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Abstract. In this article, we investigate a mathematical modeling applying a system of differential
equations, that explains a interaction of healthy cells, glioma cells, macrophages, CD8+ T cells, and
immunotherapy. Further, analytical method has been investigated. Moreover, the stability analysis
and numerical simulations are also given for our proposed model. Finally, the quality of our model is
also examined by comparing the graph of the analytical method and numerical simulation.
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1. Introduction
Plenty of mathematical models were proposed during the last forty years to suppress most
cancer (brain tumor) proliferation and to treat tumor eradication. The mathematical models
whose role is to describe, quantify, and predict such behavior, including collectively interacting
immunity, tumor proliferation, and immunotherapy. Our models are simply speculation about
system dynamics, verbalized through the concise formal language of mathematics.
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Most cancers’ immunotherapy goal at upsetting the capability of the host immune system to
cast off cancer cells with the help of the recruitment and activation of CD cells. A near bonding
takes place between the immunosurveillance or removal, equilibrium, and tumor break out may
additionally explain cells, the innate and the adaptive immune cells. Dunn et al. [6] mentioned
the idea of immunosurveillance or removal, equilibrium, and tumor break out may additionally
provide an explanation for this interplay. The innate immune is first to eliminate most cancer
cells and respond to natural killer cells, then by using antigen-precise Cytotoxic T cells to
stimulate the precise immune reaction. However, on the equilibrium segment, the energy of
the immune response regularly reduces. Subsequently, numerous awesome and nonexclusive
mechanisms assist the tumor to break out of the immune system. Pioneering studies in the late
70s revealed a connection between the magnitude of a cancer and its potential to stimulate an
immune reaction. One of the reasons these studies were groundbreaking is because they could
not determine the mechanisms behind these complicated biological processes (Berendt et al. [3],
Deckers et al. [4], and Vaage [16]).

Immunity has two phases: a monotone progression caused by the immune breakdown
process and an increase in tumor size up to a certain point. The immune system and tumor
growth rates correlate through a mathematical formula, this was evidenced in (Alexander et
al. [1], Dubben et al. [5], Rzeski et al. [12], Segal et al. [13], Soliman et al. [14], and Werner-
Wasik et al. [17]). The mathematical connection between the two is demonstrated by considering
the product of the two processes. Tumors create antigens that cause an immune response
in a specific way. The first mechanism causes the immune reaction curve to increase as the
tumor gets larger. Tumor size affects how the immune response is neutralized with the second
mechanism producing a lower part of the curve. This happens when the large amount of cancer
cells in a tumor suppress the immune response.

Iarosz et al. [7] discussed the mathematical modeling of the brain tumor with chemotherapy
and glial-neuron interactions, which is how glial cells react among most cancers and
Chemotherapy, which impacts glial cells also. Khajanchi et al. [8] mentioned the glioma-immune
interactions model under optimal therapy. They discussed the growth of gliomas, macrophages,
and CD8+ T cells but did not investigate glial cells. The novelty of this paper is to know about
growth of healthy cells. In this paper, we have introduced a new nonlinear differential equation
that includes healthy (glial) cells in the described model (Khajanchi et al. [8]). While using
immunotherapy, we know about the competition between healthy cells and cancer cells.

We organized the work as follows: In Section 2, we introduce new system of nonlinear
differential equation using immunotherapy. In Section 3, the analytical method is investigated.
In Section 4, stability analysis is discussed. In Section 5, we discuss the numerical simulations
and Section 6 explains the discussion and conclusion.

2. Mathematical Modelling
We introduce a new system of differential equations in the described model (Khajanchi et
al. [8]). In this dynamic model, we consider glioma (cancer) and glial (healthy) cells, and their
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interactions with macrophages and CD8+ T cells. So, the modified system defined as follows:
dH1

dt
=Ω1H1

(
1− H1

K1

)
−Ψ1H1H2, (2.1)

dH2

dt
=Ω2H2

(
1− H2

K2

)
−Ψ2H1H2 − (α1M1 +α2M2)H2

H2 +K1
, (2.2)

dM1

dt
= rM1

(
1− M1

V1

)
− α3H2M1

K2 +H2
, (2.3)

dM2

dt
= ν1H2M2

K3 +H2
−µ1M2 − α4H2M2

K4 +H2
+ s1u1. (2.4)

Our model consists of four different components, namely density of glial cells (H1(Kg/m3)),
the concentration of cancer cells (H2(Kg/m3)), the concentration of macrophages (M1(Kg/m3)),
the concentrations of CD8+ T cells (M2(Kg/m3)).

First term in equations (2.1), (2.2), and (2.3) represents the proliferation of glial cells, glioma
cells, macrophages. Second term in equations (2.1) and (2.2) represents interaction between
healthy and cancer cells. Third term in equation (2.2) represents elimination of H2 owing to
interaction with M1 and M2. In equation (2.3), last term represents deactivation of M1 owing
to interaction with H2. In equation (2.4), 1st term represents the imbued M2 recruited by
malignant H2, 2nd term represents decay rate of M2 owing to inflammatory reaction in brain
naturally, 3rd term represents eliminations of M2 by H2, and last term s1 is strength of the
treatment, u1 term is an external source of M2.

Table 1. List of symbols and abbreviations

Parameter Values Description

Ω1 0.0068 day−1 Proliferation rate [11,15]

Ω2 0.012 day−1 Proliferation rate [11,15]

Ψ1 3.6×10−5 day−1 Competition coefficients [11]

Ψ2 3.6×10−6 day−1 Competition coefficients [11]

The normalized model of the system of equation from (2.1)-(2.4) is given by

dh1
dt =Ω1h1(1−h1)−β1h1h2,

dh2
dt =Ω2h2(1−h2)−β2h1h2 − (α1m1+α2m2)h2

h2+k1
,

dm1
dt = rm1(1−m1)− α3h2m1

k2+h2
,

dm2
dt = ν1h2m2

k3+h2
−µ1m2 − α4h2m2

k4+h2
+ s1u1 ,

(2.5)

where

h1 = H1
K1

, h2 = H2
K2

, m1 = M1
V1

, m2 = M2
K3

, β1 =Ψ1K2 , β2 =Ψ2K1 ,

α1 = α1V1
K2

, α2 = α2K5
K2

, k1 = K1
K2

, k2 = K2
K2

, k3 = K3
K2

, and k4 = K4
K2

.
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Table 2. Values of normalized parameter

Parameter Values Source

α1 0.069943 [2]
α2 2.74492 [2]
k1 0.90305 [9]
r 0.3307 [2]
α3 0.0194 [2]
k2 0.030584 [9]
ν1 0.1245 [10]
k3 2.8743 [10]
µ1 0.0074 [2]
α4 0.01694 [9]
k4 0.378918 [9]
β1 1.8×10−2 (day−1) [7]
β2 1.8×10−3 (day−1) [7]

3. Analytical Method
Definition 3.1. Consider the general linear non-homogeneous system, X ′(t) = A(t)X + B,
X (t0)= X0 where both A(t) and B are continuous on some interval I .

Theorem 3.2. Let ϕ(t) be a fundamental matrix of solutions of X ′(t)= A(t)X , then the unique
solution of X ′(t)= A(t)X +B, X (t0)= X0 is given by X (t)=ϕ(t)C+ϕ(t)

∫ t
t0
ϕ−1(s)B(s)ds, where C

is a arbitrary constant.

The nonlinear differential system (2.5) is transformed into a linearized system using the
following steps to obtain an analytical solution:

• Finding the equilibrium points.

• Finding the Jacobian matrix at the equilibrium point.

3.1 Finding the Equilibrium Points
System (2.5) has some points of equilibrium which are obtain by solving the system of equations
ḣ1 = ḣ2 = ṁ1 = ṁ2 = 0, i.e.,

Ω1h1(1−h1)−β1h1h2 = 0,

Ω2h2(1−h2)−β2h1h2 − (α1m1+α2m2)h2
h2+k1

= 0,

rm1(1−m1)− α3h2m1
k2+h2

= 0,
ν1h2m2
k3+h2

−µ1m2 − α4h2m2
k4+h2

+ s1u1 = 0.

(3.1)

On solving the above the system of equations (3.1), we get

h1 = 1−
(
β1h2

Ω1

)
, h2 = −Q±

√
Q2 −4PR
2P

,
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m1 = 1−
(

α3h2

r(h2 +k2)

)
, m2 = s1u1

µ1 + α4h2
h2+k4

− ν1h2
k3+h2

,

where

P =Ω1Ω2,Q = k1Ω1Ω2 −Ω1Ω2 +β2h1Ω1 −β1β2k1 ,

R =β2k1Ω1 +α1Ω1m1 +α2Ω1m2 .

3.2 Finding the Jacobian Matrix at Equilibrium Point
The nonlinear system (2.5) can be written as:

dh1
dt =Ω1h1(1−h1)−β1h1h2 = f1(h1,h2,m1,m2),

dh2
dt =Ω2h2(1−h2)−β2h1h2 − (α1m1+α2m2)h2

h2+k1
= f2(h1,h2,m1,m2),

dm1
dt = rm1(1−m1)− α3h2m1

k2+h2
= f3(h1,h2,m1,m2),

dm2
dt = ν1h2m2

k3+h2
−µ1m2 − α4h2m2

k4+h2
+ s1u1 = f4(h1,h2,m1,m2).

(3.2)

The nonlinear system (3.2) can be approximated into linear system as follows:

dh1
dt = f1(h1,h2,m1,m2)

≈ f1(h1,h2,m1,m2)+ ∂ f1
∂h1

(h1 −h1)+ ∂ f1
∂h2

(h2 −h2)+ ∂ f1
∂m1

(m1 −m1)+ ∂ f1
∂m2

(m2 −m2),
dh2
dt = f2(h1,h2,m1,m2)

≈ f2(h1,h2,m1,m2)+ ∂ f2
∂h1

(h1 −h1)+ ∂ f2
∂h2

(h2 −h2)+ ∂ f2
∂m1

(m1 −m1)+ ∂ f2
∂m2

(m2 −m2),
dm1
dt = f3(h1,h2,m1,m2)

≈ f3(h1,h2,m1,m2)+ ∂ f3
∂h1

(h1 −h1)+ ∂ f3
∂h2

(h2 −h2)+ ∂ f3
∂m1

(m1 −m1)+ ∂ f3
∂m2

(m2 −m2),
dm2
dt = f4(h1,h2,m1,m2)

≈ f4(h1,h2,m1,m2)+ ∂ f4
∂h1

(h1 −h1)+ ∂ f4
∂h2

(h2 −h2)+ ∂ f4
∂m1

(m1 −m1)+ ∂ f4
∂m2

(m2 −m2).

(3.3)

At the equilibrium point,

f i(h1,h2,m1,m2)= 0, i = 1,2,3,4.

Thus, we have the system as

dh1
dt =G11(h1 −h1)+G12(h2 −h2),

dh2
dt =G13(h1 −h1)+G14(h2 −h2)+G15(m1 −m1)+G16(m2 −m2),

dm1
dt =G17(h2 −h2)+G18(m1 −m1),

dm2
dt =G19(h2 −h2)+G20(m2 −m2).

(3.4)

The equation (3.4) is a linearized system, where

G11 =Ω1 −2Ω1h1 −β1h2, G12 =−β1h1, G13 =−β2h2,

G14 =Ω2 −2Ω2h2 −β2h1 − k1(α1m1 +α2m2)
(k1 +h2)2 ,

G15 =−
(
α1h2

h2 +k1

)
, G16 =−

(
α2h2

h2 +k1

)
, G17 =− α3k2m1

(h2 +k2)2 ,
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G18 = r−2rm1 − α3h2

(h2 +k2)
, G19 = ν1k3m2

(k3 +h2)2 − α4k4m2

(m2 +k4)2 , G20 = ν1h2

k3 +h2
−µ1 − α4h2

h2 +k4
.

Hence the system (3.4) can be written as:
h′

1

h′
2

m′
1

m′
2

=


G11 G12 0 0
G13 G14 G15 G16

0 G17 G18 0
0 G19 0 G20




h1 −h1

h2 −h2
m1 −m1
m2 −m2

 , (3.5)

where the Jacobian matrix is given by,

J =


G11 G12 0 0
G13 G14 G15 G16

0 G17 G18 0
0 G19 0 G20

 .

Around the equilibrium point (1,0,1,1.35135) and from the Table 1 and 2, the matrix
representation of the linear system (3.4) can be written as

h′
1

h′
2

m′
1

m′
2

=


G11 G12 0 0
G13 G14 G15 G16

0 G17 G18 0
0 G19 0 G20




h1
h2
m1
m2

+


b11
b12
b13
b14

 , (3.6)

where

b11 = 0.0068, b12 = 0, b13 = 0.3307, b14 = 0.00999999.

The fundamental matrix is given by

ϕ(t)=


w11e−λ1t w12e−λ2t w13e−λ3t w14e−λ4t

w21e−λ1t w22e−λ2t w23e−λ3t w24e−λ4t

w31e−λ1t w32e−λ2t w33e−λ3t w34e−λ4t

w41e−λ1t w42e−λ2t w43e−λ3t w44e−λ4t

 , (3.7)

where

λ1 = 4.17483, w11 = 0.00426093, w21 = 0.986649, w31 = 0.162807, w41 = 0.000445141,

λ2 = 0.3307, w12 = w22 = w42 = 0, w32 = 1, λ3 = 0.0074, w13 = w23 = w33 = 0, w43 = 1,

λ4 = 0.0068, w14 = 1, w24 = w34 = w44 = 0.

By applying Theorem 3.2, the analytical solutions of the linear system (3.4) is given by
h1 = a11 +a12eλ1t +a15eλ4t,
h2 = a22eλ1t,
m1 = a31 +a32eλ1t +a33eλ2t,
m2 = a41 +a42eλ1t +a44eλ3t,

(3.8)

where

a11 = 1, a12 = 0.000863716, a15 =−0.200864, a22 = 0.2, a31 = 1, a32 = 0.033002,

a33 = 0.483002, a41 = 1.35135, a42 = 0.0000902328, a44 =−1.15144.
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4. Stability Analysis
In this part, we use mathematical analysis to identify condition that can aid in the eradication
of tumor cells. The characteristic equation of the linearized system is given by |J−λI| = 0,

λ4 +C1λ
3 +C2λ

2 +C3λ+C4 = 0, (4.1)

where C1 = 4.51973, C2 = 1.44465, C3 = 0.0198315, C4 = 0.0000694726.
The Eigen values of Jacobian matrix is given by

λ1 =−4.17483, λ2 =−0.3307, λ3 =−0.0074, λ4 =−0.0068.

(a) Growth of glial cells (b) Decrement of glioma cells

(c) Growth of CD8+ T cells

Figure 1. Analytical Solution of the model with Immunotherpy

This shows that our system is locally asymptotically stable because all Eigen values are
negative. In Figure 1 show that the competence of immunotherapy model is represented
analytically. Figure 1(a) clearly shows that the proliferation of glial cells which is increasing
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gradually. Figure 1(b) shows the glioma cells suddenly decrease when CD8+ T cells counting
is increasing in Figure 1(c). Finally, we conclude that this immunotherapy treatments can
eliminate tumor cells while increasing the concentration of glial cells.

5. Numerical Simulations
The system (2.5) will be discussed in this part, and it will be solved using 4th order Runge-Kutta
method. The numerical simulation is also completed by means of select out the parameter
values represented in Tables 1 and 2 with initial conditions h1(0)= 9

10 ,h2(0)= 1
10 , m1(0)= 55

100 ,
m2(0) = 2

10 . We have chosen two categories to analyze numerically for our model: without
treatment and with immunotherapy. First, we now consider without treatment. Figure 2 show
the result of the system without treatment. At this stage, the stability analysis showed that glial
cells have decreased in Figure 2(a) because of gliomas gradually maximum size in Figure 2(b).
This has happened at this stage because no treatment has been provided. So, next we recruit
immunotherapy treatment for killing tumor cells.

(a) Decrement of glial cells (b) Increment of glioma cells

Figure 2. Numerical solution of the model without any therapy

At this time, by providing immunotherapy treatment. We illustrate the findings for the
scenario where the treatment regimens were used in Figure 3. This result can be seen in
Figure 3(a), where glial cells are shown multiplying rapidly while decreasing tumor cells
Figure 3(b) and Figure 3(c) shows that the concentration of CD8+ T cells are also increasing
gradually.

6. Discussion and Conclusion
In this paper, we proposed a mathematical model to observe the dynamics of the cancer cells’
interplay with immunotherapy. We take into the H2(t) Cancer cells, H1(t) glial cells, M1(t)
macrophages, M2(t) CD8+ T cells. In this nonlinear system, we couldn’t get a exact solution.
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(a) Increment of glial cells (b) Decrement of glioma cells

(c) Increment of CD8+ T cells

Figure 3. Numerical solution of the model with immunotherapy

So we should cast off this situation. Therefore we recommend the linearization technique for
changing nonlinear to linear. An analytical answer for the linearized system is picked up by way
of the usage of a variation of the parameter formula. The steadiness of the linear version has
been discussed. We construct a characteristics equation and after solve this we could get Eigen
values. Next, our system is locally asymptotically stable on account of all our Eigen values
are less than zero. Figures 1(a) and 1(c) show that density of glial cells and CD8+ T cells are
Increasing while decreasing the density of gliomas cells in Figure 1(b).

We appear out for a numerical simulation for the system of equations. Numerical Simulations
are constructed into two different categories. First, we now consider without treatment Figure 2
show the result of the system without treatment. Figure 2(a) shows decrement of glial cells
because increment in glioma cell counting in Figure 2(b). Next, we consider the system (2.5)

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 925–935, 2023
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with immunotherapy, Figures 3(a) and 3(c) show that proliferation of glial and CD8+ T cells
while decreasing the concentration of Cancer cells in Figure 3(b).

While comparing Figures 1 and 3, we conclude that the numerical effects are similar to
analytical consequences. We believe that the mathematical modeling is interplaying between
most cancers cells and immunotherapy, constitutes a step in the direction of enhancing
techniques for the curing of malignant tumors.
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