued as a universal
superiority over all existing optimization techniques within the literature, as doing so might
infringe upon the principles of the free lunch theorem (Wolpert and Macready [33]). Rather,
its exceptional performance indicates its prominence solely in the context of the algorithms
considered within this study.

Table 7. Pair-wise wilcoxon signed rank test results

Function Wilcoxon signed rank test order
F1 NSSA = SSA < GWO < PSO < GSA
F2 NSSA = SSA < GWO < PSO < GSA
F3 NSSA = SSA < GWO< GSA < PSO
F4 NSSA < SSA < PSO < GWO < GSA
F5 NSSA < SSA < GWO < GSA < PSO
F6 NSSA < PSO < SSA < GWO < GSA
F7 NSSA = SSA = GWO < GSA < PSO
F8 NSSA = SSA < GWO < PSO < GSA
F9 NSSA = SSA = GWO = PSO < GSA
F10 NSSA = SSA = GWO = PSO < GSA
F11 NSSA = SSA = GWO = PSO = GSA
F12 NSSA = SSA = GWO = PSO = GSA
F13 NSSA = SSA = GWO = PSO = GSA
F14 NSSA = SSA = PSO = GSA < GWO
F15 NSSA = SSA = GWO = PSO = GSA
F16 NSSA = SSA = GWO = PSO = GSA
F17 NSSA = SSA = PSO = GSA < GWO
F18 NSSA = SSA = PSO = GSA < GWO
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Table 8. Rank summary of statistical assessment results

Function NSSA SSA GWO PSO GSA
F1 1.5 1.5 3 4 5
F2 1.5 1.5 3 4 5
F3 1.5 1.5 3 5 4
F4 1 2 4 3 5
F5 1 2 3 5 4
F6 1 3 4 2 5
F7 2 2 2 5 4
F8 1.5 1.5 3 4 5
F9 2.5 2.5 2.5 2.5 5
F10 2.5 2.5 2.5 2.5 5
F11 3 3 3 3 3
F12 3 3 3 3 3
F13 3 3 3 3 3
F14 2.5 2.5 5 2.5 2.5
F15 3 3 3 3 3
F16 3 3 3 3 3
F17 2.5 2.5 5 2.5 2.5
F18 2.5 2.5 5 2.5 2.5
Total 38.5 42.5 60 59.5 69.5

8. Application of NSSA on Engineering Design Problems
8.1 Himmelblau’s Nonlinear Optimization Problem
A well-known optimization problem for evaluating the effectiveness of optimization algorithms
is Himmelblau’s nonlinear optimization ([7]) problem. It bears David Himmelblau’s name, who
raised the issue in 1972. The formal explanation for the problem comes next.

Minimize: f (x)= 5.3578547x2
3 +0.8356891x1x5 +37.29329x1 −40792.141

subject to: g1(x)= 85.334407+0.0056858x2x5 +0.00026x1x4 −0.0022053x3x5

g2(x)= 80.51249+0.0071317x2x5 +0.0029955x1x2 +0.0021813x2
3

g3(x)= 9.300961+0.0047026x3x5 +0.0012547x1x3 +0.0019085x3x4

0≤ g1(x)≤ 92,90≤ g2(x)≤ 110,20≤ g3(x)≤ 25

78≤ x1 ≤ 102, 33≤ x2 ≤ 45, 27≤ x3, x4, x5 ≤ 45

For this Himmelblau’s nonlinear optimization problem the number of maximum iterations
are 100. For generating statistical results, we independently run 30 times. Table 9 shows the
optimization results for this problem by using NSSA. On the other hand, Table 10 depicts the
value of decision variables and constraints. From Tables 9 and 10, it can be clearly seen that
our solution is best with the better objective function value but constraint g3 is violated.
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Table 9. NSSA results for Himmelblau’s nonlinear optimization problem

Best Mean Std Number of sparrows

−32217.431 −32217.431 0.0 50

Table 10. The value of decision variables and constraints

Variables Value Constraints Value

x1 78 g1 90.1116

x2 33 g2 96.1674

x3, x4, x5 27, 27, 27 g3 16.7629

8.2 Speed Reducer Design Optimization Problem
The design of the speed reducer (Golinski [6]) displayed in Figure 10, is opted with the face
width x1, module of teeth x2, number of teeth on pinion x3, length of the first shaft between
bearings x4, length of the second shaft between bearings x5, diameter of the first shaft x6, and
diameter of the first shaft x7 (all variables continuous except x3 that is integer).

Figure 10. Speed reducer design optimization problem (Aktemur and Gusseinov [2])

The weight of the speed reducer is to be minimized subject to constraints on bending stress
of the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shaft.
The problem is:

Minimize: f (⃗x)= 0.7854x1x2
2(3.3333x2

3 +14.9334x3 −43.0934)

−1.508x1(x2
6 + x2

7)+7.4777(x3
6 + x3

7)+0.7854(x4x2
6 + x5x2

7)

subject to: g1(⃗x)= 27
x1x2

2x3
−1≤ 0, g2(⃗x)= 397.5

x1x2
2x2

3
−1≤ 0

g3(⃗x)= 1.93x3
4

x2x3x4
6
−1≤ 0, g4(⃗x)= 1.93x3

5

x2x3x4
7
−1≤ 0
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g5(⃗x)= 1.0
110x3

6

√(
745.0x4

x2x3

)2
+16.9×106 −1≤ 0

g6(⃗x)= 1.0
85x3

7

√(
745.0x5

x2x3

)2
+157.5×106 −1≤ 0

g7(⃗x)= x2x3

40
−1≤ 0, g8(⃗x)= 5x2

x1
−1≤ 0

g9(⃗x)= x1

12x2
−1≤ 0, g10(⃗x)= 1.5x6 +1.9

x4
−1≤ 0

g11(⃗x)= 1.1x7 +1.9
x5

−1≤ 0, with 2.6≤ x1 ≤ 3.6, 0.7≤ x2 ≤ 0.8,

17≤ x3 ≤ 28, 7.3≤ x4, x5 ≤ 8.3, 2.9≤ x6 ≤ 3.9 and 5.0≤ x7 ≤ 5.5 .

For this, speed reducer optimization problem the number of maximum iterations are 100. For
evaluating statistical results, we independently run 30 times. Table 11 shows the optimization
results for this problem by using NSSA. On the other hand, Table 12 represents the value of
decision variables and constraints. From Tables 11 and 12, it is crystal clearly that our solution
is best with optimal value of the objective function but g3 constraint is violated.

Table 11. NSSA results for Speed reducer design optimization problem

Best Mean Std Number of sparrows

2362.267 2362.267 0.0 50

Table 12. The value of decision variables and constraints

Variables Value Constraints Value

x1 2.60 g1 0.24665
x2 0.70 g2 0.079617
x3 17.00 g3 5.5119
x4 7.30 g4 −0.87686
x5 7.80 g5 0.54179
x6 2.90 g6 0.18206
x7 5.00 g7 −0.7025
− − g8 0.34615
− − g9 −0.69048
− − g10 −0.14384
− − g11 −0.051282

9. Conclusion
SSA is a metaheuristic swarm optimization method that was developed to find the best possible
solution in every possible way. However, some researchers have discovered a few flaws in it,
such as slow convergence and lower optimality. We have suggested a Niching Sparrow Search
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Algorithm (NSSA) in this article. And using 18 various benchmark test functions on NSSA, SSA,
GWO, PSO, and GSA we conducted experiments using MATLAB. According to the findings,
NSSA performs remarkably well in all areas, including optimality, convergence precision,
stability, and convergence rate. We applied the Wilcoxon signed rank test to NSSA, SSA, GWO,
GSA, and PSO. NSSA received the smallest ranking, indicating that its performance is better to
that of the other four algorithms. Moreover, NSSA applied on two engineering design problems
namely Himmelblau’s nonlinear optimization problem and Speed reducer design optimization
problem. For these two problems NSSA gave the best performance but in each of these two
problems g3 constraint is violated.

So, we would continue to conduct in-depth analysis and research on the NSSA in our ongoing
research to deal with the problem of voilated constraints. Additionally, we would attempt to
apply NSSA algorithm to more challenging real-world engineering issues, such as the Travelling
Salesman Problem (TSP), the challenge of Welded beam design optimization problem, etc. In
addition, we would expand the NSSA to address the multiobjective optimization issue.
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