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Abstract. Analysis of the counter current imbibition phenomenon in a two-phase flow in a
homogeneous porous media under specific conditions is the primary goal of the current work.
Imbibition is said to occur when a wetting fluid in a porous medium displaces a non-wetting fluid.
The phenomena of imbibition are significant in natural and man-made systems. When oil and water
form the two immiscible liquid phases, it is assumed that water is the wetting phase. The partial
differential equation that governs this imbibition phenomenon is highly non-linear It is solved using
the Hybrid Differential Transform Finite Difference Method (HDTFDM) which gives the solution in
the form of an infinite series emphasizing the semi analytic nature of this method. The solution to this
equation enables the measurement of the saturation of the injected water in a double phase flow at
different distances and time. HDTFDM is a combination of the Differential Transform Method (DTM)
and Finite Difference Method (FDM). The flexibility of the DTM is integrated with the efficiency of
the FDM which speeds up computation compared to the conventional DTM. This approach has been
discovered to be reliable and effective. Further, to overcome the shortcomings of this method for large
values of time, the Multistep Differential Transform Method (MDTM) and Finite Difference Method
(FDM) have been used to achieve the solution for large values of time. Using MATLAB, the numerical
solution and graphical representation were obtained. The results obtained were compared with the
existing results and found to be in close agreement.
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1. Introduction
The primary objective is to investigate the counter current imbibition phenomenon in a
homogeneous porous medium. Imbibition which is counter current in nature is said to occur
when capillary pressure causes a wetting fluid (water) to spontaneously displace a non-wetting
fluid (oil), because of which in the opposite direction a counterflow of oil occurs.

This capillary pressure is caused due to the discontinuity between the pressures of both
the wetting and non-wetting fluid, when two immiscible fluids flow in a two-phase flow.
This imbibition that occurs because of capillary pressure is called “spontaneous” or “natural”
imbibition. The process of oil recovery, groundwater hydrology, geophysics, and petroleum
technology all depend on this imbibition phenomenon. Primary oil recovery process uses only
natural pressure to recover oil with no external force. Secondary oil recovery is the process of
recovering the remnant oil from reservoir, by displacing oil toward the production well wherein
water or gas is injected. It is essential to create a mathematical model of this phenomenon
because it is challenging to analyse it in the real world.

This phenomenon for homogenous porous media was studied by Alazmi and Vafai [1],
Scheidegger and Johnson [15], and Scheidegger [14]. Generalised separable solution was used
by Parikh et al. [9] to solve this phenomenon in horizontal direction and it was solved by Pathak
and Singh [13] in inclined homogenous porous medium. A Homotopy Series Solution in a inclined
homogenous Porous Medium was studied by Patel and Desai [10]. Hybrid Differential Transform
Finite Difference Method (HDTFDM) is used to solve this problem (Süngü and Demir [16]).

2. Mathematical Formulation
A finite cylindrical piece of length L of homogenous porous media is considered for study.
This cylindrical piece is fully saturated with oil (o) which is termed as native fluid. It is
surrounded entirely by an impervious surface, with the exception of the end, which is called as
the cylinder’s imbibition surface (x = 0), where wetting fluid, water (w), will enter the cylinder.
The injected liquid is assumed to be water, whereas the native liquid is oil. Water preferentially
wets the medium, resulting in counter-current imbibition, which causes the wetting fluid (water)
to flow spontaneously into the porous medium, resulting in a flow of the oil (native liquid) in
the opposite direction (Figure 1) .

Figure 1. Illustration of linear counter-current imbibition phenomenon
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Figure 2. Schematic representation of imbibition phenomenon (Source: Parikh et al. [9])

The seepage velocity of oil and water can be written as Scheidegger [14]

Vw =−kw

µw
k
∂Pw

∂x
, (1)

Vo =−ko

µo
k
∂Po

∂x
. (2)

The equations of continuity are,

;∂Sw

∂t
+ ∂V w

∂x
= 0, ;∂So

∂t
+ ∂V o

∂x
= 0 . (3)

From equation (1),

;∂Sw

∂t
+ ∂

∂x

(
−kw

µw
k
∂Pw

∂x

)
= 0, (4)

;∂So

∂t
+ ∂V o

∂x
= 0 , (5)

where
k permeability in m2

kw relative permeability of water
ko relative permeability of oil
L length (m)
Pw pressure of water (injected fluid)
Po pressure of oil (native fluid)
Vw seepage velocity of water (m/s)
Vo seepage velocity of oil (m/s)
µw constant kinematic viscosity of water
µo constant kinematic viscosity of oil
; porosity of a medium

x is measured along the horizontal direction from the imbibition surface which acts as origin.
The capillary pressure Pc (Graham and Richardson [4]) is given by

Pc = Po −Pw . (6)

Because of the spontaneous flow which occurs in the counter current direction due to the contact
of two phases, the sum of the velocities water and oil of is zero (Scheidegger and Johnson [15]).
Therefore,

Vw +Vo = 0 , (7)

Vw =−Vo . (8)
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From (1) and (2), we get
kw

µw
k
∂Pw

∂x
+ ko

µo
k
∂Po

∂x
= 0 . (9)

Substituting for Po from equation (6),
kw

µw
k
∂Pw

∂x
+ ko

µo
k
∂

∂x
(P c +Pw)= 0, (10)

kw

µw
k
∂Pw

∂x
+ ko

µo
k
∂P c

∂x
+ ko

µo
k
∂Pw

∂x
= 0 . (11)

Simplifying,

k
∂Pw

∂x

(
kw

µw
+ ko

µo

)
+ ko

µo
k
∂P c

∂x
= 0 , (12)

k
∂Pw

∂x
=−

ko
µo

k ∂P c
∂x(

kw
µw

+ ko
µo

) . (13)

Substituting in equation (4)

;∂Sw

∂t
+ ∂

∂x

kw

µw
k

ko
µo

k ∂P c
∂x

kw
µw

+ ko
µo

= 0 . (14)

Using,
∂P c

∂x
= ∂P c

∂sw

∂sw

∂x
,

we get

;∂Sw

∂t
+ ∂

∂x

 kw
µw

k ko
µo

∂P c
∂sw

∂sw
∂x

kw
µw

+ ko
µo

= 0 . (15)

According to Schreidegger [14],
kw
µw

ko
µo(

kw
µw

+ ko
µo

) ≈ ko

µo
. (16)

Therefore, equation (15) reduces to,

;∂Sw

∂t
+k

∂

∂x

(
ko

µo

∂P c

∂sw

∂sw

∂x

)
= 0 . (17)

As per Scheidegger and Johnson [15], where relative permeability is assumed to be linear for
water and oil,

kw = Sw,

ko = 1−αSw, where α is a constant (18)

The capillary pressure is expressed in terms of saturation as,

Pc =−βSw , (19)

where β is a constant. From equations (16), (17) and (18), we get

;∂Sw

∂t
= kβ
µo

∂

∂x

(
(1−αSw)

∂Sw

∂x

)
. (20)

Communications in Mathematics and Applications, Vol. 14, No. 3, pp. 1199–1213, 2023



Semi Analytic-Numerical Solution of Imbibition Phenomenon. . . : A. Sharma and A. K. Parikh 1203

The imbibition phenomenon is given by the non-linear partial differential equation given in
(20). The initial condition is,

Sw(x,0)= f (x), 0≤ x ≤ l .

The boundary conditions are,

Sw(0, t)= f (t), 0< t ≤ 1,

Sw(l, t)= g(t), 0< t ≤ 1 .

The saturation of water is dependent on time t > 0 at x = 0 and x = l, where x = l is very near to
common interface (x = 0) and l ≪ L. Converting equation (20) into dimension less form, using
dimensionless parameters

X = x
l

, T = kβ
;µoL2 t .

Equation (20) is transformed to,
∂Sw

∂T
= (1−αSw)

∂2Sw

∂X2 −α
(
∂Sw

∂X

)2
. (21)

Transforming the initial and boundary conditions, we get

Sw(X ,0)= f (X ), 0≤ X ≤ 1,

Sw(0,T)= f (T), 0< T ≤ 1,

Sw(l,T)= g(T) . 0< T ≤ 1 .

3. Problem Solution
Consider imbibition phenomenon equation

∂Sw

∂T
= (1−αSw)

∂2Sw

∂X2 −α
(
∂Sw

∂X

)2
.

The initial condition [9] is,

Sw(X ,0)= (X + X2)
6

, 0≤ X ≤ 1 , (22)

where the saturation of injected liquid is chosen to be a quadratic function of ‘X ’, which is
an increasing function of ‘X ’ for X > 0, in agreement with the physical phenomenon where
saturation of injected water increases with distance and time.

Taking appropriate boundary conditions [9],
Sw(0,T)= 0, 0< T ≤ 1,

Sw(1,T)= (1+T)
3 , 0< T ≤ 1 .

}
(23)

Equation (21) is solved by the Hybrid Differential Transform and Finite Difference Method
(HDTFDM) for small values of T and Multistep Hybrid Differential Transform Method for large
values of T .

3.1 Methodology
The non-linear partial differential equation (21) is solved using HDTFDM. This method is a
combine of the Differential Transform Method (DTM) and the Finite Difference Method (FDM).
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The spatial variables are approximated using the FDM, while the time variable is
approximated by the DTM.

Zhou [20] proposed the DTM to solve differential equations both linear and non linear in
electrical circuit analysis Yu and Chen [19] used the hybrid method in mechanical engineering
problems.

For the T variable, the differential transform is used, and on the X variable, the finite
difference method is used. This combined or hybrid method is efficient in solving linear and
nonlinear partial differential equations as it is found to converge rapidly with a few iterations.

3.2 Preliminaries
The differential transform of the kth derivative of u(x, t) applied to the ‘t’ variable is given as

U(i,k)= 1
k!

[
dku(x, t)

dtk

]
t=0

, (24)

k = 0,1,2, . . . and i = 0,1,2 .

The inverse transform of U(i,k) is given as,

u(x, t)=
∞∑

k=0
U(i,k)tk , (25)

where u(x, t) in lower case letters represents the original function and U(i,k) in upper case
letters represents transformed function

u(x, t)=
∞∑

k=0

1
k!

[
dku(x, t)

dtk

]
t=0

tk , (26)

where U(i,k)=U(xi,k), xi = ih, i = 0,1,2,3, . . . ; h denotes the step size in spatial direction.

The theorems stated below follow from [2] and [3]:

Theorem 3.1. If f (x, t)= ∂m
∂t , then F(i,k)= (k+1)M(i,k+1).

Theorem 3.2. If f (x, t)= ∂2m
∂t2 , then F(i,k)= (k+1)(k+2)M(i,k+2).

Theorem 3.3. If f (x, t)= xe−t, then F(i,k)= x (−1)k

k! .

Theorem 3.4. If f (x, t)= sin x, then F(i,k)= sin x.

Theorem 3.5. If f (x, t)= sin t, then F(i,k)= sin
(
πk
2

) 1k

k! .

Theorem 3.6. If f (x, t)= ∂m
∂x (x, t), then F(i,k)= M(i+1,m)−M(i−1,m)

2h .

Theorem 3.7. If f (x, t)= m(x, t)∂m
∂x (x, t), then F(i,k)=

k∑
m=0

M(i,k−m) M(i+1,m)−M(i−1,m)
2h .

Convergence Criteria for HDTFDM
From eq. (25) we get the series solution for the nonlinear PDE as

u(x, t)=
∞∑

k=0
U(i,k)tk ,

then the convergence of the power series in ‘t’ can be found as per the following theorem [7]:
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Theorem 3.8. If ϕk(x, t)=U(i,k)(t− t0)k , then the series solution
∞∑

k=0
ϕk(x, t), stated in equation

above, ∀ k ∈ N ∪ {0} follows the following criteria:
(i) Series is convergent if ∃ 0<λ< 1, such that ∥ϕk+1∥ ≤λ∥ϕk∥,

(ii) Series divergent if ∃ λ> 1, such that ∥ϕk+1∥ ≥λ∥ϕk∥.

Theorem 3.9. If the series solution
∞∑

k=0
ϕk(x, t), where ϕk(x, t)=U(i,k)(t− t0)k converges to the

solution u(x, t) and the truncated series
m∑

k=0
ϕk(x, t) is an approximation to the solution u(x, t),

then the maximum absolute truncated error estimated is given ass
u(x, t)−

m∑
k=0

ϕk(x, t)
{
≤ 1

1−λλ
m+1Jϕ0K.

3.3 Numerical Solution
The Hybrid Differential Transform and Finite Difference Method (HDTFDM) and theorems
given above are applied to eq. (21)

∂Sw

∂T
= (1−αSw)

∂2Sw

∂X2 −α
(
∂Sw

∂X

)2
(27)

subject to Sw(X ,0)= (X + X2)
6

, 0≤ X ≤ 1;

Sw(0,T)= 0, 0< T ≤ 1;

Sw(1,T)= (1+T)
3

, 0< T ≤ 1 . (28)

Taking α= 1.11.
Applying, differential transformation to the T variable and finite difference to the X variable

and using theorems given above, we have
∂Sw

∂T
= (k+1)S(i,k+1),

Sw
∂2Sw

∂X2 =
k∑

r=0
S(i,k− r)

S(i+1, r)−2S(i, r)+S(i−1, r)
h2 ,

∂2Sw

∂X2 = S(i+1,k)−2S(i,k)+S(i−1,k)
h2 ,(

∂Sw

∂X

)2
=

k∑
r=0

S(i+1, r)−S(i−1, r)
2h

S(i+1,k− r)−S(i−1,k− r)
2h

, (29)

where Sw(X ,T) is the original function and, S(i,k) = S(X i,k), X i = ih, i = 0,1,2,3, . . . is
transformed function.

Transforming the initial and boundary conditions,

S(i,0)= S(X i,0)= f (X i), X i = ih, i = 0,1,2,3, . . .

S(0,k)= 0, for k = 1,2,3, . . . ,

S(N,k)= (δ(k)+δ(k−1))
3

=


1
3 , for k = 0,
1
3 , for k = 1,
0, otherwise,
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where N is the number of spatial segments. Substituting in eq. (21) we get, according to the
hybrid method, the following recurrence relation,

(k+1)S(i,k+1)= S(i+1,k)−2S(i,k)+S(i−1,k)
h2

−α
k∑

r=0
S(i,k− r))

S(i+1, r)−2S(i, r)+S(i−1, r)
h2

−α
k∑

r=0

S(i+1, r)−S(i−1, r)
2h

S(i+1,k− r)−S(i−1,k− r)
2h

. (30)

For k = 0,1,2,3, . . . , S(i,0),S(i,1),S(i,2), . . . are obtained. The approximate solutions for various
values X and T are found using the inverse transformation,

Sw(x, t)=
∞∑

k=0
S(i,k)Tk

when X i = 0,

Sw(0,T)=
∞∑

k=0
S(0,k)Tk = S(0,0)+S(0,1)T +S(0,2)T2 +S(0,3)T3 + . . . (31)

= 0, where X i = ih for h = 0.1, i = 0,1,2, . . . .

4. Results and Discussion
The numerical values of saturation obtained from equation (30) for various distances X and fixed
time T = .001, .002, .003, .004, .005, .006, .007, .008, .009 and .1 are obtained by using MATLAB
and presented in Table 1.

Table 1. Saturation Sw(X ,T) for X and T (HDTFDM)

HDTFDM
H
HHH

HHX
T

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

0 0 0 0 0 0 0 0 0 0 0

0.1 0.0186 0.0188 0.0191 0.0193 0.0195 0.0196 0.0198 0.0199 0.0201 0.0202

0.2 0.0403 0.0405 0.0408 0.041 0.0412 0.0415 0.0417 0.0419 0.0421 0.0423

0.3 0.0652 0.0655 0.0657 0.0659 0.0661 0.0664 0.0666 0.0668 0.067 0.0672

0.4 0.0935 0.0937 0.0939 0.0941 0.0943 0.0945 0.0947 0.0949 0.0951 0.0953

0.5 0.1252 0.1253 0.1255 0.1257 0.1258 0.126 0.1261 0.1263 0.1265 0.1266

0.6 0.1601 0.1602 0.1604 0.1605 0.1606 0.1607 0.1609 0.161 0.1611 0.1613

0.7 0.1984 0.1985 0.1986 0.1987 0.1987 0.1988 0.1989 0.199 0.1991 0.1992

0.8 0.24 0.2401 0.2401 0.2402 0.2402 0.2403 0.2403 0.2404 0.2405 0.2405

0.9 0.285 0.285 0.2851 0.2851 0.2852 0.2853 0.2854 0.2855 0.2856 0.2857

1 0.3337 0.334 0.3343 0.3347 0.335 0.3353 0.3357 0.336 0.3363 0.3367

From Table 1 we observe that, for fixed time T , the saturation Sw(X ,T) of injected water
increases with X and saturation is also increasing when T is increasing for fixed distance X .
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Graphical Representation

:

Figure 3. 3D plot of saturation Sw(X ,T) for X and T by HDTFDM

Figure 3 illustrates that the saturation Sw(X ,T) of injected water is increasing when distance
X is increasing for fixed time T and saturation is also increasing when time T is increasing for
fixed distance X .

Limitation of Hybrid Differential Transform Method
Though the HDFDTM, offers approximate solutions to a vast number of nonlinear problems, it
has its drawbacks. In a small region, the series solution always converges quickly, while in a
larger region it converges slowly. The Multi-step DTM (MDTM) combined with Finite Difference
Method (FDM) is an improved method which helps to accelerate the series solution convergence
over a large region while also improving DTM accuracy.

5. Multistep Differential Transform Method
The computation interval [0,T] is not always small, hence the domain T is partitioned into N
subdomains to speed convergence and increase calculation accuracy.

The key advantage of partitioning the domain is that the solution can be obtained in a small
interval of time using a few Taylor series terms. It is important to remember that, if necessary,
the time interval might be chosen to be arbitrarily small. The differential equations in each
subdomain can be thus be solved.

5.1 Methodology
Multi-step DTM solutions have a large interval of convergence as compared to DTM solutions
whose interval of convergence is small. This demonstrates how the MDTM helps in increasing
the interval of convergence. Moreover, we can improve the accuracy by decreasing h the interval
of differencing and increasing the number of terms in the series in each subinterval.
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Definition 5.1. Differential Transform of x(t) given as

X (k)= 1
k!

[
dkx(t)

dtk

]
t=t0

, (32)

where x(t) is called the original function and X (k) is called the transformed function.

The inverse transform is given as,

x(t)=
k=∞∑
k=0

X (k)(t− t0)k (33)

=
k=∞∑
k=0

1
k!

[
dkx(t)

dtk

]
t=t0

(t− t0)k (34)

and the considering a finite number of terms x(t) is considered as below

x(t)=
k=m∑
k=0

1
k!

[
dkx(t)

dtk

]
t=t0

(t− t0)k , (35)

where m represents number of Taylor series components. Increasing the number of terms can
improve the accuracy of the solution.

5.2 Solution of Partial Differential Equation in u(x, t) in Domain [0,T]
We divide the domain [0,T] into n sections where H = T/N is the length of each subdomain.
Thus, a separate function is considered for each sub domain.

u(x, t)=


u1( j, t), t ∈ [t1, t2],
u2( j, t), t ∈ [t2, t3],
uN( j, t), t ∈ [tN , tN+1],

here ti = (i−1)H, (36)

ui( j, t)=
m∑

k=0
Ui( j,k)

(
t− ti

H

)k
, (37)

where

Ui( j,k)= Hk

k!

[
∂ku(x, t)
∂tk

]
t=t0

, k = 0,1,2, . . . and i = 0,1,2 . (38)

The solution of equation (21) is of the form

Swi( j, t)=
m∑

k=0
Si( j,k)

(
t− ti

H

)k
, for t ∈ [ti, ti+1],

Si( j,k)= Hk

k!

[
∂kSw(x, t)

∂tk

]
t=t0

.

Applying central finite difference to the spatial variable X and MDTM to the variable T , to
eq. (21), the following recurrence relation can be obtained

(k+1)Si( j,k+1)
H

= Si( j+1,k)−2Si( j,k)+Si( j−1,k)
h2

−α
k∑

r=0
Si( j,k− r)

Si( j+1, r)−2Si( j, r)+Si( j−1, r)
h2

−α
k∑

r=0

Si( j+1, r)−Si( j−1, r)
2h

Si( j+1,k− r)−Si( j−1,k− r)
2h

, (39)

where Si( j,k) is the differential transform of Swi( j, t).
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Here, separate functions are considered in each sub domain, i.e.,

Sw(x, t)=


Sw1(x, t), t ∈ [t1, t2],
Sw2(x, t), t ∈ [t2, t3],
SwN (x, t), t ∈ [tN , tN+1],

(40)

where ti = (i−1)H.
Applying Multistep Differential Transform Method (MDTM) to the T variable and Finite

Difference Method (FDM) on the initial conditions, we have

Si(X j,0)=
X j + X2

j

6
.

Boundary conditions are:

Si(0,k)= 0 for k = 1,2,3, . . . ,

Si(n,k)= (δ(k)+δ(k−1))
3

=


1
3 , for k = 0,
1
3 , for k = 1,
0, otherwise,

where n is the number of spatial segments. Here n = 10, T = 1, H = .01.
Firstly, the MDTM is applied to the given PDE over the interval [0, .01]. For the next time

step, the value at t = .01 is used as an initial condition in the interval [.01, .02], i.e., in general,
the continuity condition should be used in each time subdomain.

MDTM is implemented by dividing the solution interval [0,1] into 100 subintervals of equal
step size given by H = 0.01.

6. Results and Discussion
The numerical values of the saturation Sw1(x, t) are obtained from equation (39) for various
distances X at fixed time T = 0.01,0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09 and .1 by using
MATLAB and presented in Table 2.

Table 2. Saturation Sw1(X ,T) for distance X and time T by Hybrid Multistep Differential Transform
and Finite Difference Method for T ∈ [0.01, .1]

HHH
HHHX

T
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0 0 0 0 0 0 0 0 0 0 0
0.1 0.0202 0.0213 0.0221 0.0227 0.0232 0.0237 0.0241 0.0244 0.0247 0.025
0.2 0.0423 0.0441 0.0455 0.0466 0.0476 0.0484 0.0492 0.0498 0.0504 0.051
0.3 0.0672 0.0692 0.0709 0.0724 0.0736 0.0748 0.0758 0.0767 0.0776 0.0784
0.4 0.0953 0.0972 0.0989 0.1004 0.1019 0.1032 0.1044 0.1056 0.1067 0.1078
0.5 0.1266 0.1282 0.1298 0.1313 0.1327 0.1341 0.1355 0.1369 0.1382 0.1395
0.6 0.1612 0.1625 0.1638 0.1652 0.1666 0.1681 0.1696 0.1712 0.1727 0.1743
0.7 0.1992 0.2001 0.2012 0.2025 0.204 0.2057 0.2074 0.2092 0.211 0.2128
0.8 0.2404 0.2412 0.2424 0.244 0.2458 0.2477 0.2497 0.2518 0.254 0.2562
0.9 0.285 0.2864 0.2883 0.2905 0.2929 0.2954 0.298 0.3006 0.3032 0.3059
1 0.3367 0.34 0.3433 0.3467 0.35 0.3533 0.3567 0.36 0.3633 0.3667
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From Table 2, we observe that the values of saturation converge in this interval by using
MDTM. We continue finding Sw2(x, t),Sw3(x, t), . . . for the remaining intervals [.1, .2], [.2, .3] and
so on and saturation at T = .1, .2, .3 . . . is shown in Table 3.

Table 3. Saturation Sw(X ,T) for distance X and time T by Hybrid Multistep Differential Transform
and Finite Difference Method for T ∈ [0.1,1]

HHHH
HHX
T

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0 0 0 0 0 0 0 0 0 0
0.1 0.025 0.0274 0.0294 0.0314 0.0332 0.0349 0.0364 0.0379 0.0393 0.0405
0.2 0.051 0.0558 0.0601 0.0641 0.0679 0.0714 0.0746 0.0777 0.0805 0.0831
0.3 0.0784 0.0858 0.0924 0.0986 0.1045 0.11 0.1151 0.1199 0.1243 0.1284
0.4 0.1078 0.1177 0.1268 0.1354 0.1436 0.1512 0.1583 0.165 0.1712 0.1769
0.5 0.1395 0.1521 0.1639 0.1751 0.1857 0.1958 0.2051 0.2139 0.2221 0.2296
0.6 0.1743 0.1897 0.2044 0.2185 0.2319 0.2447 0.2566 0.2678 0.2783 0.2879
0.7 0.2128 0.2315 0.2495 0.2668 0.2835 0.2993 0.3143 0.3284 0.3416 0.3539
0.8 0.2562 0.2786 0.3005 0.3218 0.3423 0.362 0.3808 0.3987 0.4155 0.4311
0.9 0.3059 0.333 0.3598 0.386 0.4117 0.4366 0.4608 0.484 0.5062 0.5272
1 0.3667 0.4 0.4333 0.4667 0.5 0.5333 0.5667 0.6 0.6333 0.6667

It is observed that, MDTM gives a series solution which converges for wide time region,
which is not possible by the traditional DTM.

From Table 3, we observe that the saturation Sw(X ,T) of injected water is increasing when
distance X is increasing for fixed time T and saturation is also increasing when time T is
increasing for fixed distance X .

Graphical Representation

 

Figure 4. Saturation Sw(X ,T) for distance X and time T by Hybrid Multistep Differential Transform
Finite Difference Method
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Figure 5. 3D plot of saturation Sw(X ,T) for different values of distance X and time T by Hybrid
Multistep Differential Transform Finite Difference Method

Figure 5 is a 3D plot of Saturation versus Distance and Time. Here, we can clearly observe
that the saturation Sw(X ,T) increases with increasing distance X for fixed time T and also
increasing with increasing time T for fixed distance X .

The above solution was compared with Homotopy Analysis Method [10] and the results were
found to be in close agreement.

Table 4. Comparison of Hybrid Multistep Differential Transform Method (HDTFDM) and Homotopy
Analysis Method (HAM) [10]

@
@
@X
T 0.1 0.3 0.5 0.7 0.9

HDTFDM HAM HDTFDM HAM HDTFDM HAM HDTFDM HAM HDTFDM HAM

0 0 0 0 0 0 0 0 0 0 0

0.1 0.025 0.0254 0.0294 0.0296 0.0332 0.0333 0.0364 0.0365 0.0393 0.0393

0.2 0.051 0.0518 0.0601 0.0604 0.0679 0.068 0.0746 0.0748 0.0805 0.0805

0.3 0.0784 0.0796 0.0924 0.0928 0.1045 0.1047 0.1151 0.1152 0.1243 0.1243

0.4 0.1078 0.1091 0.1268 0.1274 0.1436 0.1439 0.1583 0.1585 0.1712 0.1712

0.5 0.1395 0.1409 0.1639 0.1646 0.1857 0.1861 0.2051 0.2054 0.2221 0.2221

0.6 0.1743 0.1756 0.2044 0.2052 0.2319 0.2325 0.2566 0.2569 0.2783 0.2783

0.7 0.2128 0.2141 0.2495 0.2504 0.2835 0.2841 0.3143 0.3147 0.3416 0.3416

0.8 0.2562 0.2575 0.3005 0.3016 0.3423 0.3431 0.3808 0.3813 0.4155 0.4155

0.9 0.3059 0.3075 0.3598 0.3612 0.4117 0.4128 0.4608 0.4616 0.5062 0.5065

1 0.3667 0.3667 0.4333 0.4333 0.5 0.5 0.5667 0.5667 0.6333 0.6333

Table 4 shows the comparison of Hybrid Multistep Differential Transform Finite Difference
Method with Homotopy Analysis Method and the results are found to be in close agreement.
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7. Conclusions
Numerical solution and graphs are obtained using MATLAB. The graph given by Figure 2 shows
that saturation of water increases with X for given time T . The saturation of water increases
with distance as well as with time, which is consistent with physical phenomena.

Multi-step DTM, was used in this work for the variable T , and it was found to improve
the solution for large values of T . This method can be used to solve linear and nonlinear
differential equations to obtain approximate numerical solutions. Table 1 shows that using
DTM we get solutions which converge over a small interval of convergence, whereas Multi-step
DTM solutions have a wide interval of convergence, as shown in Table 3. This demonstrates
that the MDTM increases the interval of convergence for the series solution.

Comparative study of obtaining the result by the two methods, namely, HDTFDM and
Homotopy Analysis Method (HAM) shows that results closely agree with each other.

Complex symbolic computation is not necessary because the HDTFDM calculates numerical
solutions through an iterative procedure. It has been shown that the suggested approach can
produce very precise numerical approximations and that Multistep DTM improves the obtained
solution. Most importantly there is no need of using linearization.

As a result, this method can help to solve a wide range of difficult partial differential
equations, linear and also nonlinear, without any need for linearization or perturbation.
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