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1. Introduction
In engineering and management, linear programming can be useful in a variety of fields.
Due to the complexity of the real-world problems, fuzzy numbers are commonly used in these
applications to represent the parameters of LP. Researchers have been paying much attention
to Fuzzy Linear Programming (FLP) because of these reasons.

Since fuzzy set theory offers effective solutions to decision-making problems with imprecise
data, it has been applied in many research fields in recent years (Tan and Long [17], Tsai and
Chen [18], and Zhang et al. [20]). According to Delgado et al. [3], the parameters of constraints
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are fuzzy numbers, but the parameters of the objective function are crisp. There is also a general
FLP model in Rommelfanger [16] whose main difference from [3] is that the parameters of the
objective function are fuzzy. Considering the different hypotheses. Based on fuzzy numbers (van
Hop [7]), feasibility degrees (Jiménez et al. [9]), satisfaction degrees of constraints (Liu [12])
and confidence intervals (Chiang [2]), some methods are based on superiority and inferiority
concepts. Other types of procedures are multi-objective optimization method (van Hop [7]),
penalty method (Jamison and Lodwick [8]), and semi-infinite programming method (León and
Vercher [11]). Mahdavi-Amiri and Nasseri [14] introduced a new dual algorithm to obtained
solution of the FLP problem directly. Ganesan and Veeramani [4] presented a procedure for
solving Fuzzy Linear Programming Problem (FLPP) without change into crisp LPP. Maleki
et al. [15] introduced an auxiliary problem in addition to their better method for solving FLP
problems in their model.

The literature has recently published several types of a Fully Fuzzy Linear Programming
(FFLP) problem, where all variables and parameters are represented as fuzzy numbers
(Allahviranloo et al. [1], Guo and Shang [5], Hashemi et al. [6], Kumar et al. [10], and Lotfi
et al. [13]). Different methods for solving FFLP problems with crisp inequality constraints
have been proposed by Allahviranloo et al. [1], and Hashemi et al. [6]. By converting FFLP
problems to Crisp Linear Programming (CLP) problems, these methods provide fuzzy optimal
solutions for FFLP problems. In contrast to Lotfi et al. [13], and Kumar et al. [10] found
fuzzy optimal solutions that satisfy constraints exactly for FFLP problems. Guo and Shang [5]
propose a computational model for positive fully fuzzy linear matrix equations and obtain fuzzy
approximation solutions using pseudo-inverse equations. However, in most of the previous
literature, all limitations of FFLP problems have a definite form.

2. Preliminaries
In this section, some basic definitions and arithmetic operations are reviewed.

Basic Definitions
1. Fuzzy Set: A fuzzy set is characterized by a membership function mapping element of

a domain, space or universe of discourse X to the unit interval [0,1], i.e., A = {(x,µA(x) :
x ∈ X }, here µA : X → [0,1] is a mapping called the degree of membership function of the
fuzzy set A and µA(x) is called the membership value of x ∈ X in the fuzzy set A. These
membership grades are often represented by real numbers ranging from [0,1].

2. Triangular Fuzzy Numbers: A number Ã is a triangular fuzzy number denoted by
Ã = (a1,a2,a3), where a1,a2,a3 are real numbers and its membership function µÃ(x) is
given

µÃ(x)=



0, for a < x1,
x−a1

a2 −a1
, for a1 ≤ x ≤ a2,

a3 − x
a3 −a2

, for a2 ≤ x ≤ a3,

0, for x > a3.
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By using min and max, we have an alternative expression for the proceeding equation:

triangle(x;a,b, c)=max
(
min

(
x−a
b−a

,1,
d− x
d− c

))
.

Figure 1. Graphical representation of triangular fuzzy number

Ranking for Triangular Fuzzy Number
If a number Ã is a triangular fuzzy number denoted by A = (a1,a2,a3), where a1,a2,a3 are real
numbers and its membership-function R(A) is given by

R(A)= a1 +2a2 +a3

3
.

Multi-Goal Fuzzy Linear Programming Problem

Min or Max Z =
n∑

j=1
cr

jx j

subject to constraint
n∑

j=1
ãi jx j (≤,=,≥) b̃ j, i = 1,2, . . . ,m

x j ≥ 0, j = 1,2, . . . ,n,

 (2.1)

where

cr
j = objective values,

x j = contribution per units,

ãi j = input-output coefficient,

b̃i = total availability of the ith resource.

Elementary Transformation Method

Step 1: Construct of LPP:

Min or Max Z =
m∑

i=1

n∑
j=1

ci j xi j

subject to constraints
n∑

j=1
ãi jx j (≤,=,≥) b j, i = 1,2, . . . ,m

x j ≥ 0, j = 1, 2, . . . ,n
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Step 2: Subject to constraints considered as system of linear equations:

a11x1 +b12x2 + c13x3 = d1 ,

a21x1 +b22x2 + c23x3 = d2 ,

a31x1 +b32x2 + c33x3 = d3 .

Step 3: System to equation can be change into the matrix form:

Coefficient matrix A =
a11 b12 c12

a21 b22 c22
a31 b32 c33

 ,

Constant matrix B =
d1

d2
d3

 ,

Variable matrix X =
x1

x2
x3

 .

Step 4: Construct augmented matrix with the help of coefficient and constant matrix, i.e.,
[A : B].

Step 5: After solving augmented matrix we have get following two conditions:

Case I: Set of linear equation is called inconsistent if Rank of A ̸=Rank of [A : B], than, we have
not get basic variables.

Case II: Set of linear equation is called consistent if Rank of A =Rank of [A : B], than, we have
get basic variables if rank of augmented matrix is equal to number of unknown variables.

Step 6: To find the optimum solution, the system of equation can be written as AX = B.

Numerical Problem

Max Z1 = (6,9,12)x1 + (5,8,9)x2 + (4,7,9)x3

Min Z2 = (5,7,11)x1 + (3,7,10)x2 + (9,11,14)x3

subject to constraints (1,2,4)x1 + (2,5,6)x2 + (4,7,9)x3 ≤ (24,32,38)

(5,9,13)x1 + (2,3,4)x2 + (3,5,11)x3 ≤ (24,34,40)

(4,8,10)x1 + (7,11,16)x2 + (2,4,5)x3 ≤ (32,42,49)

Solution by Proposed Method

Step 1: After applying ranking formula in above FLPP, we get following LPP:

Max Z1 = 12x1 +107x2 +9x3

Min Z2 = 10x1 +9x2 +15x3

subject to constraints 3x1 +6x2 +9x3 ≤ 42

12x1 +4x2 +8x3 ≤ 44

10x1 +15x2 +5x3 ≤ 55
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Step 2: Subject to constraints considered as system of linear equations:

3x1 +6x2 +9x3 = 42,

12x1 +4x2 +8x3 = 44,

10x1 +15x2 +5x3 = 55

Step 3: System to equation can be change into the matrix form:

Coefficient matrix A =
 3 6 9

12 4 8
10 15 5

 ,

Constant matrix B =
42

44
55

 ,

Variable matrix X =
x1

x2
x3

 .

Step 4: Construct augmented matrix with the help of coefficient and constant matrix, i.e.,

[A : B]=
 3 6 9 : 42

12 4 8 : 44
10 15 5 : 55

 .

Step 5: After solving augmented matrix, we have

[A : B]=
1 2 3 : 14

0 1 5 : 17
0 0 1 : 3

 .

From above augmented matrix, we found that linear equations are consistent, i.e.,

Rank of A = Rank of [A : B].

Step 6: To find the optimum solution, the system of equation can be written as

AX = B ⇒
1 2 3

0 1 5
0 0 1

x1
x2
x3

=
14

17
3

 .

After solving above equation, we get following values x1 = 1, x2 = 2 and x3 = 3, and optimal
solution Max Z1 = 253 and Min Z2 = 73, i.e., after applying elementary transformation method
and also applying simplex method and Big-M method in our problem we get optimum result for
both objective functions as follows:

Table 1. Optimum result for first objective functions

S. No. Name of method Variables Optimum solution

1 Elementary transformation method x1 = 1, x2 = 2 and x3 = 3 253

2 Simplex method x3 = 3.67 392.33

3 Big-M method x1 = 1, x2 = 2 and x3 = 3 253
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Table 2. Optimum result for second objective functions

S. No. Name of method Variables Optimum solution

1 Elementary transformation method x1 = 1, x2 = 2 and x3 = 3 72

2 Simplex method x1 = 0.71 and x3 = 4.43 73.57

3 Big-M method x1 = 1, x2 = 2 and x3 = 3 72

3. Conclusion
Multi objective fuzzy linear programming solved by elementary transformation method and
obtained result has been compared by simplex method and Big-M methods. In this investigation,
we found that proposed method gives the optimum result in comparison of simplex method and
provide same result with Big-M method. We also found that proposed method proposed method
easy to understand and applicable as comparative to exist methods of LPP. We also observe that
Multi Objective FLPP is most effective modal to take decision to handle two or more than two
issues at same time for industries along with customers.
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