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1. Introduction
The investigations of a differentiable manifold with contact and almost contact metric
structures had been initiated by Boothby and Wang [5]. A class of almost contact metric
manifold and named as Kenmotsu manifold has been initiated by Kenmotsu [16]. Further,
the characteristics of Kenmotsu manifolds have been investigated by many authors such as
Sinha and Srivastava [23], Chaubey and Yildiz [6], Chaubey and Ojha [8], Chaubey and
Yadav [9], Özgür and De [19] and many others. The main invariants of an affine connection are
its torsion and curvature (Friedmann and Schouten [14]). A torsion tensor of a connection is
defined as under

T (K1,K2)=∇K1K2 −∇K2K1 − [K1,K2] , for all K1,K2 ∈X(M), (1.1)

where X(M) is a set of all smooth vector fields on M. A connection ∇ is symmetric and
non-symmetric according as T (K1,K2) = 0, and T (K1,K2) ̸= 0, respectively. The idea of semi-
symmetric connection on a differentiable manifold has been proposed by Friedmann and
Schouten [14]. A linear connection ∇̃ on Mn is called semi-symmetric if

T̃(K1,K2)= η(K2)K1 −η(K1)K2, for all K1,K2 ∈X(M), (1.2)

where η is a 1-form associated with the vector field ξ and satisfies

η(K1)= g(K1,ξ), for all K1,K2 ∈X(M). (1.3)

Further, the idea of metric connection with torsion on a Riemannian manifold has been initiated
by Hayden. A connection ∇ is metric and non-metric on M according as ∇g = 0 and ∇g ̸= 0,
respectively, where g is a Reimannian metric in M. The idea of semi-symmetric non-metric
connection has been initiated by Agashe and Chafle [1]. The quarter-symmetric connection in
a differentiable manifold with affine connection has been investigated by Golab [15]. Further,
characteristics of quarter-symmetric metric connection have been investigated by several
geometers like Rastogi [22], Mishra and Pandey [18], Yano and Imai [28], Kumar et al. [17],
and many others. The semi-symmetric non-metric connection in a Kenmotsu manifold has been
investigated by Tripathi and Nakkar [26]. In line with this, Chaubey and Yildiz [6] initiated
another semi-symmetric non-metric connection. Later on some other authors, like De and
Pathak [10], Pankaj et al. [20,21] studied several connections. Tripathi [25] has justified the
presence of a new connection and showed that in special cases.

We have decided by above investigations to study characteristics of Kenmotsu manifolds
admitting a semi-symmetric non-metric connection. Section 1 is introductory. Section 2 is
concerned with some basic results of Kenmotsu manifolds. The necessary results of a semi-
symmetric non-metric connection are given in Section 3. Basic characteristics of Riemannian
curvature tensor with respect to a semi-symmetric non-metric connection have been investigated
in Section 4. Semi-symmetric Kenmotsu manifolds admitting a semi-symmetric non-metric
connection have been investigated in Section 5. Ricci semi-symmetric Kenmotsu manifolds
admitting a semi-symmetric non-metric connection have been investigated in Section 6. Locally
φ-symmetric Kenmotsu manifolds admitting a semi-symmetric non-metric connection have
been investigated in Section 7. In Section 8, we give an example.
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2. Preliminaries
Suppose M be an (2n+1)-dimensional almost contact metric manifolds with an almost contact
metric quartet (φ,ξ,η, g) consisting of a (1,1) tensor field φ, a vector field ξ, a 1-form η and the
Riemannian metric g on M satisfying [3,27]:

η(ξ)= 1, φ(ξ)= 0, η(φ(K1))= 0, g(K1,ξ)= η(K1), (2.1)

φ2(K1)=−K1 +η(K1)ξ, g(K1,φK2)=−g(φK1,K2), (2.2)

g(φK1,φK2)= g(K1,K2)−η(K1)η(K2) . (2.3)

An almost contact metric quartet (φ,ξ,η, g) is a Kenmotsu manifolds [16] iff

(∇K1φ)(K2)= g(φK1,K2)ξ−η(K2)φK1. (2.4)

It is also defined by above investigations.

∇K1ξ=K1 −η(K1)ξ, (2.5)

(∇K1η)(K2)= g(K1,K2)−η(K1)η(K2)= g(φK1,φK1), (2.6)

R(K1,K2)ξ= η(K1)K2 −η(K2)K1, (2.7)

R(ξ,K1)K2 = η(K2)K1 − g(K1,K2)ξ, (2.8)

R(ξ,K1)ξ=K1 −η(K1)ξ, (2.9)

η(R(K1,K2)K3)= g(K1,K3)η(K2)− g(K2,K3)η(K1), (2.10)

S(φK1,φK2)= S(K1,K2)+2nη(K1)η(K2), (2.11)

S(K1,ξ)=−2nη(K1), (2.12)

S(K1,K2)= g(QK1,K2), (2.13)

∀ K1,K2,K3 ∈X(M), where X(M) is a set of all smooth vector fields on M and R, S and Q

represent the curvature tensor, Ricci tensor and Ricci operator of the manifold M, respectively,
with respect to the Levi-Civita connection ∇.

Definition 2.1. An almost contact metric manifold M is said to be an η-Einstein manifolds if
there exists the real valued functions Θ1, Θ2 such that

S(K1,K2)=Θ1 g(K1,K2)+Θ2η(K1)η(K2). (2.14)

For Θ2 = 0, the manifold M is an Einstein manifolds.

Definition 2.2. A Ricci soliton (g,V,Θ) on a Riemannian manifold is defined by

LVg+2S+2Θg = 0, (2.15)

on M, where LVg is a Lie-derivative along the vector field V of metric g and Θ∈ R. The
Ricci soliton (g,V,Θ) is shrinking, steady and expanding whenever, Θ < 0, Θ = 0 and Θ > 0,
respectively [2].

Definition 2.3. The Ricci tensor S of a Kenmotsu manifolds is said to be η-parallel if it satisfies

(∇K1S)(φK2,φK3)= 0. (2.16)
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The idea of Ricci η-parallelity for Sasakian manifolds was investigated by Yano and Kon [27].
In [11] the authors proved that a 3-dimensional Kenmotsu manifold has η-parallel Ricci tensor
iff it is of constant scalar curvature.

3. A Semi-Symmetric Non-Metric Connection
Let us define, a linear connection ∇̃ [4,13] as

∇̃K1K2 =∇K1K2 + 1
2

[η(K2)K1 −η(K1)K2] (3.1)

satisfying

T̃(K1,K2)= η(K2)K1 −η(K1)K2, (3.2)

and

(∇̃K1 g)(K2,K3)= 1
2

[2η(K1)g(K2,K3)−η(K2)g(K1,K3)−η(K3)g(K1,K2)]. (3.3)

for arbitrary vector fields K1, K2 and K3 is said to be a semi-symmetric non-metric connection.
Also, we have

(∇̃K1φ)(K2)= 1
2

[2(∇K1φ)(K2)−η(K2)φ(K1)], (3.4)

(∇̃K1η)(K2)= (∇K1η)(K2), (3.5)

(∇̃K1 g)(φK1,K3)= 1
2

[2η(K1)g(φK2,K3)−η(K3)g(K1,φK2)]. (3.6)

On replacing K2 by ξ in the equation (3.1), we have

∇̃K1ξ=
3
2
∇K1ξ. (3.7)

On replacing K1 by ξ in the equation (3.3), we have

(∇̃ξg)(K2,K3)= g(φK2,φK3)= (∇K2η)(K3). (3.8)

Hence we have the following propositions:

Proposition 3.1. The vector field ξ with respect to ∇ and ∇̃ is related by equation (3.7).

Proposition 3.2. Co-variant differentiation of g with respect to contra-variant vector field ξ is
given by the equation (3.8) in a contact metric manifold admitting connection ∇̃.

The curvature tensor R̃ of ∇̃ defined as follows

R̃(K1,K2)K3 = ∇̃K1∇̃K2K3 −∇̃K2∇̃K1K3 −∇̃[K1,K2]K3, (3.9)

where K1,K2,K3 ∈X(M).
Using equation (3.1) in (3.9), we have

R̃(K1,K2)K3 =R(K1,K2)K3 + 1
2

[(∇K1η)(K3)K2 − (∇K1η)(K2)K3

− (∇K2η)(K3)K1 + (∇K2η)(K1)K3]

+ 1
4

[η(K2)η(K3)K1 −η(K1)η(K3)K2], (3.10)
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where

R(K1,K2)K3 =∇K1∇K2K3 −∇K2∇K1K3 −∇[K1,K2]K3 (3.11)

is the Riemannian curvature tensor [3] of ∇.

Proposition 3.3. The relation between Riemannian curvature tensors R̃ and R with respect to
connections ∇̃ and ∇, respectively is given by the equation (3.10).

4. Some Curvature Tensor of Kenmotsu Manifolds With a
Semi-Symmetric Non-Metric Connection

Now using equation (2.6) in equation (3.10), we have

R̃(K1,K2)K3 =R(K1,K2)K3 + 1
2

[g(K1,K3)K2 − g(K2,K3)K1]

+ 3
4

[η(K2)η(K3)K1 −η(K1)η(K3)K2]. (4.1)

Contracting of (4.1) with respect to K1, we have

S̃(K2,K3)= S(K2,K3)−ng(K2,K3)+ 3
2

nη(K2)η(K3). (4.2)

Using (2.13) in equation (4.2), we have

Q̃K2 =QK2 −n(K1)+ 3
2

nη(K2)ξ. (4.3)

Again contracting equation (4.2), we have

r̃= r− n
2

(4n−1), (4.4)

where S̃(K2,K3); S(K2,K3), Q̃; Q and r̃; r are the Ricci tensors, Ricci operators and scalar
curvatures of ∇̃ and ∇.

On replacing K1 by ξ in (4.1) and using (2.1), (2.2), we have

R̃(ξ,K2)K3 =R(ξ,K2)K3 − 1
2

g(K2,K3)ξ+ 3
4
η(K2)η(K3)ξ− 1

4
η(K3)K2. (4.5)

In view of (2.8) and (4.5), we have

R̃(ξ,K2)K3 = 3
4

[−2g(K2,K3)ξ+η(K2)η(K3)ξ+η(K3)K2]. (4.6)

Again on replacing K3 by ξ in (4.1) and using (2.1), (2.7), we have

R̃(K1,K2)ξ= 3
4
R(K1,K2)ξ=−3

4
T̃(K1,K2) ̸= 0. (4.7)

Thus, we have the following theorem:

Theorem 4.1. Every (2n+1)-dimensional Kenmotsu manifold admitting connection ∇̃ is regular.

Now operating η on both sides of equation (4.1) and using equation (2.1), we have

η(R̃(K1,K2)K3)= 1
2

[2g(K1,K3)η(K2)−2g(K2,K3)η(K1)

+ g(K1,K3)η(K2)− g(K2,K3)η(K1)]. (4.8)
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On contracting of (4.7) with respect to K1, we have

S̃(K2,ξ)=−3
2

nη(K2). (4.9)

In view of equations (4.2), (4.3) and (4.4), we have the following lemma:

Lemma 4.1. In a Kenmotsu manifold Ricci tensor, Ricci operator and scalar curvature with
respect to connections ∇̃ and ∇ are related by the equations (4.2), (4.3) and (4.4).

Proof. On taking R̃(K1,K2)K3 = 0 in the equation (4.1), we have

R(K1,K2)K3 =−1
2

[g(K1,K3)K2 − g(K2,K3)K1]− 3
4

[η(K2)η(K3)K1 −η(K1)η(K3)K2]. (4.10)

Thus
′R(K1,K2,K3,K4)=−1

2
g(K1,K3)g(K2,K4)+ 1

2
g(K2,K3)g(K1,K4)

− 3
4
η(K2)η(K3)g(K1,K4)+ 3

4
η(K1)η(K3)g(K2,K4). (4.11)

Contracting of (4.11) with respect to vector field K1, we have

S(K2,K3)= ng(K2,K3)− 3
2

nη(K2)η(K3). (4.12)

Using equation (2.13) in equation (4.12), we have

QK2 = nK2 − 3
2

nη(K2)ξ. (4.13)

Again contracting equation (4.12), we have

r= n
2

(4n−1). (4.14)

By virtue of Definition 2.1 and equation (4.12), we state the theorem:

Theorem 4.2. If Riemannian curvature tensor with respect to connection ∇̃ in a Kenmotsu
manifold vanishes, then the manifold is an η-Einstein manifold.

5. Semi-Symmetric Kenmotsu Manifolds
A (2n+1)-dimensional Kenmotsu manifold M with ∇̃ is said to be semi-symmetric [20] if

(R̃(K1,K2)R̃)(K3,K4)K5 = 0,

i.e.

R̃(K1,K2)R̃(K3,K4)K5 −R̃(R̃(K1,K2)K3,K4)K5

−R̃(K3,R̃(K1,K2)K4)K5 −R̃(K3,K4)R̃(K1,K2)K5 = 0. (5.1)

On replacing K1 by ξ, we have

R̃(ξ,K2)R̃(K3,K4)K5 −R̃(R̃(ξ,K2)K3,K4)K5

−R̃(K3,R̃(ξ,K2)K4)K5 −R̃(K3,K4)R̃(ξ,K2)K5 = 0. (5.2)
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In view of equations (2.1), (2.2), (4.6), (4.7) and (4.8), we have

′R̃(K3,K4,K5,K2)= g(K2,K3)η(R̃(ξ,K4)K5)− 1
2
η(K2)η(K3)η(R̃(ξ,K4)K5)

+ 1
2
η(K3)η(R̃(K2,K4)K5)− g(K2,K4)η(R̃(ξ,K3)K5)

+ 1
2
η(K2)η(K4)η(R̃(ξ,K3)K5)+ 1

2
η(K4)η(R̃(K3,K2)K5)

+ g(K2,K5)η(R̃(K3,K4)ξ)− 1
2
η(K2)η(K5)η(R̃(K3,K4)ξ)

+ 1
2
η(K5)η(R̃(K3,K4)K2). (5.3)

By using equations (2.1), (2.2), (4.6), (4.7) and (4.8), we have

′R̃(K3,K4,K5,K2)=−3
2

g(K2,K3)g(K4,K5)+ 3
2

g(K2,K3)η(K4)η(K5)− 3
4
η(K4)η(K5)

+ 3
2

g(K4,K5)g(K5,K3)− 9
4

g(K4,K2)η(K5)η(K3). (5.4)

Hence, we have

R̃(K3,K4)K5 =−3
2

g(K4,B5)K3 + 3
2
η(K4)η(K5)K3 − 3

4
η(K4)η(K5)+ 3

2
g(K5,K3)K4

− 9
4
η(K5)η(K3)K4. (5.5)

Contracting equation (5.5) with respect to K3, we have

S̃(K4,K5)=−3ng(K4,K5)+ 3
2

(2n−1)η(K4)η(K5). (5.6)

Using equation (4.2) in above equation, we obtain

S(K4,K5)=−2ng(K4,K5)+ 3
2

(n−1)η(K4)η(K5). (5.7)

Using equation (2.13) in above equation, we have

QK4 =−2nK4 + 3
2

(n−1)η(K4)ξ. (5.8)

Again contracting equation (5.7), we obtain

r=−1
2

(8n2 +n+3). (5.9)

By virtue of Definition 2.1 and equation (5.7), we can state

Theorem 5.1. A semi-symmetric Kenmotsu manifold admitting connection ∇̃ is an η-Einstein
manifold.

The Ricci soliton of data (g,V,Θ) is defined by (2.15), where g, V, Θ are Riemannian metric, a
vector field and a real constant. Here two conditions come out with regard to the V :V ∈ span{ξ}
and V ⊥ span{ξ}. Now taking V ∈ span{ξ}. The Ricci soliton of data (g,ξ,Θ) on a Kenmotsu
manifold admitting connection ∇̃ defined as under:

(L̃ξg)(K1,K2)+2S̃(K1,K2)+2Θg(K1,K2)= 0. (5.10)
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∀ K1,K2 ∈X(M). Here L̃ξg, the Lie-derivative of g with respect to ξ admitting connection ∇̃, is
defined as under

(L̃ξg)(K1,K2)= g(∇̃K1ξ,K2)+ g(K1,∇̃K2ξ)−2g(φK1,φK2). (5.11)

Now, using equations (2.1), (2.3), (2.5), (3.7) and (5.11), we have

(L̃ξg)(K1,K2)= g(φK1,φK2). (5.12)

Using equations (5.6) and (5.12) in the equation (5.10), we have

g(φK1,φK2)−6ng(K1,K2)+3(2n−1)η(K1)η(K2)+2Θg(K1,K2)= 0. (5.13)

On taking K1 =K2 = ξ and using (2.1) in (5.13), we have

Θ= 3
2
> 0. (5.14)

Thus, we state the theorem:

Theorem 5.2. A semi-symmetric Kenmotsu manifold admitting connection ∇̃, the Ricci soliton
of data (g,ξ,Θ) is always expanding.

6. Ricci Semi-Symmetric Kenmotsu Manifolds
A (2n+1)-dimensional contact metric manifolds M with respect to connection ∇̃ is said to be
Ricci semi-symmetric [20] if

(R̃(K1,K2) · S̃)(K3,K4)= 0.

i.e.

S̃(R̃(K1,K2)K3,K4)+ S̃(K3,R̃(K1,K2)K4)= 0. (6.1)

On replacing K1 by ξ and using (4.6) in (6.1), we have

S̃(R̃(ξ,K2)K3,K4)+ S̃(K3,R̃(ξ,K2)K4)= 0, (6.2)

i.e.

− 3
2

g(K2,K3)S̃(ξ,K4)+ 3
4
η(K2)η(K3)S̃(ξ,K4)− 3

4
η(K3)S̃(K2,K4)− 3

2
g(K2,K4)S̃(K3,ξ)

+ 3
4
η(K2)η(K4)S̃(K3,ξ)− 3

4
η(K4)S̃(K3,K2)= 0. (6.3)

In view of equation (4.9), the above equation yields
9
4

ng(K2,K3)η(K4)− 9
8

nη(K2)η(K3)η(K4)− 3
4
η(K3)S̃(K2,K4)+ 9

4
ng(K2,K4)η(K3)

− 9
8

nη(K2)η(K3)η(K4)− 3
4
η(K4)S̃(K3,K2)= 0. (6.4)

Again replacing K4 by ξ and using (4.9) in (6.4), we have

S̃(K2,K3)= 3ng(K2,K3)+ 3
2

nη(K2)η(K3). (6.5)

Using (4.2) in (6.5), we have

S(K2,K3)= 4ng(K2,K3). (6.6)
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On contracting equation (6.6), we have

r= 4n(2n+1), (6.7)

with the help of equation (6.7), equation (4.4) takes the form

r̃= 3n
2

(4n+3). (6.8)

In view of equation (6.6), we can state following:

Theorem 6.1. A Ricci semi-symmetric Kenmotsu manifold equipped with connection ∇̃ is an
Einstein manifold.

Using equation (4.1) in the given below equation

(R̃(K1,K2) · S̃)(K3,K4)=−S̃(R̃(K1,K2)K3,K4)− S̃(K3,R̃(K1,K2)K4), (6.9)

we have

(R̃(K1,K2) · S̃)(K3,K4)= (R(K1,K2) ·S)(K3,K4)− 1
2

g(K1,K3)S(K2,K4)

+ 1
2

g(K2,K3)S(K1,K4)− 3
4
η(K2)η(K3)S(K1,K4)

+ 3
4
η(K1)η(K3)S(K2,K4)− 1

2
g(K1,K4)S(K2,K3)

+ 1
2

g(K2,K4)S(K3,K1)− 3
4
η(K2)η(K4)S(K3,K1)

+ 3
4
η(B1)η(K4)S(K2,K3)− 3

2
n ·η(R(K1,K2)K3)η(K4)

− 3
2

n ·η(R(K1,K2)K4)η(K3). (6.10)

If we assume (R(K1,K2) ·S)(K3,K4) = (R̃(K1,K2) · S̃)(K3,K4), then from equation (6.10), we
have

− 1
2

g(K1,K3)S(K2,K4)+ 1
2

g(K2,K3)S(K1,K4)− 3
4
η(K2)η(K3)S(K1,K4)

+ 3
4
η(K1)η(K3)S(K2,K4)− 1

2
g(K1,K4)S(K2,K3)+ 1

2
g(K2,K4)S(K3,K1)

− 3
4
η(K2)η(K4)S(K3,K1)+ 3

4
η(K1)η(K4)S(K2,K3)− 3

2
nη(R(K1,K2)K3)η(K4)

− 3
2

nη(R(K1,K2)K4)η(K3)= 0, (6.11)

where

(R(K1,K2) ·S)(K3,K4)=−S(R(K1,K2)K3,K4)−S(K3,R(K1,K2)K4). (6.12)

Now, replacing K4 by ξ in the equation (6.11), we have

− 1
2

g(K1,K3)S(K2,ξ)+ 1
2

g(K2,K3)S(K1,ξ)− 3
4
η(K2)η(K3)S(K1,ξ)+ 3

4
η(K1)η(K3)S(K2,ξ)

− 1
2

g(K1,ξ)S(K2,K3)+1
2

g(K2,ξ)S(K3,K1)−3
4
η(K2)η(ξ)S(K3,K1)+3

4
η(K1)η(ξ)S(K2,K3)

− 3
2

nη(R(K1,K2)K3)η(ξ)− 3
2

nη(R(K1,K2)ξ)η(K3)= 0. (6.13)
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Now, using equations (2.1), (2.10) and (6.5) in equation (6.13), we have

−3ng(K1,K3)η(K2)− 3
2

ng(K1,K3)η(K2)+3ng(K2,K3)η(K1)+ 3
2

ng(K2,K3)η(K1)= 0, (6.14)

i.e.
9
2

n[η(K1)g(K2,K3)−η(K2)g(K1,K3)]= 0, (6.15)

which is not possible. Hence we have the following:

Corollary 6.1. In a Ricci semi-symmetric Kenmotsu manifold admitting connection ∇̃
(R(K1,K2) ·S)(K3,K4) ̸= (R̃(K1,K2) · S̃)(K3,K4). (6.16)

Using equations (5.12) and (6.5) in the equation (5.10), we have

2(3n+Θ)g(K1,K2)+ g(φK1,φK2)+3nη(K1)η(K2)= 0. (6.17)

On taking K1 =K2 = ξ and using (2.1) in (6.17), we have

Θ=−9n
2

< 0. (6.18)

Thus, we have the following:

Theorem 6.2. A Ricci semi-symmetric Kenmotsu manifold admitting connection ∇̃, the Ricci
soliton of data (g,ξ,Θ) is always shrinking.

7. Locally φ-Symmetric Kenmotsu Manifolds
Definition 7.1. A Kenmotsu manifolds M admitting connection ∇̃ is called locally φ-symmetric
[24] if

φ2((∇̃K4R̃)(K1,K2)K3)= 0

∀ K1,K2,K3,K4 are orthogonal to ξ.

Taking covariant differentiation of R with respect to K4, we have

(∇̃K4R)(K1,K2)K3 = ∇̃K4R(K1,K2)K3 −R(∇̃K4K1,K2)K3

−R(K1,∇̃K4K2)K3 −R(K1,K2)(∇̃K4K3). (7.1)

Now using equations (2.10) and (3.1) in equation (7.1), we have

(∇̃K4R)(K1,K2)K3 = (∇K4R)(K1,K2)K3 + 1
2

[2η(K4)R(K1,K2)K3 −η(K1)R(K4,K2)K3

−η(K2)R(K1,K4)K3 −η(K3)R(K1,K2)K4 + g(K1,K3)η(K2)K4

− g(K2,K3)η(K1)K4]. (7.2)

Applying covariant differentiation on (4.1) with respect to K4, we have

(∇̃K4R̃)(K1,K2)K3 = (∇̃K4R)(K1,K2)K3 + 1
2

[(∇̃K4 g)(K1,K3)K2 − (∇̃K4 g)(K2,K3)K1]

+ 3
4

[(∇̃K4η)(K2)η(K3)K1 + (∇̃K4η)(K3)η(K2)K1 − (∇̃K4η)(K1)η(K3)K2

− (∇̃K4η)(K3)η(K1)K2]. (7.3)
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Using equations (2.6), (3.3), (3.5) and (7.2), we have

(∇̃K4R̃)(K1,K2)K3 = (∇K4R)(K1,K2)K3 + 1
2

[2η(K4)R(K1,K2)K3 −η(K1)R(K4,K2)K3

−η(K2)R(K1,K4)K3 −η(K3)R(K1,K2)K4 + g(K1,K3)η(K2)K4

− g(K2,K3)η(K1)K4]+ 1
2

g(K1,K3)η(K4)K2 − 1
2

g(K2,K3)η(K4)K1

− g(K4,K1)η(K3)K2 + g(K4,K2)η(K3)K1 − g(K4,K3)η(K1)K2

+ g(K4,K3)η(K2)K1 − 3
2
η(K2)η(K3)η(K4)K1 + 3

2
η(K1)η(K3)η(K4)K1.

(7.4)

Now applying φ2 on both sides of equation (7.4) and using equation (2.2), we have

φ2((∇̃K4R̃)(K1,K2)K3)=φ2((∇K4R)(K1,K2)K3)+ 1
2

[−2η(K4)R(K1,K2)K3

+2η(K4)η(R(K1,K2)K3)ξ+η(K1)R(K4,K2)K3

−η(K1)η(R(K4,K2)K3)ξ+η(K2)R(K1,K4)K3

−η(K2)η(R(K1,K4)K3)ξ+η(K3)R(K1,K2)ξ

−η(K3)η(R(K1,K2)K4)ξ−η(K2)g(K1,K3)K4

+2η(K2)η(K4)g(K1,K3)ξ+η(K1)g(K2,K3)K4

−2η(K1)η(K4)g(K2,K3)ξ−η(K4)g(K1,K3)K2

+η(K4)g(K2,K3)K1 +2η(K3)g(K1,K4)K2

−2η(K2)η(K3)g(K1,K4)ξ−2η(K3)g(K2,K4)K1

+2η(K1)η(K3)g(K2,K4)ξ+2η(K1)g(K4,K3)K2

−2η(K2)g(K4,K3)K1 +3η(K2)η(K3)η(K4)K1

−3η(K1)η(K3)η(K4)K2]. (7.5)

Taking K1,K2,K3 and K4 orthogonal to ξ, then from equation (7.5), we have

φ2((∇̃K4R̃)(K1,K2)K3)=φ2((∇K4R)(K1,K2)K3). (7.6)

Theorem 7.1. The necessary and sufficient condition for a Kenmotsu manifold to be locally
φ-symmetric with respect to connection ∇̃ is that the manifold is also locally φ-symmetric with
respect to the connection ∇.

8. Example of a Three-Dimensional Kenmotsu Manifold
Let three-dimensional manifold M3 = {(t1,t2,t3) ∈R3 : t3 > 0}, where (t1,t2,t3) are the standard
co-ordinates in R3. The vector fields [12]

ς1 = t3
∂

∂t1
, ς2 = t3

∂

∂t2
, ς3 =−t3 ∂

∂t3
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are linearly independent at each point of M. Let g be the Riemannian metric defined by

g(ς1,ς2)= g(ς2,ς3)= g(ς3,ς1)= 0,

g(ς1,ς1)= g(ς2,ς2)= g(ς3,ς3)= 1,

 (8.1)

where

g =
1 0 0

0 1 0
0 0 1

 .

Let η be the 1-form defined by η(K1)= g(K1,ς3) for any K1 ∈X(M). Let φ be the (1,1)-tensor
field defined by

(φς1)=−ς2, (φς2)= ς1, (φς3)= 0. (8.2)

Now for K1 =K1
1ς1 +K2

1ς2 +K3
1ς3 and ξ= ς3, using linearity of φ and g, we have

η(ς3)= η(ξ)= 1, φ2(K1)=−K1 +η(K1)ς3 =−(K1
1ς1 +K2

1ς2) (8.3)

where K1
1,K2

1,K3
1 are the scalars and ∀ K1,K2 ∈X(M). Thus for ς3 = ξ, (φ,ξ,η, g) defines an

almost contact metric structure on M. Let ∇ be the Levi-Civita connection with respect to the
metric g. Then, we have

[ς1,ς1]= 0, [ς1,ς2]= 0, [ς1,ς3]= ς1,

[ς2,ς1]= 0, [ς2,ς2]= 0, [ς2,ς3]= ς2,

[ς3,ς1]=−ς1, [ς3,ς2]=−ς2, [ς3,ς3]= 0.

 (8.4)

Now using equation (2.3), we have

g(K1,K2)=K1
1K

1
2 +K2

1B2
2 +K3

1K
3
2. (8.5)

Let us consider ∇, a Levi-Civita connection admitting a Riemannian metric g. Using the Koszul
formula

2g(∇K1K2,K3)=K1 g(K2,K3)+K2 g(K3,K1)−K3 g(K1,K2)

+ g([K1,K2],K3)− g([K2,K3],K1)+ g([K3,K1],K2). (8.6)

By virtue of (8.6), we have
∇ς1ς1 = 0, ∇ς1ς2 = 0, ∇ς1ς3 = ς1,

∇ς2ς1 = 0, ∇ς2ς2 =−ς3, ∇ς2ς3 = ς2,

∇ς3ς1 = 0, ∇ς3ς2 = 0, ∇ς3ς3 = 0.

 (8.7)

Again for K1 =K1
1ς1 +K2

1ς2 +K3
1ς3 and ξ= ς3, we have

3
2
∇K1ξ=

3
2

[K1
1ς1 +K2

1ς2], (8.8)

i.e.

∇K1ξ=K1
1ς1 +K2

1ς2, (8.9)

K1 −η(K1)ξ=K1
1ς1 +K2

1ς2, (8.10)

where K1
1,K2

1,K3
1 are scalars. From equations (8.9) and (8.10) it follows that the manifold

satisfies equation (2.5) for ξ = ς3. Thus manifold is a Kenmotsu manifold. In reference of
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equations (2.1), (3.1) and (8.7), we have the following:

∇̃ς1ς1 = 0, ∇̃ς1ς2 = 0, ∇̃ς1ς3 = 3
2
ς1

∇̃ς2ς1 = 0, ∇̃ς2ς2 = 0, ∇̃ς2ς3 = 3
2
ς2

∇̃ς3ς1 =−ς1

2
, ∇̃ς3ς2 =−1

2
ς2, ∇̃ς3ς3 = 0.


(8.11)

In equations (3.2) and (3.3), we have

T̃(ς1,ς3)= η(ς3)ς1 −η(ς1)ς3

= g(ς3,ς3)ς1 − g(ς1,ς3)ς3

= ς1 ̸= 0 (8.12)

and

(∇̃ς1 g)(ς1,ς3)= 1
2

{2η(ς1)g(ς1,ς3)−η(ς1)g(ς1,ς3)−η(ς3)g(ς1,ς1)}

=−1
2
̸= 0. (8.13)

Thus it is clear from (3.1) that ∇̃ is a semi-symmetric non-metric connection. Now

∇̃K1ξ= ∇̃K1
1ς1+K2

1ς2+K3
1ς3
ς3

=K1
1∇̃ς1ς3 +K2

1∇̃ς2ς3 +K3
1∇̃ς3ς3

= 3
2

(K1
1ς1 +K2

1ς2). (8.14)

By virtue of (8.8) and 8.12, we have verified the equations (3.6) and (3.7). The R(ςi,ς j)ςk;
i, j,k = 1,2,3 of connection ∇ can be estimated by using (3.11), (8.4) and (8.7), we have

R(ς1,ς2)ς1 = 0, R(ς1,ς2)ς2 = 0, R(ς1,ς2)ς3 = 0,

R(ς1,ς3)ς1 = 0, R(ς1,ς3)ς2 = 0, R(ς1,ς3)ς3 =−ς1,

R(ς2,ς3)ς1 = 0, R(ς2,ς3)ς2= 0, R(ς2,ς3)ς3 =−ς2,

 (8.15)

along with R(ςi,ςi)ςi = 0; ∀ i = 1,2,3. By above discussions it has been verified equations (2.7),
(2.8), (2.10) and (2.12) hold.
Analogously, we can estimate the R̃(ςi,ς j)ςk; i, j,k = 1,2,3 of connection ∇̃ by using equations
(3.10), (8.4) and (8.11), we have

R̃(ς1,ς2)ς1 = 0, R̃(ς1,ς2)ς2 = 0, R̃(ς1,ς2)ς3 = 0,

R̃(ς1,ς3)ς1 = 0, R̃(ς1,ς3)ς2 = 0, R̃(ς1,ς3)ς3 =−3
4
ς1,

R̃(ς2,ς3)ς1 = 0, R̃(ς2,ς3)ς2 = 0, R̃(ς2,ς3)ς3 =−3
4
ς2,


(8.16)

along with R̃(ςi,ςi)ςi = 0; ∀ i = 1,2,3.
By virtue of (8.15) and (8.16), we have verified equations (4.1), (4.5), (4.6), (4.7) and (4.8).
The Ricci tensors S(ς j,ςk); j,k = 1,2,3 of connection ∇ can be estimated by using (8.15) as under

S(ς j,ςk)=
3∑

i=1
g(R(ςi,ς j)ςk,ςi).
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It is as under:
S(ς1,ς1)= 0, S(ς2,ς2)= 0, S(ς3,ς3)=−2,

S(ς1,ς2)= 0, S(ς1,ς3)= 0, S(ς2,ς3)= 0.

}
(8.17)

In view of equation (8.17), we can easily verify equation (2.12).
Also in view of equation (8.17) we have verified the following:

(∇K1S)(φς1,φς2)= 0, (∇K1S)(φς2,φς3)= 0, (∇K1S)(φς1,φς1)= 0,

(∇K1S)(φς1,φς3)= 0, (∇K1S)(φς3,φς1)= 0, (∇K1S)(φς2,φς2)= 0,

(∇K1S)(φς2,φς1)= 0, (∇K1S)(φς3,φς2)= 0, (∇K1S)(φς3,φς3)= 0.

 (8.18)

Thus we note that

(∇K1S)(φK2,φK3)= 0. (8.19)

∀ K1,K2,K3 ∈X(M). Hence the Ricci tensor is η-parallel. In view of equation (8.18) we can
easily verify the equation (2.16).

The S̃(ς j,ςk); j,k = 1,2,3 of ∇̃ estimated by using (8.16) as under

S̃(ς j,ςk)=
3∑

i=1
g(R̃(ςi,ς j)ςk,ςi).

It follows as under:

S̃(ς1,ς1)= 0, S̃(ς2,ς2)= 0, S̃(ς3,ς3)=−3
2

,

S̃(ς1,ς2)= 0, S̃(ς1,ς3)= 0, S̃(ς2,ς3)= 0.

 (8.20)

In view of equation (8.20), we can say that the example validate the equations (4.2) and (4.9).

Hence, we can say that given example is suitable for verification.
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