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1. Introduction
Theory of fixed point is the crucial area in functional analysis. Banach principle is foundation
of the entire metric fixed point theory (Banach [2]). Since then, numerous investigators have
operated on it, developing the findings in various ways. Boyd and Wong [3], Gaba et al. [5],
Mutlu et al. [8], Özkan and Gürdal [9], Rao et al. [10], and Siva [13] contributed to the creation
of the contraction condition. New spaces including G-metric, cone metric, 2-metric, D-metric,
M-metric, fuzzy metric, quasi metric and most recently bi-polar metric space are the focus of
several academics (see Bajović et al. [1], Mutlu and Gürdal [7], Mutlu et al. [8], Rao et al. [10,11],
and Roy and Saha [12]). Bipolar metric space was first established as a category of partial
distance by Mutlu and Gürdal [7] in 2016. Also, they provided several extensions of well-known
fixed point statements like Banach’s and Kannan’s as well as the connection between bipolar
and metric spaces, particularly in situation for completeness.
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The work in the current paper differs from all the studies mentioned previously. The objective
of the article is to create a new theorem for class of contravariant maps in bipolar metric space.
The Ciric type contraction condition [4] is used to prove the theorem.

Definition 1.1 ([9]). A bipolar metric space is a triplet (S,T,d), where S,T are non-empty sets
and d : S×T → R+ = [0,∞) is a function satisfying following properties:

(i) d(s, t)= 0⇔ s = t, whenever (s, t) ∈ S×T ,

(ii) d(s, t)= d(t, s), whenever (s, t) ∈ S∩T ,

(iii) d(s1, t2)≤ d(s1, t1)+d(s2, t1)+d(s2, t2), whenever (s1, t1), (s2, t2) ∈ S×T .
The pair (S,T) is called bipolar metric.

Definition 1.2 ([9]). Let (S1,T1) and (S2,T2) be pairs of sets and f is a function f : (S1,T1)∪
(S2,T2). If f (S1)⊆ T2 and f (T1)⊆ S2, we call f is a contravariant map from (S1,T1) to (S2,T2)
and is denoted by f : (S1,T1)⇄ (S2,T2).

Definition 1.3 ([9,13]). Let (S,T,d) be bipolar metric space. Then
(i) S = set of left points; T = set of right points; S∩T = set of central points,

(ii) a sequence in S and sequence in T are known as left and right sequence correspondingly,

(iii) sequence (an) is define as convergent to point a iff a is right point and (an) is left sequence,
also lim

n→∞d(an,a)= 0 or a is left point and (an) is a right sequence, also lim
n→∞d(a,an)= 0,

(iv) sequence (sn, tn) in S×T is called bi-sequence in (S,T). If both sequences (sn) and (tn)
converge, then (sn, tn) is called convergent. If both sequences, (sn), (tn) converge to same
point u ∈ S∩T , then (sn, tn) is called bi-convergent,

(v) if lim
n,m→∞d(sn, tm)= 0, then bi-sequence (sn, tn) is called Cauchy bi-sequence,

(vi) each Cauchy bi-sequence must be convergent and hence bi-convergent in order for a
bi-polar metric space to be defined as complete.

2. Main Result
The following theorem is established for family of contravariant functions in bi-polar metric
space.

Theorem 2.1. If (S,T,d) is complete bi-polar metric space, J an indexing set and {µi}i∈J be a
family of contravariant mappings µi : (S,T,d)⇄ (S,T,d) which satisfy

d(µis,µ j t)≤λu(s, t), (2.1)

u ∈ M{µi,µ j;S,T}=λmax
[
d(s, t),d(s,µis),d(t,µ j t),

1
2

{d(s,µ j t)+d(t,µis)}
]

,

where λ=λ(i) ∈ (0,1). Then, all µi : S∪T → S∪T have unique fixed point.

Proof. Let s0 ∈ S and t0 ∈ T . For each n ∈ N , define

µi(sn)= tn,µ j(tn)= sn+1 . (2.2)

Then (sn, tn) is a bi-sequence on (S,T,d).

d(sn, tn)= d(µ j tn−1,µisn)= d(µisn,µ j tn−1)≤λu1 , (2.3)
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where

u1 ∈max
[
d(sn, tn−1),d(sn,µisn),d(tn−1,µ j tn−1),

1
2

{d(sn,µ j tn−1)+d(tn−1,µisn)}
]

⇒ u1 ∈max
[
d(sn, tn−1),d(sn, tn),d(tn−1, sn),

1
2

{d(sn, sn)+d(tn−1, tn−1)}
]

⇒ u1 ∈ d(sn, tn−1)

Thus

d(sn, tn)≤λd(sn, tn−1) . (2.4)

Now

d(sn, tn−1)= d(µ j tn−1,µisn−1)= d(µisn−1,µ j tn−1)≤λu2 ,

where

u2 ∈max
[
d(sn−1, tn−1),d(sn−1,µisn−1),d(tn−1,µ j tn−1),

1
2

{d(sn−1,µ j tn−1)+d(tn−1,µisn−1)}
]

⇒ u2 ∈max
[
d(sn−1, tn−1),d(sn−1, tn−1),d(tn−1, sn−1),

1
2

{d(sn−1, sn)+d(tn−1, tn−1)}
]

⇒ u2 ∈ d(sn−1, tn−1)

Therefore

d(sn, tn−1)≤λd(sn−1, tn−1), (2.5)

d(sn, tn)≤λd(sn, tn−1)≤λ2d(sn−1, tn−1)≤ . . .≤λ2nd(s0, t0),

d(sn, tn−1)≤λ2n−1d(s0, t0). (2.6)

Case 1: For all positive integers, if m > n:

d(sn, tm)≤ d(sn, tn)+d(sn+1, tn)+d(sn+1, tm)≤ (λ2n +λ2n+1 + . . .+λ2m)d(s0, t0).

Case 2: For all positive integers, if m < n:

d(sn, tm)≤ d(sm+1, tm)+d(sm+1, tm+1)+d(sn, tm+1)≤ (λ2m +λ2m+1 + . . .+λ2n)d(s0, t0).

Since λ ∈ (0,1), therefore, d(sn, tm) can be reduced randomly by integer m,n and henceforth
(sn, tm) is a Cauchy bi-sequence.
Since (S,T,d) is complete, (sn, tm) is a bi-convergent.
Let v be the point to which (sn, tm) bi-convergence. Then (sn)→ v, (tn)→ v and v ∈ S∩T .
Also, tn =µi(sn)→µi(v). Since (tn) has limit in S∩T , this limit is unique. Hence µi(v1)= v1 and
so µi has a unique fixed point. If v2 is any fixed point of µ j , then µ j(v2)= v2,

d(v1,v2)= d(µiv1,µ jv2)≤λu .

Here

u ∈max
[
d(v1,v2),d(v1,µiv1),d(v2,µ jv2),

1
2

{d(v1,µ jv2)+d(v2,µiv1)}
]
= d(v1,v2),

d(v1,v2)≤λd(v1,v2)⇒ v1 = v2.

Hence

µiv1 =µ jv1 = v1 .

Hence family of functions {µi}i∈J have unique common fixed point.
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Corollary 2.1. If (S,T,d) is complete bipolar metric space, J an indexing set and {µi}i∈J be a
family of contravariant mappings µi : (S,T,d)⇄ (S,T,d) which satisfy

d(µis,µ j t)≤λu(s, t),

u ∈ M{µi,µ j;S,T}=λmax[d(s, t),d(s,µis),d(t,µ j t)],

where λ=λ(i) ∈ (0,1). Then, all µi : S∪T → S∪T have unique fixed point.

Proof. Proof is in line with Theorem 2.1.

Corollary 2.2. If (S,T,d) is complete bipolar metric space, J an indexing set and {µi}i∈J be a
family of contravariant mappings µi : (S,T,d)⇄ (S,T,d) which satisfy

d(µis,µ j t)≤λu(s, t),

u ∈ M{µ;S,T}= d(s, t) ,

where λ=λ(i) ∈ (0,1). Then, all µi : S∪T → S∪T have unique fixed point.

Proof. By setting M{µ;S,T}= d(s, t) in Theorem 2.1, one can obtain the result.

Corollary 2.3. If (S,T,d) is complete bipolar metric space, µ1,µ2 be contravariant mappings
which satisfy

d(µ1s,µ2t)≤λu(s, t),

u ∈ M{µ1,µ2;S,T}=λmax
[
d(s, t),d(s,µ1s),d(t,µ2t),

1
2

{d(s,µ2t)+d(t,µ1s)}
]

,

where λ ∈ (0,1). Then µ1, µ2 have unique fixed point.

Proof. In Theorem 2.1, setting µi =µ1, µ j =µ2, one can obtain the result.

Corollary 2.4. If (S,T,d) is complete bipolar metric space, µ be contravariant mappings which
satisfy

d(µs,µt)≤λu(s, t),

u ∈ M{µ;S,T}=λmax
[
d(s, y),d(s,µs),d(t,µt),

1
2

{d(s,µt)+d(t,µs)}
]

,

where λ ∈ (0,1). Then µ has unique fixed point.

Proof. In Corollary 2.3, setting µ1 =µ=µ2, one can get the result.
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