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Abstract. For a lattice L, we associate a graph WZG(L) called a weakly zero divisor graph of L. The
vertex set of WZG(L) is Z∗(L), where Z∗(L) = {r ∈ L | r ̸= 0, ∃ s ̸= 0 such that r∧ s = 0} and for any
distinct u and v in Z∗(L), u−v is an edge in WZG(L) if and only if there exists p ∈Ann(u)\{0} and
q ∈Ann(v)\{0} such that p∧ q = 0. In this paper, we determined the diameter, girth, independence
number and domination number of WZG(L). We characterized all lattices whose WZG(L) is complete
bipartite or planar. Also, we find a condition so that WZG(L) is Eulerian or Hamiltonian. Finally, we
study the affinity between the weakly zero divisor graph, the zero divisor graph and the annihilator-
ideal graph of lattices.
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1. Introduction
Let R be a commutative ring. The zero divisor graph of R is introduced by Beck in [2]. It is
denoted by Γ(R). The Γ(R) is an undirected graph with vertex set as Z∗(R)= Z(R)\{0}, where
Z(R)= {r ∈R | ∃ s ̸= 0 ∈R such that rs = 0} and for any two distinct vertices u and v, u−v is an
edge in Γ(R) if and only if uv = 0. In Γ(R), authors mainly focused on its coloring. The weakly
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zero divisor graph WG(R) is studied by Nikmehr et al. in [10]. It is an undirected (simple) graph
with a vertex set as Z(R) and for any two distinct vertices u and v, u−v is an edge in WG(R) if
and only if there exists p ∈ ann(u) and q ∈ ann(v) such that pq = 0. Chelvam and Nithya [5],
Anderson et al. [1], and Khairnar and Waphare [8] studied various graphs of algebraic structure.

Throughout this paper, L = 〈L,∧,∨〉 is a lattice, and K ̸= φ ⊆ L is a sublattice of L.
A sublattice I of L is said to be ideal of L if u∧ i ∈ I for all u ∈ L and i ∈ I . For any elements u
and v in L with v < u, if there does not exists z ∈ L such that v < z < u, then u covers v or v is
covered by u (denoted by u ≻ v or v ≺ u). For any u ∈ L, the set (u]= {v ∈ L : v ≤ u} is a principal
ideal in L generated by u, if ∃ 0 and 1 such that 0 ≤ u ≤ 1 then L is called bounded lattice,
Ann(u)= {v ∈ L | u∧v = 0}, and if 0≺ u or u ≺ 1 then u is called atom or co-atom respectively. Let
A(L) be the set containing all atoms in L. Any elements u and v in L are said to be incomparable
if and only if u ≰ v and v ≰ u, we denote it by u∥v. A lattice L is called atomic if, for every
element v ∈ L, ∃ an atom av ∈ A(L) such that av ≤ v. A lattice is called an atomistic, if it is
atomic and each u ∈ L is either an atom or a join of atoms in L. For concepts in lattice theory,
we refer Birkhoff [3], and Grätzer [7]. For a lattice L with bottom element 0, the zero divisor
graph is studied by Estaji and Khashyarmanesh [6]. It is denoted by ZG(L). The ZG(L) is a
(undirected) graph with vertex set as Z∗(L) and for any u,v ∈ Z∗(L), u−v is an edge in ZG(L) if
and only if u∧v = 0. Chelvam and Nithya [4] studied more properties of ZG(L). Kulal et al. [9]
studied the annihilator-ideal graph of an atomic lattice L with the smallest element 0. Let
N(L) = {I is an ideal in L | Ann(I) ̸= {0}}. The annihilator-ideal graph AnnIG(L) of a lattice L
is a graph with vertex set as N(L) and for any distinct vertices I and J, I − J is an edge in
AnnIG(L) if and only if J∩Ann(I) ̸= {0} or I ∩Ann(J) ̸= {0}. Throughout this paper, L denotes a
atomic lattice with the smallest element 0.

If V is a non-empty set (called vertices) and E is a set of 2 subsets of V (called edges),
then G = 〈V ,E〉 is called a graph on V with the edge set E. The 2-subset e = {u,v} ∈ E is called
an edge between u and v. In this case, we say that u and v are adjacent in G. If there exist

subsets V1,V2, · · · ,Vq of V such that V =
q⋃

i=1
Vi , Vi ∩Vj = φ, also for any v1,v2 ∈ Vi , v1 − v2 is

not an edge and for any v1 ∈ Vi , v2 ∈ Vj , we have v1 − v2 is an edge for all 1 ≤ i, j ≤ q, i ̸= j,
then the graph G = 〈V ,E〉 is called a complete q-partite graph. It is denoted by Hq. If any two
distinct vertices in graph G are adjacent, then G is called complete. A complete graph with
p number of elements in V is denoted by Kp. If there exists a path joining any two vertices
of graph G, then G is called a connected graph, otherwise, we say it is a disconnected graph.
The distance between u and v is the length of shortest path from vertex u to vertex v, denoted
by d(u,v) and diam(G)= sup{d(u,v) : u, v ∈V } is called a diameter of G. The length of shortest
cycle in G is said to be the girth of G and it is denoted by gr(G). An empty graph is a graph
without vertices. The totally disconnected graph is a graph without edges. For the definitions
of domination number (γ(G)), total domination number (γt(G)), independence number (α(G)),
chromatic number (χ(G)) and clique number (ω(G)), refer West [11]. We have, A

∨
B as a graph

such that for any u ∈ A, v ∈ B, u−v is an edge.

Definition 1.1. For a lattice L, we associate a graph WZG(L) called the weakly zero divisor
graph of L. It is a graph with the vertex set Z∗(L)= {a ∈ L | a ̸= 0, ∃ b ̸= 0 such that a∧ b = 0},
and any two distinct vertices u and v are adjacent in WZG(L) if and only if there exists a non
zero p ∈Ann(u) and non zero q ∈Ann(v) such that p∧ q = 0.
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In the second section of this paper, we find the diameter, girth, independence number and
domination number of WZG(L). For any lattice L, we have shown that WZG(L) is equal to
Kp

∨
Hq for some p and q. We characterized all lattices whose WZG(L) is complete bipartite or

planar. Also, we find a condition so that WZG(L) is Eulerian or Hamiltonian. In third section,
we study the affinity between the weakly zero divisor graph, the zero divisor graph and the
annihilator-ideal graph of a lattices.

2. Basic Properties of WZG(L)
In this section, the basic properties of WZG(L) are studied. We have shown that WZG(L) is
connected with diam(WZG(L)) ≤ 2 and gr(WZG(L)) ∈ {3,4,∞}. We characterized all lattices
whose WZG(L) is complete bipartite or planar. Also, we find a condition so that WZG(L) is
Eulerian or Hamiltonian. Following is an immediate consequence from the definition of WZG(L).

Lemma 2.1. Let L be a lattice. Then subgraph induced by elements in A(L) is complete in
WZG(L).

Proof. Suppose A(L)= {a1,a2, · · · ,an}. Then for any distinct atoms ai and a j in A(L), we have,
ai ∈ Ann(a j) and a j ∈ Ann(ai). Since ai ∧a j = 0, we have ai −a j is an edge in WZG(L). Thus
subgraph induced by elements in A(L) is complete in WZG(L).

In WZG(L), the following definition is frequently useful.

Definition 2.2. If L is a lattice and p ∈ L, then the base of p is defined as the set of all atoms
ap of L with ap ≤ p. It is denoted by B(p). For every p ∈ L, we set [B(p)]c = A(L)\B(p).

We have obtained the following results regarding the adjacency of vertices in WZG(L).

Lemma 2.3. Let L be a lattice. If u and v are distinct elements in Z∗(L) with B(u) and B(v) are
distinct, then u−v is an edge in WZG(L).

Proof. Suppose B(u) and B(v) are not equal. If B(u)⊈B(v) and B(v)⊈B(u), then there exist
atoms ar and as in A(L) with ar ∈B(u), ar ∉B(v) and as ∈B(v), as ∉B(u). Clearly, ar ∈Ann(v)
and as ∈ Ann(u). Since ar ∧ as = 0, we have, vertices u and v are adjacent in WZG(L). Now,
suppose B(u) ⊂B(v). Since u,v ∈ Z∗(L), we have |B(v)| ≤ n−1 and |B(u)| ≤ n−2, where n be
the number of atoms in L. Let bs and br be the distinct atoms in A(L) such that bs ∉B(v) and
br ∉B(u). Observe that br ∈ Ann(u) and bs ∈ Ann(v). Since br ∧ bs = 0, we have, vertex u is
adjacent to vertex v in WZG(L). Similarly, we prove the theorem if B(v)⊂B(u).

To check the converse of Lemma 2.3, consider a lattice L as shown in Figure 3. In WZG(L),
we have, p−u is an edge, but B(p)= {p}=B(u), therefore converse of Lemma 2.3 does not hold.

Theorem 2.4. Let L be a lattice with the number of atoms in L is equal to n. If u and v are
distinct elements in Z∗(L), then u and v are not adjacent in WZG(L) if and only if B(u) and
B(v) are equal with |B(u)| = |B(v)| = n−1.
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Proof. Let A(L) = {a1,a2, · · · ,an}. Suppose u and v are not adjacent in WZG(L). Then by
Lemma 2.3, B(u) and B(v) are the same. To prove the theorem, we prove that the number of
elements in B(u) and B(v) is equal to n−1. Since u,v ∈ Z∗(L), we have |B(u)|, |B(v)| ≤ n−1.
Suppose on the contrary |B(u)|, |B(v)| < n− 1. Then there are distinct atoms ar and as in
A(L) such that ar,as ∉B(u)∪B(v). Therefore ar ∧u = 0 and as ∧ v = 0. Thus ar ∈ Ann(u) and
as ∈Ann(v). Since ar ∧as = 0, we have, u and v are adjacent in WZG(L), a contradiction. Thus
number of elements in B(u) and B(v) is equal to n−1. Conversely, let B(u) and B(v) are same
with number of elements in B(u) and B(v) are n−1. Suppose, on the contrary, u and v are
adjacent in WZG(L). By definition of WZG(L), let p and q be the non-zero elements in L with
p ∈ Ann(u) and q ∈ Ann(v) such that p∧ q = 0. Thus p∧ u = 0 = q∧ v. Hence p∧ ai = 0 and
q∧a j = 0, ∀ ai ∈B(u) and ∀ a j ∈B(v). Since |B(u)| = n−1, let at be the atom such that at ∉B(u).
As L is atomic, we must have at ∈B(p) and similarly at ∈B(q). Clearly, at ∈B(p∧q). Therefore,
p∧ q ̸= 0 a contradiction. Thus u−v is not an edge in WZG(L).

Let A(L)= {a1,a2, · · · ,an} and for 1≤ k ≤ n, denote Sk = {u ∈ Z∗(L) | ai ∈B(u) for all i except
k}. Also, let q = |{Sk | Sk ̸=φ}| and p = |{u ∈ Z∗(L) | u ∉ Sk, for any k}|.

Example 2.5. Consider a lattice L1 as shown in Figure 1. We have A(L1)= {a1,a2,a3}. Then
S1 is the set containing all u ∈ Z∗(L1) with B(u)= {a2,a3}. Observe that, there does not exists
u ∈ Z∗(L1) with B(u)= {a2,a3}. Hence S1 =φ. Similarly, we can show that S2 =φ= S3.

Example 2.6. Consider a lattice L2 as shown in Figure 1. We have A(L2)= {a1,a2,a3}. Then
S1 =φ= S2 and S3 = {e3, e′3}.

For a lattice L, define a relation ∼ on Z∗(L) such that for all u,v ∈ Z∗(L), u ∼ v if and only if
B(u)=B(v) with number of elements in B(u) are n−1, where n be the number of atoms in L.
Note that ∼ is an equivalence relation. If L is any lattice, then in the following theorem, we
show that WZG(L)= Kp

∨
Hq for some p and q.

Theorem 2.7. If L is a lattice, then WZG(L)= Kp
∨

Hq for some p and q.

Proof. Let A(L)= {a1, · · · ,an} and u,v ∈ Z∗(L) be any distinct elements. By Theorem 2.4, there
is no edge between u and v in WZG(L) if and only if B(u)=B(v) with |B(u)| = n−1. That is u ∼ v
if and only if u− v is not an edge in WZG(L). Now, for any u ∈ Z∗(L), [u] = {v ∈ Z∗(L) : u ∼ v}
is an equivalence class of u. Any two members in [u] are not adjacent. If [u] and [v] are any
two distinct equivalence classes, then for any u1 ∈ [u] and v1 ∈ [v], u1 ≁ v1. Therefore u1 is
adjacent to v1. Let A = {u ∈ Z∗(L)∥B(u)| = n−1} and B = {v ∈ Z∗(L) | v ∉ A}. Then A∪B = Z∗(L)
and A ∩B = φ. Let u,v ∈ A. If u and v both are in the same set Sm for some m, then u ∼ v
and hence no edge between vertices u and v in WZG(L). Now, if u ∈ Sr and v ∈ St for some
r ̸= t, then B(u) and B(v) are distinct and hence u ≁ v. Therefore u and v are adjacent in
WZG(L). Hence WZG(L)[A] = Hq, where Hq is a complete q-partite graph with q = |A|. Let
z,w ∈ B. Since |B(z)|, |B(w)| ≤ n−2, therefore we have z ≁ w. Hence z−w is an edge in WZG(L).
Thus WZG(L)[B]= Kp, where p = |B|. Now, for all x ∈ A and y ∈ B, we have |B(x)| = n−1 and
|B(y)| < n−1. Thus x≁ y and hence x− y is an edge in WZG(L)[Z∗(L)]. Thus WZG(L)= Kp

∨
Hq

for some p and q.
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We illustrate the above theorem in the following examples.

Example 2.8. Let L3 be a lattice shown in Figure 1. We have A(L3) = {a1,a2,a3}. Observe
that B(e1)= {a2,a3}=B(e′1) and there does not exist elements x ∈ L other than e1, e′1 such that
B(x)= {a2,a3}. Hence S1 = {e1, e′1}. Similarly, S2 = {e2, e′2}, S3 = {e3, e′3}. For a given lattice, we
have q = 3 and p = 3. Therefore, WZG(L3)= K3

∨
H3 .

0

a1 a2 a3

e3 e1e2

e′3 e′1e′2

1

0

a1 a2 a3

e3

e′3

e12

e′12

1

0

a1 a2 a3

e3 e1
e2

e′3 e′1e′2

1

a1

a2 a3

e3

e′3

e2 e′2

e′1
e1

L1 L2 L3 WZG(L3)= K3
∨

H3

Figure 1

Example 2.9. Let m1,m2, · · · ,mn be n positive integers. Let L1 be a lattice defined by relations,
0≺ ai ≺ ui1 ≺ ui2 ≺ ·· · ≺ uimi ≺ 1, for every i = 1,2,3, · · ·n. Then L1 is a lattice with n number of

atoms. Observe that WZG(L1)= Kp, where p =
( n∑

i=1
mi

)
+n. Let k be the least positive integer

such that n < 2k −2 and L2 be a lattice defined by the following relations:
(i) 0≺ a1 ≺ u1,1 ≺ u1,2 ≺ ·· · ≺ u1,m1 ≺ u1,m1+1 ≺ ·· · ≺ u1,(m1+m2) ≺ u1,(m1+m2+1)

≺ ·· · ≺ u1,(m1+m2+m3+···+mk) ≺ 1.

(ii) 0≺ ai ≺ u1,(m1+m2+···+mi−1+1) for all i = 2,3, · · ·k.
Then, lattice L2 has k atoms and WZG(L2)= Kp

∨
H1, where p = (m1 +m2 +·· ·+mk−2)+k−2

and H1 is the totally disconnected graph with mk−1 −1 number of vertices.

Following are the immediate consequences of Theorem 2.7.

Corollary 2.10. If L is a lattice, then WZG(L) is connected and diam(WZG(L))≤ 2.

Proof. By Theorem 2.7, WZG(L)= Kp
∨

Hq for some p and q. Thus the statement is obvious.

Definition 2.11. An element is said to be atomic in a lattice L if it is either an atom or a join of
atoms. For any lattice L, the set of all atomic elements in L\{1} is denoted by A(L). An element
is said to be nonatomic if it is not atomic.

Corollary 2.12. If L is an atomistic lattice, then WZG(L)= K|A(L)|.

Proof. Let u,v ∈ Z∗(L) be any distinct elements. As L is atomistic, we have, B(u) and B(v) are
distinct and Z∗(L)=A(L). By Lemma 2.3, we have WZG(L)= K|A(L)|.

Corollary 2.13. If L is Boolean algebra (P({1,2,3, · · · ,n},∪,∩)), then WZG(L)= K2n−2.
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Proof. We know L = (P({1,2,3, ,n},∪,∩)) is atomistic and A(L) = P({1,2,3, . . . ,n}) \
{φ, {1,2,3, · · · ,n}}. Observe that |A(L)| = 2n − 2. Thus, by Corollary 2.12, we have WZG(L)=
K2n−2.

Corollary 2.14. If L is a lattice, then WZG(L) is empty if and only if the number of atoms in L
is one.

Theorem 2.15. If L is a lattice, then WZG(L) is a complete bipartite or star if and only if the
number of atoms in L is two.

Proof. Let WZG(L) be a complete bipartite or star. If |A(L)| ≥ 3, then any three members from
the set A(L) form a cycle of length three, and hence WZG(L) is not a bipartite, a contradiction.
Also, if the number of atoms in L is one, then WZG(L) is empty, a contradiction. Therefore
|A(L)| = 2. Conversely, let A(L)= {a1,a2}. Note that, for any u ∈ Z∗(L), if B(u)= {a1,a2}, then u
is not a member of Z∗(L). Therefore, Z∗(L)= S1∪S2 and S1∩S2 =φ. As a2 ∈ S1 and a1 ∈ S2, we
have S1,S2 ̸=φ. Thus, q = 2. Since there does not exist a vertex in Z∗(L), which is not a member
of S1 or S2, we have p = 0. Hence WZG(L) = K0

∨
H2 = H2 = K|S2|,|S1|. Moreover, if |S2| = 1 or

|S1| = 1, then WZG(L) is star.

Consider a lattice L with |A(L)| = 2. In the following result, we find the girth, domination
number and independence number of WZG(L). Also, we discuss the planarity of WZG(L).

Corollary 2.16. If L is a lattice such that A(L)= {a1,a2}, then
(i) gr(WZG(L))= {4,∞}

(ii) γ(WZG(L))= γt(WZG(L))≤ 2.

(iii) α(WZG(L))=max{|S1|, |S2|}.
(iv) WZG(L) is planar if and only if |S2| ≤ 2 or |S1| ≤ 2.

Proof. Since the number of atoms in L are two, therefore by Theorem 2.15, we have WZG(L)=
H2 = K|S2|,|S1|. Thus the statements (i), (ii), (iii) and (iv) are trivial.

Consider a lattice L with the number of atoms in L three or more than three. We find the
girth, domination number and independence number of WZG(L) in the following theorem. Also,
we discuss the planarity of WZG(L).

Theorem 2.17. If L is a lattice such that |A(L)| ≥ 3, then the following statements hold.
(i) For any a ∈ A(L) and u ∈ Z∗(L) with a ̸= u, a−u is an edge in WZG(L).

(ii) gr(WZG(L))= 3.

(iii) γ (WZG(L))= γt(WZG(L))= 1.

(iv) If A(L)= {a1,a2, · · · ,an}, then α(WZG(L))=max{|S1|, |S2|, · · · , |Sn|} or 1.

(v) If |A(L)| = 3, then WZG(L) is planar if and only if |Z∗(L)| = 3 or |Z∗(L)| = 4 or B(u)=B(v)
with |B(u)| = 2, ∀ u,v ∈ Z∗(L)\ A(L) when |Z∗(L)| ≥ 5.

(vi) If |A(L)| = 4, then WZG(L) is planar if and only if |Z∗(L)| = 4.

(vii) If |A(L)| ≥ 5, then WZG(L) is not a planar.
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Proof. (i): Let a ∈ A(L) and u ∈ Z∗(L) with a ̸= u. Also, let ai be the atom such that ai ∉B(u).
Then, u∧ai = 0. Hence ai ∈Ann(u). Since |A(L)| ≥ 3, choose an atom ak in A(L) such that ak

is distinct from a and ai . Then ak ∧a = 0. Therefore, ak ∈ Ann(a). Since ai ∧ak = 0, we have
vertex a is adjacent to vertex u.

(ii): By Lemma 2.1, any three distinct atoms form a cycle of length 3. Thus gr(WZG(L))= 3.

(iii): By (i), for any a ∈ A(L), D = {a} is a dominating set. Hence γ(WZG(L))= γt(WZG(L))= 1.

(iv): If WZG(L) is complete, then α(WZG(L))= 1. Suppose WZG(L) is not complete. Then |Sk| ≥ 2
for some k. Since Sk is an independent set for all values of k, therefore the statement follows
easily.

(v): Let |A(L)| = 3. If |Z∗(L)| = 3, then WZG(L)= K3. Also, if |Z∗(L)| = 4, then WZG(L)= K4. Thus
the statement is clear when |Z∗(L)| = 3 or |Z∗(L)| = 4. We prove the theorem when |Z∗(L)| ≥ 5.
Let WZG(L) be a planar graph. Suppose B(u) and B(v) are distinct for some u,v ∈ Z∗(L)\ A(L).
Then, by Lemma 2.3, u− v is an edge in WZG(L). Hence by (i), the elements in set A(L) and
vertices u,v form K5 as a subgraph of WZG(L), a contradiction. Thus B(u) and B(v) are equal
for every u,v ∈ Z∗(L)\A(L). Suppose there exists u,v ∈ Z∗(L)\A(L) such that B(u) and B(v) are
equal with number of elements in B(u) equal to one. Clearly, |B(v)| = 1. Then by Theorem 2.4, we
have, u−v is an edge in WZG(L). By (i), the elements in A(L) and u,v forms K5 as a subgraph
in WZG(L), a contradiction. Thus B(u) and B(v) are equal with |B(u)| = 2,∀u,v ∈ Z∗(L)\ A(L).
Conversely, suppose B(u) and B(v) are equal, with |B(u)| = 2, ∀ u,v ∈ Z∗(L) \ A(L). Then by
Theorem 2.4, for any u,v ∈ Z∗(L) \ A(L), we have, vertex u and v not adjacent in WZG(L).
Moreover, WZG(L) = K3

∨
H1, where H1 is the totally disconnected graph with |Z∗(L)\ A(L)|

number of vertices. Clearly, WZG(L) has no subgraph isomorphic to K3,3 or K5. Thus WZG(L)
is planar.

(vi): Let |A(L)| = 4. Hence |Z∗(L)| = 4. Then WZG(L)= K4, and thus the statement is clear.

(vii): Let |A(L)| ≥ 5. Then members from A(L) form K5 as a subgraph of WZG(L). Thus WZG(L)
is not planar.

The converse of Theorem 2.17(i) is not true. Let L be a lattice shown in Figure 3(iii). In
WZG(L), the vertex u is adjacent to all vertices of WZG(L), but u is not an atom.

The following corollary can be easily obtained from Theorem 2.17(ii) and Theorem 2.15.

Corollary 2.18. If L is a lattice, then WZG(L) is bipartite if and only if WZG(L) is complete
bipartite.

Following corollary can be easily obtained from Theorem 2.17(i) and Lemma 2.1.

Corollary 2.19. If L is a lattice such that the number of atoms in L is three or more than three,
then there exists a vertex of WZG(L) which is adjacent to every other vertex.

In the following remark, we find a condition so that WZG(L) is Eulerian.
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Remark 2.20. For any lattice L, by Theorem 2.7, we have WZG(L)= Kp
∨

Hq for some p and

q. Suppose Hq = Km1,m2,··· ,mq for some positive integers m1 ≤ m2 ≤ ·· · ≤ mq . Let m =
q∑

i=1
mi and

p be a even number. Suppose WZG(L) is Eulerian. Then m is odd. Hence m−m j is even for
all j = 1,2, · · · , q. Thus m j is odd for all j = 1,2, · · · , q. Then the degree of every vertex in Hq is
odd in WZG(L), a contradiction. Therefore, if p is even then WZG(L) never be Eulerian. Let
p be an odd number. Then WZG(L) is Eulerian if and only if m is even if and only if m−m j

is even for all j = 1,2, · · · , q if and only if all m j have the same parity as that of m. That is, if
A(L)= {a1,a2, · · · ,aq}, then WZG(L) is Eulerian if and only if p is odd, and |Sk| is even for all k.

Remark 2.21. For any lattice L, by Theorem 2.7, we have WZG(L)= Kp
∨

Hq for some p and
q. Suppose Hq = Km1,m2,··· ,mq for some positive integers m1 ≤ m2 ≤ ·· · ≤ mq. We know Kp is
Hamiltonian. Therefore, WZG(L) is Hamiltonian if and only if mq ≤ ∑

j ̸=q
m j . That is, whenever

A(L)= {a1,a2, · · · ,aq}, then WZG(L) is Hamiltonian if and only if |Sq| ≤ ∑
j ̸=q

|S j|.

3. Affinity Between WZG(L), ZG(L) and AnnIG(L)
In this section, we identify when can be WZG(L) is identical to ZG(L) and AnnIG(L).

Remark 3.1. Let L be a lattice. Then L can be embedded in I(L) (for a ∈ L, a → (a]), where I(L)
denotes the set of all ideals in L. Moreover, if L is a finite lattice, then all ideals in I(L) are
principal. Observe that L and I(L) are isomorphic. Then (a] ∈ N(L) if and only if a ∈ Z∗(L).

Lemma 3.2. If L is a lattice, then the following statements hold.
(i) If u−v is an edge in ZG(L) for some distinct elements u,v ∈ Z∗(L), then u−v is an edge in

WZG(L).

(ii) If (u] and (v] are distinct ideals in N(L) such that (u] and (v] are adjacent in AnnIG(L),
then u and v are adjacent in WZG(L).

Proof. (i): Let u−v be an edge in ZG(L). Therefore u∧v = 0. Clearly, u ∈Ann(v) and v ∈Ann(u).
Therefore u−v is an edge in WZG(L). Thus, ZG(L) is a subgraph of WZG(L).

(ii): Suppose (u] is adjacent to (v] in AnnIG(L). By [9, Lemma 2.2], A((u]) and A((v]) are distinct.
That is B(u) and B(v) are distinct. Hence, by Lemma 2.3, u−v is an edge in WZG(L).

The converse of statements (i) and (ii) of Lemma 3.2 is not true. Let L be a lattice as shown
in Figure 3. Observe that p−u is an edge in WZG(L), but p−u is not an edge in ZG(L) and
(p]− (u] is not an edge in AnnIG(L).

Theorem 3.3. If L is a lattice with A(L) = {a1,a2}, then WZG(L), ZG(L) and AnnIG(L) are
identical.

Proof. Since |A(L)| = 2, by [6, Lemma 5.6], [9, Theorem 2.3] and Theorem 2.15, we have
WZG(L)=ZG(L)=AnnIG(L)= K|S2|,|S1|.

The converse of Theorem 3.3 is not true. Observe that in Figure 2, we have, WZG(L) =
ZG(L)=AnnIG(L)= K3, but |A(L)| = 3 ̸= 2.
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If L is a lattice with only one atom, then WZG(L), ZG(L) and AnnIG(L) are empty graphs.
In the following theorem, we give a condition so that WZG(L) and ZG(L) are identical when L
is a lattice with three or more than three atoms.

Theorem 3.4. If L is a lattice with |A(L)| ≥ 3, then WZG(L) and ZG(L) are identical if and only
if Z∗(L)= A(L).

Proof. Suppose WZG(L) and ZG(L) are identical. Also, suppose Z∗(L) and A(L) are distinct.
Let u ∈ Z∗(L)\ A(L). Since L is atomic, let a be the atom in A(L) such that a belongs to B(u).
Therefore a∧u ̸= 0. Thus u and a are not adjacent vertices in ZG(L). But, by Theorem 2.17(i),
u−a is an edge in WZG(L), a contradiction. Therefore Z∗(L) and A(L) are equal. The converse
is clear by Lemma 2.1.

Theorem 3.5 ([9]). If L is a complete lattice, then AnnIG(L) is complete if and only if L is
atomistic. Moreover, if lattice L is atomistic, then AnnIG(L)= Km, where m = |L \{0,1}|.

By Corollary 2.12 and Theorem 3.5, the following is an immediate consequence.

Proposition 3.6. If L is a lattice and AnnIG(L) is complete, then WZG(L) and AnnIG(L) are
identical.

To check the converse of Proposition 3.6, consider a lattice L shown in Figure 5. We have,
WZG(L) and AnnIG(L) identical, but AnnIG(L) is not complete.

In the following theorem, we gave a characterization for WZG(L) and AnnIG(L) to be
identical when L is a lattice with a number of atoms in L are three or more than three.

Theorem 3.7. If L is a lattice such that A(L)= {a1,a2, · · · ,an},n ≥ 3, then WZG(L) and AnnIG(L)

are identical if and only if B(u) and B(v) are distinct for each u,v ∈ Z∗(L)\
(

n⋃
i=1

Si

)
.

Proof. Let WZG(L) and AnnIG(L) be identical. Suppose there are elements u and v in

Z∗(L)\
(

n⋃
i=1

Si

)
with B(u)and B(v) are equal. Therefore number of elements in B(u) and B(v)

are less than n−1. Hence, by Theorem 2.4, there is an edge between u and v in WZG(L). Since
A((u]) and A((v]) are same, therefore by [9, Lemma 2.2], (u]− (v] is not an edge in AnnIG(L),

a contradiction. Therefore B(u) and B(v) are distinct for all u,v ∈ Z∗(L)\
(

n⋃
i=1

Si

)
. Conversely,

let B(u) and B(v) are distinct for all u and v in Z∗(L)\
(

n⋃
i=1

Si

)
. Therefore |B(u)|, |B(v)| ≤ n−2.

Then, by Lemma 2.3, u and v are adjacent in WZG(L) if and only if B(u) and B(v) are distinct
if and only if A((u]) and A((v)] are distinct if and only if ideal (u] is adjacent to ideal (v] in
AnnIG(L). Thus WZG(L) and AnnIG(L) are identical.

In the following theorem, we discuss the properties of WZG(D(n)), where D(n) is the lattice
containing all divisors (positive) of a natural number n.

Theorem 3.8. Let n be a natural number and L = D(n) be the lattice containing all divisors
of n. For n > 1, n = pq1

1 pq2
2 · · · pqk

k be the prime factorization, where p1, p2, · · · , pk, with k ≥ 2 are
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distinct primes and q1 ≤ q2 ≤ ·· · ≤ qk. Then
(i) WZG(L) and ZG(L) are identical if and only if k = 2.

(ii) WZG(L) and AnnIG(L) are identical if and only if k = 2 or qi = 1, ∀ i = 1, · · · ,k when k ̸= 2.
(iii) WZG(L) is complete if and only if AnnIG(L) is complete.
(iv) for k = 2, γ(WZG(L))= γt(WZG(L))≤ 2.
(v) for any k ≥ 3, γ(WZG(L))= γt(WZG(L))= 1.

(vi) for any k ≥ 2, ω(WZG(L))= χ(WZG(L))=
k∏

i=1
(qi +1)−

[
k∏

i=1
qi +

(
k∑

j=1
|S j|

)
+2

]
+k,

where |S j| =
k∏

i=1,i ̸= j
qi .

(vii) For any k ≥ 2, α(WZG(L))=
k∏

i=2
qi

(viii) If k = 2, then WZG(L) is planar if and only if q1 ≤ 2.
(ix) If k ≥ 3, then WZG(L) is not planar.

Proof. Let U =
k⋃

i=1
Si , where Sk = {u ∈ Z∗(L)| pi ∈ B(u) for all i except k}. In this lattice

D(n), we have A(L) = {p1, p2, · · · , pk}. For any 1 ≤ i, j ≤ k with i ̸= j, we have Si ∩ S j = φ.
Let V = {u ∈ Z∗(L)∥B(u)| ≤ k − 2}. Then V (WZG(L)) = U ∪V ,U ∩V = φ, and so {U ,V } is a
partition of V (WZG(L)).

(i): We have |A(L)| = 2 if and only if k = 2. Then by Theorem 3.3, the statement is trivial.

(ii): If k = 2, then |A(L)| = 2 and hence by Theorem 3.3, WZG(L) = AnnIG(L). Let k > 2 and
qi = 1, ∀ i = 1, · · · ,k. Then L is a finite boolean lattice with |L| = 2k . By Corollary 2.13, we have
WZG(L)= K2k−2. Hence by [9, Corollary 3.2], WZG(L)=AnnIG(L). Conversely, let WZG(L) and
AnnIG(L) be identical graphs. If k = 2, then we are through. Let k ̸= 2. Suppose q j ̸= 1 for some
j. Then A((p j])= A((p2

j ]). Hence by [9, Lemma 2.2], (p j]− (p2
j ] is not an edge in AnnIG(L). But,

by Theorem 2.17(i), we have p j − p2
j is an edge in WZG(L). Therefore WZG(L) and AnnIG(L)

are not identical, a contradiction. Thus qi = 1,∀i = 1, · · · ,k.

(iii): Let WZG(L) be complete. Suppose q j ̸= 1 for some j. Then for u = p1 p2 · · · p j · · · pk−1

and v = p1 p2 · · · p2
j · · · pk−1, we have B(u) = {p1, p2, · · · , pk−1} = B(v) and since |A(L)| = k, by

Theorem 2.4, u− v is not an edge in WZG(L), a contradiction. Therefore qi = 1, ∀ i = 1, · · · ,k.
Then by the discussion in proof of (ii), AnnIG(L) is complete. Conversely, suppose AnnIG(L) is
complete. If there exists at least one q j ̸= 1, then A((p j])= A((p2

j ]) and hence (p j]−(p2
j ] is not an

edge in AnnIG(L), a contradiction. Thus by the discussion in proof of (ii), WZG(L) is complete.

(iv): Let k = 2. Then WZG(L) is a complete bipartite graph.
Therefore γ(WZG(L))=γt(WZG(L))≤2.

(v): Let k ≥ 3. Then |A(L)| ≥ 3 and hence by Theorem 2.17(iii), γ(WZG(L))= γt(WZG(L))= 1.

(vi): Let k ≥ 2. Then |L| =
k∏

i=1
(qi +1)−2. Also, observe that |U | =

k∑
j=1

|S j|, where |S j| =
k∏

i=1,i ̸= j
qi .

Therefore WZG(L)= Kp
∨

Hk , where p =
k∏

i=1
(qi+1)−

[
k∏

i=1
qi+

(
k∑

j=1
|S j|

)
+2

]
, with |S j| =

k∏
i=1,i ̸= j

qi .
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Therefore ω(WZG(L))= χ(WZG(L))=
k∏

i=1
(qi+1)−

[
k∏

i=1
qi+

(
k∑

j=1
|S j|

)
+2

]
+k, where |S j| =

k∏
i=1,i ̸= j

qi .

(vii): Let k ≥ 2. Since WZG(L) = Kp
∨

Hk, where p =
k∏

i=1
(qi + 1) − 2 −

k∏
i=1

qi −
k∑

j=1
|S j| with

|S j| =
k∏

i=1,i ̸= j
qi and for any 2≤ l ≤ k, |Sl | ≤ |S1|. Therefore S1 is the maximum independent set.

Since |S1| =
k∏

i=2
qi , we have α(WZG(L))=

k∏
i=2

qi .

(viii): Let k = 2 and WZG(L) be planar. Then WZG(L) = Kq1,q2 . Therefore the statement is
trivial.

(ix): Let k ≥ 3. Then WZG(L)= Kp
∨

Hq with p ≥ 3 and q ≥ 3. Clearly, WZG(L) contains K5 as a
subgraph. Thus WZG(L) is not planar.

Figure 3(i,ii) illustrate parts (viii) and (ix) of Theorem 3.8.

In the following result, we discuss the relationship between the girth of WZG(L), ZG(L),
and AnnIG(L).

Theorem 3.9. If L is a lattice, then gr((WZG(L))= gr(ZG(L))= gr(AnnIG(L)).

Proof. If A(L) = {a1,a2}, then by Theorem 3.3, WZG(L) = ZG(L) = AnnIG(L) = K|S1|,|S2|.
If |S1| < 2 or |S2| < 2, then gr((WZG(L)) = gr(ZG(L)) = gr(AnnIG(L)) =∞. If |S1|, |S2| ≥ 2, then
gr((WZG(L))= gr(ZG(L))= gr(AnnIG(L))= 4. If |A(L)| ≥ 3, then any three atoms make a cycle of
length 3 in WZG(L), ZG(L) and AnnIG(L). Hence gr((WZG(L))= gr(ZG(L))= gr(AnnIG(L))= 3.

Thus, for any lattice L, we have gr((WZG(L))= gr(ZG(L))= gr(AnnIG(L)).

Finally, in the following theorem, we discuss the relationship between the diameter of
WZG(L), ZG(L), and AnnIG(L).

Theorem 3.10. If L is a lattice and u,v ∈ Z∗(L) be distinct elements, then the following
statements hold.

(i) If distance between u and v is three in ZG(L), then u−v is an edge in WZG(L).

(ii) If diam(WZG(L))= 2, then diam(ZG(L))= 2 or 3.

(iii) If diam(ZG(L))= 1, then diam(WZG(L))= 1.

(iv) If diam(WZG(L))= 2, then diam(AnnIG(L))= 2.

(v) If diam(AnnIG(L))= 1, then diam(WZG(L))= 1.

Proof. (i): Let d(u,v) = 3 in ZG(L). Then u∧ p = 0, v∧ q = 0 and u∧ q ̸= 0,v∧ p ̸= 0 for some
p, q ∈ Z∗(L). This implies that p ∈ Ann(u)\Ann(v) and q ∈ Ann(v)\Ann(u). Therefore Ann(u)
and Ann(v) are distinct. Hence B(u) and B(v) are distinct. Thus by Lemma 2.3, u−v is an edge
in WZG(L).

(ii): Suppose |A(L)| = n. Since diam(WZG(L))= 2, therefore, suppose u and v are the elements
not adjacent in WZG(L). Then B(u)=B(v) with |B(u)| = n−1. Therefore u∧v ̸= 0. Hence u−v
is not an edge in ZG(L). Therefore diam(ZG(L))= 2 or 3.
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(iii): Statement follows from Lemma 3.2(i).

(iv): Suppose d(u,v)= 2 in WZG(L) for some u and v in Z∗(L). Then by Lemma 2.3, B(u) and
B(v) are equal. Therefore A((u]) and A((v]) are distinct. Hence by [9, Lemma 2.2], (u] and (v]
are not adjacent in AnnIG(L). By [9, Corollary 2.4], we have diam(AnnIG(L))= 2.

(v): Statement follows from Corollary 2.12 and Proposition 3.6.

Example 3.11. If diam(WZG(L)) = 1, then diam(ZG(L)) = 1 or 2 or 3. It can be observe in
Figure 2, Figure 3(iii) and Figure 4.

1

0

a1 a2 a3
a1

a2

a3 a1

a2

a3 (a1]

(a2]

(a3]

L

WZG(L) ZG(L) AnnIG(L)

Figure 2

p1 p2
1 p3

1

p2 p2
2

p3
2

p1

p2

p3

p1 p2

p1 p3

(i) (ii)

1

0

p q r

u

qp

r u

qp

r u

L WZG(L)

(iii)

ZG(L)
(=AnnIG(L))

Figure 3

0

p q r

u v

1

rp

q

v u

rp

q

v u

L WZG(L) ZG(L)

Figure 4

Example 3.12. If diam(WZG(L))= 2, then diam(ZG(L))= 2 or 3. To observe this, see Figure 5
and Figure 6.
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1

0

p q r

u
v

qp

r u

v

qp

r u

v

L

WZG(L)=AnnIG(L) ZG(L)

Figure 5

0

p q r

u

w

v

1

rp

q

v u

w

rp

q

v u

w
L WZG(L) ZG(L)

Figure 6

Example 3.13. If diam(WZG(L)) = 1, then diam(AnnIG(L)) = 1 or 2. To observe this, see
Figure 2 and Figure 3(iii).

4. Conclusion
We have defined the weakly zero divisor graph of a lattice and determined its diameter, girth,
domination number, and independence number. It is shown that the graph is a complete
bipartite if and only if the number of atoms contained in the lattice is two. We have shown
that the graph is not planar if the number of atoms contained in the lattice is five or more and
also, characterized all lattices for which the graph is planar. We study the affinity between the
weakly zero divisor graph, the zero divisor graph, and the annihilator-ideal graph of the lattices.
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