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1. Introduction
Stochastic Differential Equations (SDE) are widely used in a variety of fields, including
the physical sciences, biological sciences, agricultural sciences, and financial mathematics,
which includes option pricing, where the stochastic Volterra-Fredholm integral equation (SVFIE)
plays a crucial role [7, 10]. As with other differential equations, it is practically impossible
to find the solution to many SDEs, and the problem becomes more complex in the case of
SVFIE. Therefore, the numerical approximation method becomes crucial for finding solutions to
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the problems. Numerous SVFIEs are determined approximately using a variety of numerical
techniques. In recent decades, orthogonal functions such as block pulse function (BPF), Haar
wavelet, Legendre polynomials, Laguerre polynomials, and Chebyshev’s polynomials have been
utilised to approximate the solution of SVFIE.

The Walsh functions form an orthonormal system that only accepts the values 1 and −1. As a
result, a number of mathematicians consider the Walsh system to be an artificial orthonormal
system, which was introduced in 1923 [13] and has numerous applications in digital technology.
Walsh functions have a significant advantage over traditional trigonometric functions because
a computer can determine the exact value of any Walsh function at any given time with
high accuracy. Chen and Hsiao used the Walsh function to solve the variational problem in
1997, as cited in [1]. They used the same concept to solve the integral equation [5] in 1979.
The technique’s key property is that it converts the problem into a system of algebraic equations,
which are then solved to yield an approximation of the solution. In this paper, we use the Walsh
function to approximate the solution x(t) of the following linear SVFIE

x(t)= f (t)+
∫ β

α
k(s, t)x(s)ds+

∫ t

0
k1(s, t)x(s)ds+

∫ t

0
k2(s, t)x(s)dB(s) , (1.1)

where x(t), f (t), k(s, t), k1(s, t) and k2(s, t) for s, t ∈ [0,T), represent the stochastic processes
primarily based on the identical probability space (Ω,F,P) and x(t) is unknown. In addition,
B(t) represents Brownian motion [7,10], and

∫ t
0 k2(s, t)x(s)dB(s) represents the Itô integral.

In the majority of previous works, the evaluation is predicated on the assumption
that the derivatives f ′(t), ∂2k

∂s∂t ,
∂2ki
∂s∂t for i = 1,2, exist and are bounded. By converting BPF

approximation to Walsh function approximation in this paper, we expect only the Lipschitz
continuity of the functions f (t), k(s, t), k1(s, t) and k2(s, t) to have the same rate of convergence,
which allows us to consider the general form of SVFIE to be integrated. In the final portion,
the method is compared to similar techniques [6,9] that approximate the solution of the SVFIE
using the block pulse function and the Haar wavelet.

2. Walsh Function and Its Properties
Definition 2.1 (Rademacher Function). Rademacher function r i(t), i = 1,2, . . ., for t ∈ [0,1) is
defined by [13]

r i(t)=
{

1 i = 0,
sgn(sin(2iπt)) otherwise,

where

sgn(x)=


1 x > 0,
0 x = 0,
−1 x < 0.

Definition 2.2 (Walsh Function). The nth Walsh function for n = 0,1,2, . . ., denoted by wn(t),
t ∈ [0,1) is defined [13] as

wn(t)= (rq(t))bq . (rq−1(t))bq−1 . (rq−2(t))bq−2 . . . (r1(t))b1 ,
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where n = bq2q−1 +bq−12q−2 +bq−22q−3 + . . .+b120 is the binary expression of n. Therefore, q,
the number of digits present in the binary expression of n is calculated by q = [log2 n]+1 in
which [·] is the greatest integer less than or equal’s to ‘·’.

The first m Walsh functions for m ∈ N can be written as an m-vector by

W(t)= [
w0(t) w1(t) w2(t) . . . wm−1(t)

]T , t ∈ [0,1).

The Walsh functions satisfy the following properties.

Orthonormality
The set of Walsh functions is orthonormal, i.e.,∫ 1

0
wi(t)w j(t)dt =

{
1 i = j,
0 otherwise.

Completeness
For every f ∈ L2[0,1)∫ 1

0
f 2(t)dt =

∞∑
i=0

f 2
i ∥wi(t)∥2 ,

where f i =
∫ 1

0 f (t)wi(t)dt.

Walsh Function Approximation
Any real-valued function f (t) ∈ L2[0,1) can be approximated as

fm(t)≈
m−1∑
i=0

ciwi(t),

where ci =
∫ 1

0 f (t)wi(t)dt.
The matrix form is given by

f (t)≈ FTTWW(t), (2.1)

where F = [
f0 f1 f2 . . . fm−1

]T , f i =
∫ (i+1)h

ih f (s)ds.

Here, TW = [wi(η j)] is called as the Walsh operational matrix where η j ∈ [ jh, ( j+1)h).

Similarly, function k(s, t) ∈ L2([0,1)× [0,1)) can be approximated by

km(s, t)≈
m−1∑
i=0

m−1∑
j=0

ci jwi(s)w j(t),

where, ci j =
∫ 1

0
∫ 1

0 k(s, t)wi(s)w j(t)dtds with the matrix form represented by

k(s, t)≈WT(s)TW KTWW(t)=WT(t)TW KTTWW(s), (2.2)

where K = [ki j]m×m,ki j =
∫ (i+1)h

ih
∫ ( j+1)h

jh k(s, t)dtds.
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3. Relationship Between Walsh Function and Block Pulse
Functions (BPFs)

Definition 3.1 (Block Pulse Functions). For a fixed positive integer m, an m-set of BPFs
φi(t), t ∈ [0,1) for i = 0,1, . . . ,m−1 is defined as

φi(t)=
{

1 if i
m ≤ t < (i+1)

m ,
0 otherwise,

φi is known as the ith BPF.

The set of all m BPFs can be written concisely as an m-vector,

Φ(t)= [
φ0(t) φ1(t) φ2(t) . . . φm−1(t)

]T , t ∈ [0,1).

The BPFs are disjoint, complete, and orthogonal [12].
The BPFs in vector form satisfy

Φ(t)Φ(t)T X = X̃Φ(t) and ΦT(t)AΦ(t)= ÂΦ(t),

where X ∈ Rm×1, X̃ is the m × m diagonal matrix with X̃ (i, i) = X (i) for i = 1,2,3, . . . ,m,
A ∈ Rm×m and Â = [

a11 a22 . . . amm
]T is the m-vector with elements equal to the diagonal

entries of A. The integration of BPF vector Φ(t), t ∈ [0,1) can be performed by [4]∫ t

0
Φ(τ)dτ= PΦ(t), t ∈ [0,1). (3.1)

Hence, the integral of every function f (t) ∈ L2[0,1) can be approximated as∫ t

0
f (s)ds = FTPΦ(t).

The Itô integral of BPF vector Φ(t), t ∈ [0,1) can be performed by [8]∫ t

0
Φ(τ)dB(τ)= PSΦ(t), t ∈ [0,1). (3.2)

Hence, the Itô integral of every function f (t) ∈ L2[0,1) can be approximated as∫ t

0
f (s)dB(s)= FTPSΦ(t).

The following theorem describes a relationship between the Walsh function and the block
pulse function.

Theorem 3.2 ([11]). Let the m-set of Walsh function and BPF vectors be W(t) and Φ(t),
respectively. Then the BPF vectors Φ(t) can be used to approximate W(t) as W(t) = TWΦ(t),
m = 2k, and k = 0,1, . . ., where TW = [ci j]m×m, ci j = wi(η j), for some η j =

( j
m , j+1

m
)

and
i, j = 0,1,2, . . .m−1.

One can see that [2]

TW TT
W = mI and TT

W = TW

which implies that Φ(t)= 1
m TWW(t).

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1603–1613, 2023



Numerical Approximation of Stochastic Volterra-Fredholm Integral Equation. . . : P. P. Paikaray et al. 1607

Lemma 3.3 (Integration of Walsh Function). Suppose that W(t) is a Walsh function vector, then
the integral of W(t) with respect to t is given by∫ t

0
W(s)ds =ΛW(t),

where Λ= 1
m TW PTW and

P = 1
h


1 2 2 . . . 2
0 1 2 . . . 2
...

...
... . . . ...

0 0 0 . . . 1

 .

Lemma 3.4 (Stochastic Integration of Walsh Function [11]). Suppose that W(t) is a Walsh
function vector, then the Itô integral of W(t) is given by∫ t

0
W(s)dB(s)=ΛSW(t),

where ΛS = 1
m TW PSTW and

PS =


B

(
h
2

)
B(h) . . . B(h)

0 B
(

3h
2

)
−B(h) . . . B(2h)−B(h)

...
... . . . ...

0 0 . . . B
(

(2m−1)h
2

)
−B((m−1)h)

 .

4. Numerical Solution of Stochastic Volterra-Fredholm Integral
Equation

We consider following linear stochastic Volterra-Fredholm integral equation (LSVFIE)

x(t)= f (t)+
∫ 1

0
k(s, t)x(s)ds+

∫ t

0
k1(s, t)x(s)ds+

∫ t

0
k2(s, t)x(s)dB(s), (4.1)

where x(t), f (t), k(s, t), k1(s, t) and k2(s, t) for s, t ∈ [0,T), are the stochastic processes defined
on the same probability space (Ω,F,P) and x(t) is unknown. Also, B(t) is Brownian motion and∫ t

0 k2(s, t)x(s)dB(s) is the Itô integral.
Using equations (2.1) and (2.2) in (4.1) we have

X TTWW(t)= FTTWW(t)+
∫ 1

0
WT(t)TW KTTWW(s)WT(s)TW X ds

+
∫ t

0
WT(t)TW KT

1 TWW(s)WT(s)TW X ds

+
∫ t

0
WT(t)TW KT

2 TWW(s)WT(s)TW X dB(s)

= FTTWW(t)+WT(t)TW KTTW

∫ 1

0
W(s)WT(s)TW X ds

+WT(t)TW KT
1 TW

∫ t

0
W(s)WT(s)TW X ds
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+WT(t)TW KT
2 TW

∫ t

0
W(s)WT(s)TW X dB(s). (4.2)

Now ∫ t

0
W(s)WT(s)TW X ds =

∫ t

0
TWΦ(s)ΦT(s)TW TW X ds

= mTW X̃ P
1
m

TWW(t).

Hence∫ t

0
W(s)WT(s)TW X ds = TW X̃ PTWW(t). (4.3)

Similarly,∫ t

0
W(s)WT(s)TW X dB(s)= mTW X̃ PS

1
m

TWW(t)= TW X̃ PSTWW(t). (4.4)

Substituting (4.3) and (4.4) in (4.2) and using the condition of orthonormality, we get

X TTWW(t)= FTTWW(t)+mWT(t)TW KT X +mWT(t)TW KT
1 X̃ PTWW(t)

+mWT(t)TW KT
2 X̃ PSTWW(t)

= FTTWW(t)+mWT(t)TW KT X +WT(t)TW H1TWW(t)+WT(t)TW H2TWW(t)

= FTTWW(t)+mWT(t)TW KT X +mĤ1
T

TWW(t)+mĤ2
T

TWW(t)

which implies that(
(I −mK)X T −FT −mĤ1

T −mĤ2
T)

TWW(t)= 0, (4.5)

where H1 = mKT
1 X̃ P , H2 = mKT

2 X̃ PS and Ĥi is the m-vector with elements equal to the
diagonal elements of Hi .
Hence(

(I −mKT)X −F −mĤ1 −mĤ2

)
= [0]m×1 (4.6)

can be solved to obtain a non trivial solution of the given stochastic Volterra-Fredholm integral
equation (4.1).

5. Error Analysis
In this section, we analyse the error between the approximate solution and the exact solution of
the stochastic Volterra- Fredholm integral equation. Before we start the analysis let us define,
∥X∥2 = E(|X |2)

1
2 .

Theorem 5.1 ([11]). If f ∈ L2[0,1) satisfies the Lipschitz condition with Lipschitz constant C,

then ∥em(t)∥2 =O(h), where em(t)=
∣∣∣ f (t)−

m−1∑
i=0

ciwi(t)
∣∣∣ and ci =

∫ 1
0 f (s)wi(s)ds.

Theorem 5.2 ([11]). Suppose k ∈ L2([0,1) × [0,1)
)

satisfies the Lipschitz condition with

Lipschitz constant L. If km(x, y) =
m−1∑
i=0

m−1∑
j=0

ci jwi(x)w j(y), ci j =
∫ 1

0
∫ 1

0 k(s, t)wi(s)w j(t)dtds, then

∥em(x, y)∥2 =O(h), where |em(x, y)| = |k(x, y)−km(x, y)|.
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Theorem 5.3. Suppose xm(t) be the approximate solution of the linear SFVIE (4.1). If
(i) f ∈ L2[0,1), k(s, t), k1(s, t) and k2(s, t) ∈ L2([0,1)× [0,1)) satisfies the Lipschitz condition

with Lipschitz constants C, L, L1 and L2, respectively,

(ii) |x(t)| ≤σ, |k(s, t)| ≤ ρ, |k1(s, t)| ≤ ρ1 and |k2(s, t)| ≤ ρ2,
then

∥x(t)− xm(t)∥2
2 =O(h2).

Proof. Let (4.1) be the given SVFIE and xm(t) be the approximation to the solution using
the Walsh function.
Then

x(t)− xm(t)= f (t)− fm(t)+
∫ β

α
(k(s, t)x(s)−km(s, t)xm(s))ds

+
∫ t

0
(k1(s, t)x(s)−k1m(s, t)xm(s))ds

+
∫ t

0
(k2(s, t)x(s)−k2m(s, t)xm(s))dB(s)

that implies,

|x(t)− xm(t)| ≤ | f (t)− fm(t)|+
∣∣∣∣∫ β

α
(k(s, t)x(s)−km(s, t)xm(s))ds

∣∣∣∣
+

∣∣∣∣∫ t

0
(k1(s, t)x(s)−k1m(s, t)xm(s))ds

∣∣∣∣
+

∣∣∣∣∫ t

0

(
k2(s, t)x(s)−k2m(s, t)xm(s)

)
dB(s)

∣∣∣∣.
We know that, (a+b+ c+d)2 ≤ 7a2 +7b2 +7c2 +7d2. Hence,

E(|x(t)− xm(t)|2)≤ 7E(| f (t)− fm(t)|2)+7E
(∣∣∣∣∫ β

α
(k(s, t)x(s)−km(s, t)xm(s))ds

∣∣∣∣2)
+7E

(∣∣∣∣∫ t

0
(k1(s, t)x(s)−k1m(s, t)xm(s))ds

∣∣∣∣2)
+7E

(∣∣∣∣∫ t

0
(k2(s, t)x(s)−k2m(s, t)xm(s))dB(s)

∣∣∣∣2). (5.1)

Now for i = 1,2, we have

|ki(s, t)x(s)−kim(s, t)xm(s)| ≤ |ki(s, t)||x(s)− xm(s)|+ |ki(s, t)−kim(s, t)||x(s)|
+ |ki(s, t)−kim(s, t)||x(s)− xm(s)|.

For i = 1,2, let |ki(s, t)| ≤ ρ i , |x(s)| ≤σ and using Theorem 5.2, we get

|ki(s, t)x(s)−kim(s, t)xm(s)| ≤
p

2L ihσ+ (ρ i +
p

2L ih)|x(t)− xm(t)| (5.2)

which gives,

E
(∣∣∣∣∫ t

0
(k1(s, t)x(s)−k1m(s, t)xm(s))ds

∣∣∣∣2)≤ E
((∫ t

0
|k1(s, t)x(s)−k1m(s, t)xm(s)|ds

)2)
≤ E

((∫ t

0
(
p

2L ihσ+ (ρ i +
p

2L ih)|x(t)− xm(t)|)ds
)2)

.
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By Cauchy-Schwarz inequality, for t > 0 and f ∈ L2[0,1)∣∣∣∣∫ t

0
f (s)ds

∣∣∣∣2 ≤ t
∫ t

0
| f |2ds

this implies,

E
(∣∣∣∣∫ t

0
(k1(s, t)x(s)−k1m(s, t)xm(s))ds

∣∣∣∣2)
≤ 2E

(∫ t

0
((
p

2L1hσ)2 + (ρ1 +
p

2L1h)2|x(t)− xm(t)|2)ds
)
.

Therefore,

E
(∣∣∣∣∫ t

0
(k1(s, t)x(s)−k1m(s, t)xm(s))ds

∣∣∣∣2)
≤ 2(

p
2L1hσ)2 +2(ρ1 +

p
2L1h)2E

(∫ t

0
|x(t)− xm(t)|2ds

)
. (5.3)

Similarly, for |k(s, t)| ≤ ρ and using Theorem 5.2, we get

E
(∣∣∣∣∫ β

α

(
k(s, t)x(s)−km(s, t)xm(s)

)
ds

∣∣∣∣2)
≤ 2(β−α)(

p
2Lhσ)2 +2(ρ+

p
2Lh)2E

(∫ β

α
|x(t)− xm(t)|2ds

)
. (5.4)

Now,

E
(∣∣∣∣∫ t

0
(k2(s, t)x(s)−k2m(s, t)xm(s))dB(s)

∣∣∣∣2)
≤ E

(∫ t

0
|k2(s, t)x(s)−k2m(s, t)xm(s)|2ds

)
≤ 2E

(∫ t

0
((
p

2L2hσ)2 + (ρ2 +
p

2L2h)2|x(t)− xm(t)|2)ds
)
.

Hence,

E
(∣∣∣∫ t

0
(k2(s, t)x(s)−k2m(s, t)xm(s))dB(s)

∣∣∣∣2)
≤ 2(

p
2L2hσ)2 +2(ρ2 +

p
2L2h)2E

(∫ t

0
|x(t)− xm(t)|2ds

)
. (5.5)

Using Theorem 5.1, equations (5.3), (5.4) and (5.5) in (5.1), we get

E
(|x(t)− xm(t)|2)≤ 7C2h2 +7

(
2(β−α)(

p
2Lhσ)2 +2(ρ+

p
2Lh)2E

(∫ β

α
|x(t)− xm(t)|2ds

))
+7

(
2(
p

2L1hσ)2 +2(ρ1 +
p

2L1h)2E
(∫ t

0
|x(t)− xm(t)|2ds

))
+7

(
2(
p

2L2hσ)2 +2(ρ2 +
p

2L2h)2E
(∫ t

0
|x(t)− xm(t)|2ds

))
≤ R1 +R2

∫ t

0
E(|x(s)− xm(s)|2)ds, (5.6)
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where

R1 = 7(C2h2 +2(β−α)(
p

2Lhσ)2 +2(
p

2L1hσ)2 +2(
p

2L2hσ)2) and

R2 = 7(2(ρ+
p

2Lh)2 +2(ρ1 +
p

2L1h)2 +2(ρ2 +
p

2L2h)2).

By using Gronwall’s inequality, we have

E(|x(t)− xm(t)|2)≤ R1 exp
(∫ t

0
R2ds

)
, (5.7)

which implies that,

∥x(t)− xm(t)∥2
2 = E(|x(t)− xm(t)|2)≤ R1eR2 =O(h2). (5.8)

6. Numerical Examples
To illustrate the method given in the above section, we consider following examples and compute
the approximate solution. The computations are done using MATLAB 2013a.

Example 6.1 ([6]). Consider the following linear SVFIE,

x(t)= f (t)+
∫ 1

0
cos(s+ t)x(s)ds+

∫ t

0
(s+ t)x(s)ds+

∫ t

0
e−3(s+t)x(s)dB(s),

where s, t ∈ [0,1) in which f (t)= t2+sin(s+t)−2cos(1+t)−2sin(t)− 7t4

12 + 1
40B(t), B(t) is a Brownian

motion, and x(t) is an unknown stochastic process defined on the probability space (Ω,F,P).

Table 1. Numerical result for m = 32 and m = 64 in Example 6.1

m = 25 m = 26

t WFM BPF [6] HWM [9] WFM BPF [6] HWM [9]

0.1 0.0114759 0.0199110 0.0189403 0.0085404 0.0155137 0.0184610
0.3 0.0839521 0:1174676 0.1026368 0.0998259 0.0583251 0.1033269
0.5 0.3296197 0.2741207 0.2469981 0.3385104 0.2775350 0.2462734
0.7 0.4891180 0.5144708 0.4624837 0.4933237 0.4886760 0.4644731
0.9 0.7826759 0.7685722 0.7642845 0.8223408 0.8222331 0.7640509
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Figure 1. Example 6.1’s approximate solution for m = 32 and m = 64
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Example 6.2 ([9]). Consider the following linear SVFIE,

x(t)= f (t)+
∫ 1

0
(s+ t)x(s)ds+

∫ t

0
(s− t)x(s)ds+ 1

125

∫ t

0
sin(s+ t)x(s)dB(s),

where s, t ∈ [0,1) in which f (t)= 2−cos(1)−(1+ t)sin(1)+ 1
250 sin(B(t)), B(t) is a Brownian motion,

and x(t) is an unknown stochastic process defined on the probability space (Ω,F,P).

Table 2. Numerical result for m = 32 and m = 64 in Example 6.2

m = 25 m = 26

t WFM BPF [6] HWM [9] WFM BPF [6] HWM [9]

0.1 0.9976241 0.9983232 0.9526175 0.9912432 0.9958677 0.9535115
0.3 0.9592595 0.9427155 0.9044299 0.9510972 0.9618340 0.9058330
0.5 0.8470106 0.8930925 0.8149461 0.8345253 0.8503839 0.8160360
0.7 0.7669107 0.7695923 0.6922649 0.7610515 0.7566968 0.6943825
0.9 0.6438552 0.6924411 0.5480265 0.6105657 0.6120356 0.5496713
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Figure 2. Example 6.2’s approximate solution for m = 32 and m = 64

7. Conclusion
Since it is challenging to find the exact solution for the majority of the SVFIEs, the numerical
technique is crucial in solving these issues. Several numerical solutions have also been developed
earlier to determine the approximate solution of SVFIEs. This article also proposes a numerical
method to find an approximate solution to SVFIE. It also includes numerical estimates for
some SVFIEs. The important part is that error analysis of the approach has been undergone
by considering the functions satisfying the Lipschitz condition to confirm the validity of the
methodology, which gives an upper hand to consider more general SVFIEs than the previous
methods. This method can be further developed to address nonlinear stochastic integral
equations.
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