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Abstract. The Korteweg-De Vries (KdV) problem is solved in this study using a meshless strategy
based on the radial basis function. The nonlinear KdV equation is solved using the radial basis
function in conjunction with the pseudo-spectral method. With the aid of a radial basis function,
the method transforms the problem into a system of ODEs, which are subsequently solved by an
ODE solver. The usefulness and efficiency of the strategy are assessed using two numerical examples.
The numerical results are well-aligned with the exact solutions found in the literature.
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1. Introduction
The well-known KdV equation is

∂u(x, y)
∂t

+αu(x, t)+β∂
2u(x, t)
∂x2 = 0 , (1.1)

where α,β are non-zero real constants. It was introduced by Joseph Boussinesq (cf. Guan and
Kuksin [9]) as a model for shallow water wave propagation. It gained notoriety after being
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utilized by Diederik Korteweg and Gustav De Vries (cf. Guan and Kuksin [9]) to explain the
occurrence of a soliton water wave. The KdV equation is vital for understanding how low
amplitude water waves propagate. The solutions to the KdV PDE are soliton or solitary waves
(Kolebaje and Oyewande [14]). A key component of a model for waves over shallow water
is the Korteweg-de Vries equation, which provides an example of the propagation of weakly
dispersive and weakly nonlinear waves1. The KdV equation can be used to explain a wide range
of important scientific phenomena. This research focuses on two wave types: shallow-water
waves and ion-acoustic plasma waves. The numerical solution of the KdV equation is crucial
since it is used in the investigation of non-linear dispersive waves (Zabusky [18]). Numerous
numerical techniques were employed to tackle the KdV problem, with the methodology falling
into the following groups: spectral methods (Helal [11]), finite difference methods (Qu and Wang
[15], and Kolebaje and Oyewande [14]), and finite element methods (Arnold and Winther [3]).

The Kansa approach is one of the meshless methods that Kansa [12,13] developed in 1990
for estimating the solutions of nonlinear partial differential equations. It has recently grown in
acceptance among academics (Arghand and Amirfakhrian [2], Arora and Bhatia [4], Dehghan
and Shokri [6], and Safdari-Vaighani et al. [16]). The RBFs, especially the multiquadric RBFs,
are combined to quantitatively approximate the response (MQ). RBF collocation techniques are
meshless and mathematically easier than conventional mesh-based techniques (Fasshauer [7],
and Trefethen [17]). The pseudo-spectral approach and the radial basis function are used in
this study to numerically solve the third order non-linear KdV problem.

Due to the way this study is structured, the radial basis functions approximation method is
first introduced in Section 2. In Section 3, this methodology is then applied to the KdV equation
using the R-K method for temporal discretization. Section 4 presents the numerical experiments,
and Section 5 provides a succinct summary of the findings.

2. Approximation using Radial Basis Function
Radial Basis Function (RBF) is a mathematical tool used to represent real-valued functions.
It is characterized by its dependence on the radial distance between its input and a set of
predefined centers or prototypes in a multi-dimensional space. therefore φ(x)= φ̂(∥x∥). If c is a
fixed point, then φ(x)= φ̂(∥x− c∥) (Buhmann [5]).

Alternative metrics are occasionally used, however Euclidean distance is typically how the
distance is calculated. They are typically used as a collocation that forms the basis of a function
space. Sums calculated using RBF are widely used to approximate functions. The RBFs most
frequently utilized are listed in Table 1 (Fornberg and Flyer [8]).

RBFs are so widely used to produce approximation of functions of the kind

u(x)=
n∑

i=1
wiφ(∥x− xi∥) . (2.1)

The approximation function u can be represented as the sum of n Radial Basis Functions
(RBFs), each with a distinct Centre and weighted by an estimated coefficient. The weights of
the RBFs can be calculated using a matrix of linear least squares, which can be employed for
this purpose. A function can be approximated using this technique by combining various RBFs,
each with its own unique weights.

1E. M. De Jager, On the origin of the Korteweg–de Vries equation, (2006), pp. 1 – 25, URL: http://arxiv.org/abs/
math/0602661.
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Table 1. Commonly used RBFs

Multiquadric φ(r)=
p

1+ε2r2

Inverse Quadric φ(r)= 1/(1+ε2r2)
Inverse Multiquadric φ(r)= 1/

p
1+ε2r2

Gaussian φ(r)= e−ε
2r2

Spline (Polyharmonic) φ(r)= rk, k = 1,3,5, . . .
φ(r)= rk log(r), k = 2,4,6, . . .

Spline (Thin plate) φ(r)= r2 log(r)

r = ∥x− x j∥ and ε are the shape parameters for sizing the input to the radial kernel

3. RBF-PS Method for the KdV Equation
To solve

ut +αuux +βuxxx = 0 . (3.1)

Let the RBF approximation be

ũ(x, t)=
n∑

j=1
λiφ(∥x− x j∥) , (3.2)

where φ(∥x− x j∥) is a function of known RBF and ∥ ·∥ is the Euclidean Norm, λi , i = 1,2,3, . . .
are the expansion coefficients, which can be obtained at the nodes.

In RBF meshless method approach for each collocation points xi , i = 1,2, . . .. We may
represent equation (3.2) in matrix form as

u = Aλ . (3.3)

The matrix A entries are A i j =φ(∥x− x j∥).
Differentiating equation (3.3) with respect to x,

ux = Axλ , (3.4)

where Ax = d
dx

φ(∥x− x j∥)x=xi .
By solving equations (3.3) and (3.4) for the value of λ, we get the differentiation matrix.
Thus, we have

ux = Ax A−1u or ux = Dxu , (3.5)

where Dxx = Axx A−1 is the differentiation matrix.
Similarly, we can write

uxx = Axx A−1u = Dxx , (3.6)

where Dxx = Axx A−1 and the entries of the matrix Axx are d2

dx2φ(∥x− x j∥)x−xi .
The same method can be used to compute the higher-order differentiation matrices.
The RBF-PS approach corresponding to equation (3.1) is given by using the above

differentiation matrices.
du
dt

=−αu∗Dxu−βDxxxu . (3.7)

This equation is of the form
du
dt

= F(u) . (3.8)
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To discretize the equation (3.8) in the time domain, we can use ODE solver for example the
fourth-order R-K method.

4. Numerical Examples and Comparisons
This section displays the numerical outcomes of the proposed method for resolving the KdV
equation. We show the precision and flexibility of the proposed approach on two different
challenges. As indicated by the following, we analyze numerical errors using three different
types of norms.

L∞ =max |u− ũ| , (4.1)

L2 =
√

h
∑

(u− ũ)2 , (4.2)

RMS =
√∑

(u− ũ)2

n
, (4.3)

where ũ is numerical solution of u, and u is the exact solution.

Example 4.1. Using the proposed method, we solve the 3rd order non-linear KdV equation (3.1)
with α=β= 1 and with the initial condition

u(x,0)= 3A2 sech2
{

AL
(x− x0/L)

2

}
,

where A = 1p
6
, x0 = 0, L = 1 with zero flux boundary conditions.

The exact solution is

u(x, t)= 3A2 sech2
{

AL
(x− x0/L)

2
− A3t

2

}
(Haberman [10])

Table 2. L∞, L2 and RMS errors of Example 4.1

RBF L∞ L2 RMS t

GA 7.28E-14 2.55E-13 1.14E-14 1
MQ 0.0019 0.0081 3.62E-04
IMQ 0.0019 0.0081 3.62E-04
GA 1.40E-13 4.79E-13 2.14E-14 2
MQ 0.0038 0.0162 7.24E-04
IMQ 0.0038 0.0162 7.24E-04
GA 2.09E132 6.77E-13 3.03E-14 3
MQ 0.0057 0.0243 0.0011
IMQ 0.0057 0.0243 0.0011
GA 2.54E-13 8.72E-13 3.90E-14 4
MQ 0.0075 0.0323 0.0014
IMQ 0.0075 0.0323 0.0014
GA 2.94E-13 1.07E-12 4.78E-14 5
MQ 0.0094 0.0404 0.0018
IMQ 0.0094 0.0404 0.0018

(GA: Gaussian, MQ: Multiquadric, IMQ: Inverse Multiquadric, RMS: Root Mean Square)
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Figure 1. Approximate solution vs exact solution of Example 4.1

Using the suggested approach to numerically solve the equation, the various errors at
t = 1,2,3,4,5 for different RBFs (Gaussian (GA), Multiquadric (MQ), and Inverse Multiquadric
(IMQ)) are shown in Table 2. The graphs of the approximate and exact solutions at t = 5, are
shown in Figure 1, proving the proposed method’s excellent accuracy.

Example 4.2. Now, we solve the KdV equation (3.1) with α = 1, β = 4.84×1−−4 and with
initial condition u(x,0) = 3C sech2{Ax+D} where A = 1

2

(
αC
β

) 1
2 , C = 0.3, D = −6 with zero flux

boundary conditions. The exact solution is u(x, t) = 3C sech2{Ax−Bt+D} where B = αCA/2
(Haberman [10]).

Table 3. L∞, L2 and RMS errors of Example 4.2

RBF L∞ L2 RMS t
GA 7.37E-06 1.83E-05 1.83E-06 1
MQ 7.37E-06 2.63E-05 2.63E-06
IMQ 7.37E-06 2.39E-05 2.39E-06
GA 1.47E-05 3.64E-05 3.64E-06 2
MQ 1.47E-05 5.24E-05 5.24E-06
IMQ 1.47E-05 4.77E-05 4.77E-05
GA 2.20E-05 5.44E-05 5.44E-06 3
MQ 2.20E-05 7.83E-05 7.83E-06
IMQ 2.20E-05 7.14E-05 7.14E-06
GA 2.92E-05 7.22E-05 7.22E-06 4
MQ 2.92E-05 1.04E-04 1.04E-05
IMQ 2.92E-05 9.48E-05 9.48E-06
GA 3.64E-05 8.99E-05 8.99E-06 5
MQ 3.64E-05 1.30E-04 1.30E-05
IMQ 3.64E-05 1.18E-04 1.18E-05

(GA: Gaussian, MQ: Multiquadric, IMQ: Inverse Multiquadric, RMS: Root Mean Square)
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Figure 2. Approximate solution vs exact solution of Example 4.2

Using the suggested approach to numerically solve the equation, the various errors at
t = 1,2,3,4,5 for different RBFs (Gaussian (GA), Multiquadric (MQ), and Inverse Multiquadric
(IMQ)) are shown in Table 3. The graphs of the approximate and exact solutions at t = 5, are
shown in Figure 2, proving the proposed method’s excellent accuracy.

5. Conclusion
The third order non-linear KdV problem was solved using a meshless radial basis function
pseudo-spectral approach. This method was found to be highly accurate, efficient, and cost-
effective in terms of computing power. The temporal discretization of the problem was done
using the R-K technique, and the radial basis functions used to approximate the numerical
solution were Multiquadric (MQ), Inverse Multiquadratic (IMQ), and Gaussian (GA). The
results of this study demonstrate the effectiveness of the meshless radial basis function pseudo-
spectral technique for solving non-linear problems, and provide a potential avenue for further
exploration.
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