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Abstract. A model consisting of three components has been created to describe the interactions
among glial cells, glioma cells, and radiotherapy treatment in tumor growth. An analytic solution of
nonlinear differential equations is obtained. Stability analysis is discussed under three categories:
trivial state, without any treatment, and radiotherapy treatment. In the absence of treatment, the
stability analysis of the model demonstrates that a tumor would proliferate to its highest capacity.
The treatment of radiotherapy could increase the effectiveness of the fight against gliomas. Moreover,
numerical simulations are also provided for the proposed model. Finally, the validity of the system is
examined by comparing the graphs of the analytical solution and numerical simulation.
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1. Introduction
Brain tumors are a public health issue and the top cause of mortality in the world. It is produced
by the uncontrolled proliferation of tumor cells, which infect the surrounding tissues. While
some brain tumors are benign, others are malignant. gliomas are malignant brain tumors, which
typically have life spans of six months to a year. glioma cells are mostly derived from brain-
specific glial cells or their forerunners (Khajanchi [9]). Although significant pharmacological
advances and surgical excision have been made, gliomas are widely widespread and aggressive
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brain tumors that can return. It is not surprising that scientists from all around the universe
have been working to formulate accurate descriptions of the severity of brain tumors. To
comprehend the nature, proliferation, and development of various forms of gliomas, new
theoretical concepts and experimental methodologies have been discussed by Peiffer and
Kleihues [13]. Tumor therapies are classified into four categories: Surgery, chemotherapy,
radiation, and immunotherapy. Recently, many investigators began studying mathematical
models of the tumor with various therapies. Because model-based approaches may help to
cure brain tumors. It is important to look into how therapies react to tumor formation and
spread. Surgery is frequently used to eradicate the malignant tumors. Surgery attempts to
remove cancer as much as possible without harming the brain’s healthy areas (Stieber [18]).
Other treatments, such as radiation therapy and chemotherapy had their efficacy in clearing
glioma cells. Murray [11] discussed the treatment of a brain tumor with radiation therapy
and chemotherapy has been investigated with mathematical modeling. Mathematical models
have been developed to simulate how radiotherapy will affect tumor growth (Cappuccio [4], and
Rockne et al. [15]).

As a fundamental treatment approach, radiation therapy was already proven to be effective
in the battle against cancer (Belostotski [2], and Liu et al. [10]). Radiotherapy employs the
use of radiation to eliminate cancerous cells. This therapy focuses on highly proliferating cells,
like the ones found in tumors (Kerr et al. [8]). Belostotski and Freedman [3] have studied
periodic radiation with the assumption that radiation does not affect healthy cells. Furthermore,
Freedman and Belostotski [6] have described perturbed periodic radiation. Dokuyucu et al. [5]
have discussed the cancer therapeutic models with the CF fractional derivatives. Awadalla et
al. [1] have developed a fractional model with Hadamard fractional derivative. Based on the
advances in radiation therapy, we built a new dynamical system that maintains the levels of
glial cells while decreasing the number of glioma cells.

The unique aspect of this work is the discovery of an analytical and numerical approach
to the mathematical model of brain tumors with radiotherapy treatment. This study aims to
describe the dynamic interaction between radiation therapy, glioma cells, and glial cells. The
focus is on the local asymptotic stability of the annihilation of glioma cells along with the
proliferation of glial cells. The following will be done for the remaining tasks: Section 2 explains
the description of the model and its normalized form. Section 3 refers to the fundamental
aspects of the system, such as positivity and boundedness. The analytical solution to the system
is examined in Section 4. In Section 5, the stability of the system is investigated. The numerical
simulation is discussed in Section 6, and the model is laid aside for discussion and conclusion in
Section 7.

2. Mathematical Model
A dynamical system for a brain tumor along with radiotherapy treatment is described as follows

dG1

dt
=α1G1

(
1− G1

K1

)
−β1G1G2, (2.1)

dG2

dt
=α2G2

(
1− G2

K2

)
−β2G1G2 − r1G2R, (2.2)

dV
dt

= r1G2R−γV , (2.3)

with positive initial conditions G1(0)≥ 0, G2(0)≥ 0, and V (0)≥ 0, for all t ≥ 0.
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This model consists of three components: glial cells G1(t) (kg/m3), glioma cells G2(t) (kg/m3),
and V (t) is the rate of all glioma cells that are permanently damaged by radiotherapy. The
logistic growth of glial cells and glioma cells is represented by the first term in (2.1) and (2.2).
The second term in (2.1) and (2.2) represents the amount of interaction between glial cells and
glioma cells. For radiotherapy sessions, we investigate the model at constant radiation delivery.
The third term r1G2R, in (2.2) is the rate at which glioma cells become permanently destroyed.
In (2.3), the term γV denotes the death rate of damaged cells.

Table 1. List of symbols and abbreviations

Symbols Values Abbreviations

α1 0.0068 day−1 Proliferation rate [14]

α2 0.012 day−1 Proliferation rate [17]

K1, K2 6×1012 day−1 Maximum carrying capacity [7,12]

β1 3.076×10−15 day−1 Competition coefficient [7,12]

β2 3.076×10−16 day−1 Competition coefficient [7,12]

r1 0.01 hour−1 Destroy Rate of glioma cells [7]

γ 0.01 hour−1 The death rate of damaged cells [16]

ψ1 1.8×10−2 day−1 Estimated value

ψ2 1.8×10−3 day−1 Estimated value

The normalized model of the system of equations from (2.1)-(2.3) is given by,
dg1

dt
=α1 g1 (1− g1)−ψ1 g1 g2,

dg2

dt
=α2 g2 (1− g2)−ψ2 g1 g2 − r1 g2R,

dV
dt

= K2r1 g2R−γV ,


(2.4)

where g1 = G1
K1

, g2 = G2

K2
, ψ1 = β1

K2
, ψ2 = β2

K1
.

3. The Positivity and Boundedness Solution of the System
Proposition 3.1 (Positivity Solution of the System). Every solution of the system (2.1)-(2.3) for
the initial values G1(0)≥ 0, G2(0)≥ 0, and V (0)≥ 0, ∀ t ≥ 0, is positive through out the region
R3+ = {(G1,G2,V ) : G1,G2,V ∈ R+}.

Proof. Let G1(t), G2(t), and V (t) be the solutions of the system (2.1)-(2.3). If G1(t0)= 0 at some
t0 ≥ 0, then G1(t)= 0. If G1(t0) ̸= 0 at some t0 ≥ 0, then from (2.1),

G1(t)=G1(0)e(
∫ t

0 [α1(1−G1
K1

)−β1G2]ds).

for all t0 ̸= 0. Therefore, G1(t)≥ 0 for all positive values. Similarly, we can prove G2(t)≥ 0 and
V (t)≥ 0. Thus, the system remains positive throughout the region R3+.
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Proposition 3.2 (Boundedness Solution of the System). The non negative solutions of the system
(2.1)-(2.3) with respect to the initial conditions are bounded in the region Ω.

Proof. In order to confirm that our model does not predict uninhibited cell growth, we ensure
that our cell populations are bounded above. From (2.1), it follows that

dG1

dt
≤α1G1

(
1− G1

K1

)
, (3.1)

which implies,

G1(t)≤ Λ1K1

Λ1 + e−α1t ,

where Λ1 is an arbitrary constant.
By using comparison theory, we have

lim
t→∞supG1(t)≤ lim

t→∞sup
Λ1K1

Λ1 + e−α1t ≤ K1 = Ḡ1 (say).

From (2.2),
dG2

dt
≤α2G2

(
1− G2

K2

)
, (3.2)

which implies

G2(t)≤ Λ2K2

Λ2 + e−α2t ,

where Λ2 is an arbitrary constant.
By comparison theory we have,

lim
t→∞supG2(t)≤ lim

t→∞sup
Λ2K2

Λ1 + e−α2t ≤ K2 = Ḡ2 (say).

Similarly,

sup
t→∞

V (t)≤ K2

γ
.

Hence, the region

Ω=
{

(G1,G2,V ) ∈ R3
+/0≤G1 ≤ K1, 0≤G2 ≤ K2, 0≤V ≤ K2

γ

}
is bounded.

4. Analytical Method

Definition 4.1. Consider the general linear non homogeneous system, dZ
dt = J(t)Z+B, Z(t0)= Z0

where both J(t) and B are continuous on some interval I .

Theorem 4.2. Let Ψ(t) be a fundamental matrix of the solution of dZ
dt = J(t)Z. Then, the solution

of dZ
dt = J(t)Z+B, Z(t0)= Z0 is Z(t)=Ψ(t)C+Ψ(t)

∫ t
t0
Ψ−1(s)B(s)ds.

The normalized model (2.4) is transformed into a linearized system utilizing the following
steps to obtain an analytical solution:

• To find the fixed points

• To find the Jacobian matrix at the fixed points.
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4.1 To Find the Fixed Points
The fixed values must first be determined to properly comprehend the three-component model’s
dynamics. The fixed points of (2.4) were determined by resolving the system of equations ġ1 = 0,
ġ2 = 0, V̇ = 0,

α1 g1(1− g1)−ψ1 g1 g2 = 0, (4.1)

α2 g2(1− g2)−ψ2 g1 g2 − r1 g2R = 0, (4.2)

K2r1 g2R−γV = 0. (4.3)

We obtain the non negative fixed points of system (2.4) by solving the system of equations from
(4.1)-(4.3). The fixed points are (0.99,0,0).

4.2 To Find the Jacobian Matrix at the Fixed Points
The nonlinear model (2.4) is expressed as follows:

dg1

dt
=α1 g1(1− g1)−ψ1 g1 g2 = f1(g1, g2,V ),

dg2

dt
=α2 g2(1− g2)−ψ2 g1 g2 − r1 g2R = f2(g1, g2,V ),

dV
dt

= K2r1 g2R−γV = f3(g1, g2,V ).

(4.4)

The nonlinear system (4.4) can be approximated into a linear system as follows:

f i(g1, g2,V )≈ f i( ḡ1, ḡ2, V̄ )+ ∂ f i

∂g1
(g1 − ḡ1)+ ∂ f i

∂g2
(g2 − ḡ2)+ ∂ f i

∂V
(V − V̄ ). (4.5)

At the fixed points, f i( ḡ1, ḡ2, V̄ )= 0, where i = 1,2,3. Thus, the system (4.4) can be written as,

dg1

dt
= (α1 −2α1 g1 −ψ1 g2)(g1 − ḡ1)−ψ1 g1(g2 − ḡ2),

dg2

dt
=−ψ2 g2(g1 − ḡ1)+ (α2 −2α2 g2 −ψ2 g1 − r1R)(g2 − ḡ2),

dV
dt

= K2r1R(g2 − ḡ2)−γ(V − V̄ ).

(4.6)

As a result, the system (4.6) is linear. In matrix form, it can be shown as,g1
′

g2
′

V ′

=
α1 −2α1 g1 −ψ1 g2 −ψ1 g1 0

−ψ2 g2 α2 −2α2 g2 −ψ2 g1 − r1R 0
0 K2r1R −γ

g1 − ḡ1
g2 − ḡ2
V − V̄

 , (4.7)

where the Jacobin matrix is given by,

J =
α1 −2α1 g1 −ψ1 g2 −ψ1 g1 0

−ψ2 g2 α2 −2α2 g2 −ψ2 g1 − r1R 0
0 K2r1R −γ

 .

Around the equilibrium points (0.99,0,0), the linear system (4.7) can be written by using the
input variables listed in Table 1,g1

′

g2
′

V ′

=
α1 −2α1 g1 −ψ1 g2 −ψ1 g1 0

−ψ2 g2 α2 −2α2 g2 −ψ2 g1 − r1R 0
0 K2r1R −γ

g1
g2
V

+
b11

b21
b31

 , (4.8)

where b11 = 0.0067, b21 = 0.000132, b31 = 0.
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The fundamental matrix of the system (4.8) is given by,

Ψ(t)=
v11eλ1t v12eλ2t v13eλ3t

v21eλ1t v22eλ2t v23eλ3t

v31eλ1t v32eλ2t v33eλ3t

 ,

where λ1 =−0.01, v11 = 0, v21 = 0, v31 = 1, λ2 =−0.0098, v12 =−1×10−14, v22 = 1.66667×10−15,
v32 = 1, λ3 =−0.0068, v13 = 0, v23 = 0, v33 = 0. By Theorem 4.2, the analytical solution of the
linear system (4.6) is provided by,

g1(t)= a11 +a12eλ2t +a13eλ3t,
g2(t)= a21eλ2t,
V (t)= a31eλ1t +a32eλ2t,

(4.9)

where a11 = 0.99, a12 = 0.0599999, a13 = −0.06, a21 = 0.01, a31 = −5.99999× 1012, a32 =
5.99999×1012.

(a) Growth of glial cells (b) Growth of glioma cells

(c) Rate of damaged glioma cells

Figure 1. Analytical solution of the system with radiotherapy treatment

Analytical evidence of the effectiveness of radiotherapy model is presented in Figure 1. In
less than a month, tumor cells can be eradicated with radiotherapy Figure 1(b). Figure 1(a) also
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explains how glial cells grow at a specific rate. Figure 1(c) explains the rate of damaged rate of
tumor cell due to radiation.

5. Stability Analysis
According to the model (2.4), the following equilibria are biologically feasible:

(i) Trivial state E1(0,0,0),

(ii) Without any treatment E2(0,1,0),

(iii) With radiotherapy treatment E3(1,0,0).
In order to investigate the local stability around each equilibrium point E(g1, g2,V ), we

compute the Jacobian matrix corresponding to each equilibrium point. In general, The Jacobian
matrix of the system of equations is denoted by JEn and their corresponding Eigenvalues are
λ(n)

i , where i denotes the number of Eigenvalues and n is the number of equilibrium points.

JEn =
α1 −2α1 g1 −ψ1 g2 −ψ1 g1 0

−ψ2 g2 α2 −2α2 g2 −ψ2 g1 − r1R 0
0 K2r1R −γ

 .

First, we investigate the local stability for a trivial equilibrium point E1(0,0,0). For a trivial
equilibrium point, the corresponding Jacobian matrix is stated as follows:

JE1 =
α1 0 0

0 α2 − r1R 0
0 K2r1R −γ

 .

The Eigenvalues of JE1 are given by,

λ(1)
1 =α1, λ(1)

2 =α2 − r1R, λ(1)
3 =−γ. (5.1)

Here, the value of λ(1)
1 , λ(1)

2 are positive, and λ(1)
3 is negative. As a consequence, the stability at

E1(0,0,0) is unstable. There are no glial cells present in this instance. So, this equilibrium point
is not feasible.

The fixed point E2 (0,1,0) represents the existence of glioma cells only. The Jacobian matrix
is evaluated at E2 is

JE2 =
α1 −ψ1 0 0

−ψ2 −α2 − r1R 0
0 K2r1R −γ

 .

The following are the Eigenvalues at the fixed point E2,

λ(2)
1 =α1 −ψ1, λ(2)

2 =−α2 − r1R, λ(2)
3 =−γ. (5.2)

λ(2)
1 , λ(2)

2 , and λ(2)
3 are negative in accordance with the positive coefficient values in Table 1.

As a consequence, E2 is locally asymptotically stable if ψ1 >α1. For radiotherapy treatment,
we consider the equilibrium point E3( ḡ1,0, V̄ ). The radiotherapy treatment eliminates glioma
cells at this equilibrium point, while glial cell is protected. Thus the equilibrium E3 is given by
E3(1,0,0). At E3, the Jacobian matrix is described as follows:

JE3 =
−α1 −ψ1 0

0 α2 −ψ2 − r1R 0
0 K2r1R −γ

 .
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The Eigenvalues associated with E3 are as follows:

λ(3)
1 =−α1, λ(3)

2 =α2 −ψ2 − r1R, λ(3)
3 =−γ. (5.3)

According to the coefficient values which are positive in Table 1, resulting in negative values
for λ(3)

1 , λ(3)
2 , and λ(3)

3 . The following conditions must be met in order for E3 to be locally
asymptotically stable:

α2 <ψ2 + r1R . (5.4)

The constraint indicates that the rate of glioma cell multiplication must be less than the rate of
glioma cell inactivation by radiation therapy. As a result, the system is asymptotically stable
during radiotherapy treatment.

6. Numerical Solution
To understand the dynamics of system with radiotherapy treatment, we also performed
numerical simulations using RK Method of order four by selecting the values shown in Table 1
with beginning constraints G1(0)= 0.99, G2(0)= 0.01, V (0)= 0. Using the coefficient values of
the variables, we plotted the graphs of the proposed model for two categories with MATLAB

software. The defined system was tested in two ways: without treatment and with radiotherapy.
Figure 2 depicts the system’s solution in the absence of any treatment. First, we look at the
progression of the glioma without radiation. Glioma cells may grow to their maximal size due to
the absence of treatment, as shown in Figure 2(b). As a result, the glial cells are harmed by the
glioma cells, as seen in Figure 2(a).

(a) Growth of glial cells (b) Growth of glioma cells

Figure 2. Numerical solution of the system without any treatment

Figure 3 demonstrates the effectiveness of the radiotherapy treatment of the model.
Figure 3(b) illustrate how a radiotherapy reduced the number of glioma cells. By doing that, as
shown in Figure 3(a), glioma cells are initially high and significantly reduced between 200 and
300 days. This study suggests that radiotherapy could be a strategy to eradicate glioma cells. In
addition, it is evident from Figure 3(a) that the number of glial cells increases. These findings
are consistent with the hypothesis that radiotherapy improves the chance of eliminating glioma
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(a) Growth of glial cells (b) Growth of glioma cells

(c) Rate of damaged glioma cells

Figure 3. Numerical solution of the system with radiotherapy treatment

cells while preserving healthy cells. Figure 3(c) represents the rate of damaged glioma cells.
Figure 4 represents stability analysis of the system with various constant radiation doses.
Figure 4(b) indicates that a high dose of radiation can remove cancer in a short period of time.
Figure 4(a) depicts the rapid development of glial cells in response to a high amount of radiation.
While giving a large amount of radiation, the value of damaged cells have been increased
Figure 4(c).

7. Discussion and Conclusion
This paper described a three-component dynamic model that incorporates the relationship
between glial cells, glioma cells and radiation treatment. The objective of radiotherapy is to
lower the number of tumor cells while also preserving normal tissues. We evaluated the proposed
model for positivity and boundedness, which shows that none of the populations can expand
indefinitely. However, the nonlinear system was unable to produce a precise solution. We can
quickly locate an exact resolution if we have a linear system. We created the linearization
approach to convert the system from nonlinear to linear. A variation of the constant formula
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Figure 4. Stability analysis of the model with different radiation constant

produces the analytical solution of the linearized system. An analytic solution to the model for
radiation cancer treatment was discovered using the linearized system. The stability of the
system has been examined in three categories: trivial state, without any treatment, and with
radiotherapy treatment. We occasionally could not find exact solutions for several nonlinear
differential equation approaches. As a result, we examined the numerical simulation for the
system of equations.

The numerical simulations of the described model are very necessary for the treatment of
brain tumors. Without treatment, simulations show that a tumor would grow to its maximum
size and glial cell proliferation would slow. According to simulation, radiotherapy treatment
lowers tumor development while enhancing glial cell proliferation. Moreover, numerical
simulation has been discussed for different constant radiation values for the described model.
The generated Figures 1 and 3 indicate a good match between the analytical and numerical
solutions. As a result, we believe that the defined model is an essential step in developing
techniques for brain tumor treatment. Understanding the removal of gliomas could be helpful
in the treatment of illnesses. Radiation therapy treatments can quickly eradicate glioma cells
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without harming the glial cells. In addition, this model provided helpful advice for clinicians
regarding the circumstances under which cancer can be cured.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] M. Awadalla, Y. Y. Yameni and K. Abuassba, New Fractional model for the cancer treatment by

radiotherapy using the Hadamard fractional derivative, Online Mathematics 1(2) (2019), 14 – 18.

[2] G. Belostotski, A Control Theory Model for Cancer Treatment by Radiotherapy, M.Sc. Thesis,
University of Alberta, (2005), DOI: 10.7939/r3-eaqy-7q08.

[3] G. Belostotski and H.I. Freedman, A control theory model for cancer treatment by radiotherapy,
International Journal of Pure and Applied Mathematics 25(4) (2005), 447 – 480, URL: http:
//www.ijpam.eu/contents/2005-25-4/3/3.pdf.

[4] A. Cappuccio, M. A. Herrero and L. Nuñez, Tumor radiotherapy and its mathematical modeling,
in: Mathematics, Developmental Biology and Tumour Growth, F. Giráldez and M. A. Herrero
(editors), Contemporary Mathematics 402 (2009), 77 – 102, DOI: 10.1090/conm/492/09632.

[5] M. A. Dokuyucu, E. Celik, H. Bulut and H. M. Baskonus, Cancer treatment model with the Caputo-
Fabrizio fractional derivative, The European Physical Journal Plus 133(2018), Article number: 92,
DOI: 10.1140/epjp/i2018-11950-y.

[6] H. I. Freedman and G. Belostotski, Perturbed models for cancer treatment by radiotherapy,
Differential Equations and Dynamical Systems 17 (2009), 115 – 133, DOI: 10.1007/s12591-009-
0009-7.

[7] K. C. Iarosz, F. S. Borges, A. M. Batista, M. S. Baptista, R. A. N. Siqueira, R. L. Viana and
S. R. Lopes, Mathematical model of brain tumour with glia–neuron interactions and chemotherapy
treatment, Journal of Theoretical Biology 368(2015), 113-121, DOI: 10.1016/j.jtbi.2015.01.006.

[8] D. J. Kerr, D. G. Haller, C. J. H. van de Velde and M. Baumann, Oxford Textbook of Oncology, 3rd
edition, Oxford University Press, (2002), DOI: 10.1093/med/9780199656103.001.0001.

[9] S. Khajanchi and J. J. Nieto, Mathematical modeling of tumor-immune competitive system,
considering the role of time delay, Applied Mathematics and Computation 340 (2019), 180 –
205, DOI: 10.1016/j.amc.2018.08.018.

[10] Z. Liu, S. Zhong, C. Yin and W. Chen, Permanence, extinction and periodic solutions in a
mathematical model of cell populations affected by periodic radiation, Applied Mathematics Letters
24(10) (2011), 1745 – 1750, DOI: 10.1016/j.aml.2011.04.036.

[11] J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, 3rd edition,
Interdisciplinary Applied Mathematics series (IAM), Vol. 18, Springer, New York, NY, xxv + 814
pages (2003), URL: https://link.springer.com/book/10.1007/b98869.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 1039–1050, 2023

http://doi.org/10.7939/r3-eaqy-7q08
http://www.ijpam.eu/contents/2005-25-4/3/3.pdf
http://www.ijpam.eu/contents/2005-25-4/3/3.pdf
http://doi.org/10.1090/conm/492/09632
http://doi.org/10.1140/epjp/i2018-11950-y
http://doi.org/10.1007/s12591-009-0009-7
http://doi.org/10.1007/s12591-009-0009-7
http://doi.org/10.1016/j.jtbi.2015.01.006
http://doi.org/10.1093/med/9780199656103.001.0001
http://doi.org/10.1016/j.amc.2018.08.018
http://doi.org/10.1016/j.aml.2011.04.036
https://link.springer.com/book/10.1007/b98869


1050 Mathematical Model of Brain Tumor With Radiotherapy Treatment: S. Sujitha et al.

[12] K. W. Okamoto, P. Amarasekare and I. T. D. Petty, Modeling oncolytic virotherapy: Is complete
tumor-tropism too much of a good thing?, Journal of Theoretical Biology 358 (2014), 166 –
178,DOI: 10.1016/j.jtbi.2014.04.030.

[13] J. Peiffer and P. Kleihues, Hans-Joachim Scherer (1906-1945), Pioneer in glioma research, Brain
Pathology 9(2) (1999), 241 – 245, DOI: 10.1111/j.1750-3639.1999.tb00222.x.

[14] S. T. R. Pinho, F. S. Bacelar, R. F. S. Andrade and H. I. Freedman, A mathematical model for the
effect of anti-angiogenic therapy in the treatment of cancer tumours by chemotherapy, Nonlinear
Analysis: Real World Applications 14(1) (2013), 815 – 828, DOI: 10.1016/j.nonrwa.2012.07.034.

[15] R. Rockne, E. C. Alvord Jr., J. K. Rockhill and K. R. Swanson, A mathematical model for brain
tumor response to radiation therapy, Journal of Mathematical Biology 58 (2009), 561 – 78,
DOI: 10.1007/s00285-008-0219-6.

[16] E. Simbawa, N. Al-Johani and S. Al-Tuwairqi, Modeling the spatiotemporal dynamics of oncolytic
viruses and radiotherapy as a treatment for cancer, Computational and Mathematical Methods in
Medicine 2020 (2020), Article ID 3642654, 10 pages, DOI: 10.1155/2020/3642654.

[17] J. S. Spratt and T. L. Spratt, Rates of growth of pulmonary metastases and host survival, Annals of
Surgery 159(2) (1964), 161 – 171, DOI: 10.1097/00000658-196402000-00001.

[18] V. W. Stieber, Low-grade gliomas, Current Treatment Options in Oncology 2 (2001), 495 – 506,
DOI: 10.1007/s11864-001-0071-z.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 1039–1050, 2023

http://doi.org/10.1016/j.jtbi.2014.04.030
http://doi.org/10.1111/j.1750-3639.1999.tb00222.x
http://doi.org/10.1016/j.nonrwa.2012.07.034
http://doi.org/10.1007/s00285-008-0219-6
http://doi.org/10.1155/2020/3642654
http://doi.org/10.1097/00000658-196402000-00001
http://doi.org/10.1007/s11864-001-0071-z

	Introduction
	Mathematical Model
	The Positivity and Boundedness Solution of the System
	Analytical Method
	To Find the Fixed Points
	To Find the Jacobian Matrix at the Fixed Points

	Stability Analysis
	Numerical Solution
	Discussion and Conclusion
	References

