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Abstract. This study aims to present some applications of the notion of soft ∂-closed sets in soft closure
spaces, which not only generalizes classical soft closed sets but also establishes a connection with soft
g-closed sets. We discuss their basic characterizations of these sets and examine their implications
in soft closure spaces. Furthermore, we apply these sets to introduce the notion of S∂-continuous
and S∂-closed maps and present their various properties with some supported examples. Moreover,
we propose two separation properties, which utilize the notion of S∂-closed sets and explore their
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1. Introduction and Preliminaries
Soft sets(briefly, S-sets), first introduced by Molodtsov [18] in 1999, have since gained significant
attention in recent years due to their ability to model various types of uncertainty and vagueness.
Since then, many works have been published on S-sets and their applications in different fields
as in [1–3, 5, 10]. Shabir and Naz [20] presented the notion of soft topological spaces. Gowri
et al. [11] proposed the structure of Čech soft closure space. Recently, Ekram and Majeed [8]
defined and studied the notion of soft closure spaces (briefly, SC-spaces) as a generalization of
classical closure spaces proposed by Čech and Katětov [6].
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Closed sets play a crucial role in understanding the topological properties of a space.
Levine [15] proposed the concept of generalized closed sets(briefly, g-closed sets) in general
topology. However, the current literature on SC-spaces has mainly focused on the study of soft
closed sets(briefly, S-closed sets) and soft g-closed sets (briefly, Sg-closed sets). Kannan [13]
proposed the notion of Sg-closed sets in soft topology. The notions of g-closed sets and
g-continuous maps have been extended to closure spaces by Boonpok and Khampakdee [4], as
well as they are defined and studied the notion of ∂-closed sets in closure spaces. Then Gowri
and Jegadeesan [12] extended this notion to Čech soft closure space defined on S-sets. Recently,
Ekram and Majeed studied the concept of Sg-closed sets and S-continuous maps in SC-spaces
as in [9,16].

In the percent paper, we discuss and study the notion of soft ∂-closed sets in SC-spaces,
that generalize traditional soft closed sets and bridge the gap between them and soft g-closed
sets. We discuss more characterizations and properties of them and their implications in the
context of SC-spaces. Further, we apply these sets to introduce the notion of S∂-continuous and
S∂-closed maps. Some of their properties with many illustrate examples are presented. Finally,
we provide and discuss some new separability properties, called S∂-T 1

2
and S∂-T∗

1
2

that utilize

the notion of soft ∂-closed sets. This study provides a deeper understanding of the topological
properties of SC-spaces and contributes to the ongoing exploration of this area of study.

In all the study, U refers to an initial universe set, M is a set of parameters, 2U is the power
set of U , and (U , c̃, M) refers to the SC-space on U . In the next, we recall some concepts and
results about S-sets, for more details see [7,14,17–19].

An S-set HM = (H, M) on U is a mapping H : M → 2U that is, HM can be defined as a set of
ordered pairs HM = {(m,h(m)) : m ∈ M, H(m) ∈ 2U }. The collection of all S-sets on U symbolized
by SS(U).

For two S-subsets HM and GM in U , we have:

• If H(m)=; (resp. H(m)=U ) for every m ∈ M, then HM is called a null (resp. universal)
S-set and symbolized by ;̃ (resp. Ũ).

• The relative complement Hc
M of HM where, Hc : M → 2U is a mapping given by

Hc(m)=U −H(m) for every m ∈ M. Clearly, (Hc
M)c = HM .

• HM is an S-subset of GM denoted by HM ⊑GM if H(m)⊆G(m) for each m ∈ M.

• The union (resp. intersection) of HM and GM is an S-set KM (resp. FM ) given by
K(m) = H(m)∪G(m) (resp. F(m) = H(m)∩G(m)) for each m ∈ M and symbolized by
HM ⊔GM (resp. HM ⊓GM ).

• The difference between HM , GM denoted by HM −GM , is an S-set given as F(m) =
H(m)−G(m) for each m ∈ M.

For HM ∈SS(U), Y ⊆U and u ∈U , we have:

• If H(m)= {u} and H(m′)=; for every m′ ∈ M− {m}, then HM is called an S-point in UM

symbolized by um. We write um∈̃HM if for the element m ∈ M, u ∈ H(m). The family of all
S-points in UM is denoted by SP(U).
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• u ∈ HM if u ∈ H(m) for every m ∈ M, and u ∉ HM if u ∉ H(m) for some m ∈ M.

• If H(m)= {u} for every m ∈ M, then HM is called an S-singleton point denoted by uM .

• Ỹ = (Y , M) refers to the S-set on U for which Y (m)=Y for all m ∈ M, is called stable.

Definition 1.1 ([14]). Let SS(U) and SS(V ) be two families of all S-sets on U , V respectively
and let u : U → V and p : M → E be two maps, then the map fup : SS(U) → SS(V ) is
called a soft map(briefly, S-map). For HM ∈ SS(U), fup(HM) is the S-set on V given by
fup(HM)(e)=∪{u(H(m)) : m ∈ p−1(e)} if p−1(e) ̸= ; and fup(HM)(e)= ;̃ otherwise for each e ∈ E,
and for GE ∈ SS(V ), f −1

up (GE) is the S-set on U given by f −1
up (GE)(m) = u−1(G(p(m))) for each

m ∈ M.

Definition 1.2 ([8]). A map c̃ : SS(U) → SS(U) is called a soft closure operator (briefly, SC-
operator) on U , if for any FM and GM ∈SS(U) the next conditions hold:

(i) c̃(;̃)= ;̃.

(ii) FM ⊑ c̃(FM).

(iii) FM ⊑GM ⇒ c̃(FM)⊑ c̃(GM).

The triple (U , c̃, M) is called a soft closure space (briefly, SC-space). An S-set FM in
(U , c̃, M) is said to be a soft closed set (briefly, S-closed set) if FM = c̃(FM). The complement of
any S-closed set in U is called a soft open set (briefly, S-open set). The set of all S-closed sets
(resp. S-open sets) in (U , c̃, M) is denoted by SCS(U) (resp. SOS(U)).

Definition 1.3 ([8]). For S-set FM in an SC-space (U , c̃, M). The interior of FM denoted by
int(FM) and given by int(FM)= (c̃(F c

M))c .

Definition 1.4 ([8]). Let (U , c̃, M) be an SC-space and let Y ⊆ U , then c̃Y : SS(Y ) → SS(Y )
given by c̃Y (FM)= Ỹ ⊓ c̃(FM) is the relative SC-operator on Y . (Y , c̃Y , M) is called a soft closure
subspace (briefly, SC-subspace) of SC-space (U , c̃, M). If FT is an S-open set in (U , c̃, M) and
(Y , c̃Y , M) is an SC-subspace of (U , c̃, M), then Ỹ ⊓FM is an S-open set in (Y , c̃Y , M).

Proposition 1.5 ([8]). Let {FiM : i ∈ J} be a class of S-sets in (U , c̃, M), then:
(i) ⊔i∈J c̃(FiM)⊑ c̃(⊔i∈J(FiM)).

(ii) c̃(⊓i∈JFiM)⊑⊓i∈J c̃(FiM).

Definition 1.6 ([9]). An S-map fup : (U , c̃, M)→ (V , ũ,E) is called:
(i) S-continuous if fup(c̃(HM))⊓ ũ( fup(HM)) for any S-set HM in (U , c̃, M).

(ii) S-closed(resp. S-open) if fup(HM) is S-closed(resp. S-open) in (V , ũ,E) for any S-closed
(resp. S-open) set HM in (U , c̃, M).

Definition 1.7 ([16]). An S-set FM in (U , c̃, M) is called a soft generalized closed set (briefly,
Sg-closed set), if c̃(FM) ⊑ GM whenever FM ⊓GM and GM is an S-open set in (U , c̃, M).
The relative complement of an Sg-closed set FM is denoted by and called a soft generalized open
set (briefly, Sg-open set).
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Remark 1.8 ([16]). Every S-closed(S-open) set in (U , c̃, M) is Sg-closed(Sg-open).

Definition 1.9 ([16]). An SC-space (U , c̃, M) is called ST 1
2

if any Sg-closed set is S-closed.

2. On Soft ∂-Closed Sets in Soft Closure Spaces
The notion of S∂-closed sets located between the S-closed sets and the Sg-closed sets. In this
context, we discuss their basic characterizations.

Definition 2.1. An S-set FM in an SC-space (U , c̃, M) is called:
(i) Soft ∂-closed (briefly, S∂-closed set) if c̃(FM) ⊑ HM whenever FM ⊑ HM and HM is an

Sg-open set in (U , c̃, M). The set of all S∂-closed set denoted by S∂C(U).

(ii) Soft ∂-open (briefly, S∂-open set) if it is relative complement is an S∂-closed set in (U , c̃, M).
The set of all S∂-open set denoted by S∂O(U).

Example 2.2. Let U = {a,b} and M = {m1,m2}. Then

SS(U)= {F1M ,F2M ,F3M ,F4M ,F5M ,F6M ,F7M ,F8M ,F9M ,F10M ,F11M ,F12M ,F13M ,

F14M ,F15M ,F16M},

where

F1M = {(m1, {a})}, F2M = {(m1, {b})}, F3M = {(m1,U)},

F4M = {(m2, {a})}, F5M = {(m2, {b})}, F6M = {(m2,U)},

F7M = {(m1, {a}), (m2, {a})}, F8M = {(m1, {a}), (m2, {b})},

F9M = {(m1, {b}), (m2, {a})}, F10M = {(m1, {b}), (m2, {b})},

F11M = {(m1, {a}), (m2,U)}, F12M = {(m1, {b}), (m2,U)},

F13M = {(m1,U), (m2, {a})}, F14M = {(m1,U), (m2, {b})},

F15M = Ũ , F16M = ;̃.

We define the SC-operator c̃ : SS(U)→SS(U) by:

c̃(;̃)= ;̃, c̃ (F1M)= {(m1, {a})}, c̃(F2M)= c̃(F3M)= {(m1,U)},

c̃(F4M)= {(m2, {a})}, c̃(F5M)= c̃(F6M)= {(m2,U)}, c̃(F7M)= {(m1, {a}), (m2, {a})},

c̃(F8M)= c̃(F11M)= {(m1, {a}), (m2,U)}, c̃(F9M)= c̃(F13M)= {(m1,U), (m2, {a})},

c̃(F10M)= c̃(F12M)= c̃(F14M)= c̃(Ũ)= Ũ .

Then (U , c̃, M) is an SC-space. The S∂-closed sets are:

{;̃,Ũ ,F1M ,F3M ,F4M ,F6M ,F7M ,F11M ,F13M}.

The set of all S∂-open sets are:

{;̃,Ũ ,F2M ,F3M ,F5M ,F6M ,F10M ,F12M ,F14M}.

The S-set F2M = {(m1, {b})} is neither S∂-closed set nor Sg-closed set in (U , c̃, M) because, there
is an S-open set F10M = {(m1, {b}), (m2, {b})} which is also an Sg-open set containing F2M but
c̃(F2M)= {(m1,U)} ̸⊑ F10M .
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Remark 2.3. Clearly, every S-closed(S-open) set in SC-space (U , c̃, M) is S∂-closed(S∂-open)
but not conversely.

Example 2.4. Let U = {x, y} and M = {m1,m2}. We define the SC-operator c̃ by:

c̃(;̃)= ;̃, c̃({(m1, {x})})= {(m1, {x})}, c̃({(m1, {y})})= c̃({(m1,U)})= {(m1,U)} and c̃(FM)= Ũ

for all other FM ∈ SS(U). Then (U , c̃, M) is an SC-space on U and we have, the S-set
HM = {(m1, {x}), (m2, {y})} is an S∂-closed set but not S-closed set.

Remark 2.5. Clearly, every S∂-closed (S∂-open) set in SC-space (U , c̃, M) is an Sg-closed (Sg-
open) set but not conversely.

Example 2.6. Let U = {a,b} and M = {m1,m2}. We define the SC-operator c̃ by:

c̃(;̃)= ;̃, c̃(FM)= Ũ , for all the other S-sets FM ∈SS(U).

Then (U , c̃, M) is an SC-space on U . Let FM = {(m1, {a})} ∈SS(U), we have FM is an Sg-closed
set in (U , c̃, M) but not S∂-closed set. Indeed FM = {(m1, {a})} is an Sg-open set containing itself
but c̃(FM)= Ũ ̸⊑ FM .

From the above remarks and examples, we can summarize the next relation.

Corollary 2.7. For an SC-space (U , c̃, M), the next implications hold but not conversely.

S-closed sets → S∂-closed sets → Sg-closed sets.

Corollary 2.8. Let (U , c̃, M) be an SC-space, we have:
(1) The union (resp. intersection) of two S∂-closed (resp. S∂-open) sets need not to be S∂-closed

(resp. S∂-open) set.
(2) The intersection (resp. union) of two S∂-closed (resp. S∂-open) sets is not S∂-closed (resp.

S∂-open) set.

Proof. We can verify this corollary by using the next examples.

Example 2.9. Let U = {x, y, z} and M = {m1,m2}. Define the SC-operator c̃ by:

c̃(;̃)= ;̃, c̃({(m1, {x})})= {(m1, {x})}, c̃({(m2, {y})})= {(m2, {y})}, c̃({(m1, {z})})= {(m1, {z})},

and c̃(FM) = Ũ for other S-sets FM on U . Then (U , c̃, M) is an SC-space. Now for two
S∂-closed sets FM = {(m1, {x})} and GM = {(m2, {y})} in (U , c̃, M), we have FM ⊔ GM =
{(m1, {x})}, (m2, {y})} which is not S∂-closed set in (U , c̃, M). Indeed, there is an Sg-open set
say, HM = {(m1, {x, y}), (m2,U)} in (U , c̃, M) with FM ⊔GM ⊑ HM but c̃(FM ⊔GM) = Ũ ̸⊑ HM .
We can verify the other case by taking the soft complement to the S-sets in first case.

Example 2.10. Let U = {x, y, z} and M = {m1,m2}. Define the SC-operator c̃ by:

c̃(;)= ;̃, c̃({(m1, {x})})= c̃({(m2, {x})})= c̃({(m1, {x}), (m2, {x})})= {(m1, {x}), (m2, {x})},
c̃({(m1, {z})})= c̃({(m1, {z}), (m2, {x})})= {(m1, {z}), (m2, {x})},
c̃({(m2, {y})})= c̃({(m1, {x, z})})= c̃({(m2, {x, y})})= c̃({(m1, {x}), (m2, {y})})
= c̃({(m1, {z}), (m2, {y})})= c̃({(m1, {x, z}), (m2, {x, y})})= {(m1, {x, z}), (m2, {x, y})},
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and c̃(FM) = Ũ for other S-sets FM on U . Then (U , c̃, M) is an SC-space. Now for two
S∂-closed sets FM = {(m1, {x}), (m2, {x})} and GM = {(m1, {z}), (m2, {x})} in (U , c̃, M), we have
FM ⊓GM = {(m2, {x})} which is not S∂-closed set in (U , c̃, M). Indeed, there is an Sg-open set say,
HM = {(m2, {x, z})} in (U , c̃, M) with (FM ⊓GM)⊑ HM but c̃(FM ⊓GM)= {(m1, {x}), (m2, {x})} ̸⊑ HM .
One can verify the other case by taking the soft complement to the S-sets in first case.

Theorem 2.11. For an S-subset HM in (U , c̃, M), the next items are equivalent:
(1) HM is an S∂-open set.
(2) FM ⊑ (c̃(Hc

M))c whenever FM is an Sg-closed set in (U , c̃, M) with FM ⊑ HM .

Proof. (1)⇒(2). Let HM be an S∂-open set and FM be an Sg-closed set in (U , c̃, M) with
FM ⊑ HM , then Hc

M ⊑ F c
M . But Hc

M is S∂-closed and F c
M is Sg-open. It follows that c̃(Hc

M)⊑ F c
M

and so, FM ⊑ (c̃(Hc
M))c .

(2)⇒(1). Let GM be an Sg-open set in (U , c̃, M) with Hc
M ⊑GM . Then Gc

M ⊑ HM . Since Gc
M is Sg-

closed, Gc
M ⊑ (c̃(Hc

M))c. Hence c̃(Hc
M)⊑GM . Thus, Hc

M is S∂-closed and so, HM is S∂-open.

Proposition 2.12. For an S-set FM in an SC-space (U , c̃, M). If FM is both Sg-open and S∂-
closed, then FM is S-closed.

Proof. It is obvious.

Proposition 2.13. Let (Y , c̃Y , M) be an closed SC-subspace of (U , c̃, M). If HM is an S∂-closed
set in (Y , c̃Y , M), then HM is an S∂-closed set in (U , c̃, M).

Proof. Let HM be an S∂-closed set in (Y , c̃Y , M) and FM be an Sg-open set in (U , c̃, M) such
that HM ⊑ FM . Then, HM ⊑ Ỹ ⊓FM . From Definition 1.4, Ỹ ⊓FM is an Sg-open set in (Y , c̃Y , M).
Since, HM is an S∂-closed set, we have c̃Y (HM)⊑ Ỹ ⊓FM this implies that Ỹ ⊓ c̃(HM)⊑ Ỹ ⊓FM .
Since Ỹ is S-closed set on U , we have c̃(Ỹ )⊓ c̃(HM) ⊑ Ỹ ⊓FM . from Proposition 1.5, we get
c̃(Ỹ ⊓ HM) ⊑ Ỹ ⊓FM implies that c̃(HM) ⊑ Ỹ ⊓FM ⊑ FM . Hence HM be an S∂-closed set in
(U , c̃, M).

Definition 2.14. An SC-operator c̃ is called idempotent if c̃(c̃(FM))= c̃(FM) for any FM ∈SS(U).

Theorem 2.15. Let (U , c̃, M) be an SC-space and c̃ be idempotent. If HM is an S∂-closed set in
(U , c̃, M) with HM ⊑ FM ⊑ c̃(HM), then FM is an S∂-closed set in (U , c̃, M).

Proof. Let GM be an Sg-open set in (U , c̃, M) such that FM ⊑GM , then HM ⊑GM . Since HM is
S∂-closed, c̃(HM)⊑GM . As c̃ is idempotent, we have c̃(FM)⊑ c̃(c̃(HM))= c̃(HM)⊑GM . Therefore,
FM is an S∂-closed set in (U , c̃, M).

Theorem 2.16. If HM is an S∂-closed set in (U , c̃, M), then c̃(HM)− HM contains only null
Sg-closed set.

Proof. Let HM be an S∂-closed set and FM be an Sg-closed set in (U , c̃, M) such that
FM ⊑ c̃(HM) − HM , then FM ⊑ c̃(HM ) and FM ⊑ Hc

M implies HM ⊓ F c
M . Since HM is S∂-

closed set and F c
M is an Sg-open set, then c̃(HM) ⊑ F c

M implies FM ⊑ (c̃(HM))c. Thus,
FM ⊑ c̃(HM)⊓ {(c̃(HM))}c = ;̃ and so, FM = ;̃. The proof is complete.
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Theorem 2.17. For an S-set HM in (U , c̃, M), the next items are equivalent:
(1) HM is an S∂-closed set.
(2) FM ⊑ int(HM) whenever FM ⊑ HM and FM is an S-closed set.

Proof. (1)⇒(2). Let HM be an S∂-open set and FM be an S-closed set with FM ⊑ HM , we have
Hc

M ⊑ F c
M , where Hc

M is S∂-closed set and F c
M is S-open which is an Sg-open set in (U , c̃, M).

From Definition 2.1, we have c̃(Hc
M)⊑ F c

M . By taking the complement and from Definition 1.3,
we get FM ⊑ int(HM).

(2)⇒(1). By a similar way to that in the converse part of Theorem 2.11.

Theorem 2.18. Let (U , c̃, M) be SC-space. If HM is an open S∂-closed set and FM is an S-closed
set (U , c̃, M), then HM ⊓FM is an S∂-closed set.

Proof. Suppose that HM be an open and S∂-closed set, then c̃(HM)⊑ HM . But HM ⊑ c̃(HM) and
so, HM = c̃(HM). Thus, HM is an S-closed set. Since FM is an S-closed set, we have HM ⊓FM is
an S-closed set. From Remark 2.3, the proof is complete.

Corollary 2.19. An S∂-closed set HM is an S-closed set in (U , c̃, M) if and only if c̃(HM)−HM is
an S-closed set.

Proof. “⇒”. Let HM be an S-closed set, we have c̃(HM)= HM and so, c̃(HM)−HM = ;̃ which is
an S-closed set.

“⇐=”. To show that HM is S-closed. Let HM be an S∂-closed set, then by Theorem 2.16, we have
c̃(HM)−HM contains only null S-closed set. By hypothesis, c̃(HM)−HM is an S-closed set and
so, c̃(HM)−HM = ;̃. Hence the result holds.

3. Soft ∂-Continuous and Closed Mappings
In this section, we introduce a new class of S-maps namely, S∂-continuous maps in SC-spaces.
These maps are lying between the class of S-continuous maps and the class of Sg-continuous
maps. We also define the concept of S∂-closed maps and discuss some of its properties.

Definition 3.1. Let (U , c̃, M), (V , ṽ,E) be SC-spaces. An S-map fup : (U , c̃, M) → (V , ṽ,E) is
called:

(i) Soft ∂-continuous (briefly, S∂-continuous) if f −1
up (HE) is an S∂-closed set in (U , c̃, M) for

each S-closed set HE in (V , ṽ,E).
(ii) Soft g-continuous (briefly, Sg-continuous) if f −1

up (HE) is an Sg-closed set in (U , c̃, M) for
each S-closed set HE in (V , ṽ,E) [13].

Remark 3.2. For any S-map fup : (U , c̃, M) → (V , ṽ,E), the next implications hold but not
conversely as shown by the next examples.

fup is S-continuous → fup is S∂-continuous → fup is Sg-continuous.

Example 3.3. Let U = {a,b, c},V = {x, y, z} and M = {m1,m2}, E = {e1, e2}. Define an SC-operator
c̃ on U as c̃(;̃)= ;̃, c̃({(m1, {b})})= {(m1, {b})} and c̃(FM)= Ũ for all other FM ∈SS(U). Define an
SC-operator ṽ on V as ṽ(;̃)= ;̃, ṽ({(e1, {x})})= {(e1, {x, y})}, ṽ({(e1, {y})})= {(e1, {y})}, ṽ({(e2, {z})})=
{(e1, {z}), (e2, {z})}, and ṽ(GE) = Ṽ for all other GE ∈ SS(V ). Clearly, (U , c̃, M), (V , ṽ,E) are SC-

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 481–492, 2023



488 Some Applications of Soft ∂-Closed Sets in Soft Closure Spaces: S. Saleh et al.

spaces. Now let fup : (U , c̃, M)→ (V , ṽ,E) be an S-map, where u, p are maps defined as u(a)= x,
u(b) = y, u(c) = z and p(m1) = e1, p(m2) = e2. Then fup is S∂-continuous but it is not S-
continuous. Indeed, for the S-set {(m2, {c})} we have, fup(c̃({(m2, {c})}))= Ṽ ̸⊑ ṽ( fup({(m2, {c})})=
{(e1, {z}), (e2, {z})}.

Example 3.4. Let U = {x, y} = V and M = {m1,m2} = E. Define an SC-operator c̃ on U as
c̃(;̃) = ;̃ and c̃(FM) = Ũ for all other FM ∈ SS(U). Define an SC-operator ṽ on V as ṽ(;̃) = ;̃,
ṽ({(m1, {x})}) = {(m1, {x})}, ṽ({(m1, {y})}) = {(m1, {y})}, and ṽ(GE) = Ṽ for all other GE ∈ SS(V ).
Clearly, (U , c̃, M), (V , ṽ,E) are SC-spaces. Let fup : (U , c̃, M) → (V , ṽ,E) be an S-map, where
u, p are maps defined as u(x) = x, u(y) = y and p(m1) = m1, p(m2) = m2. Then fup is Sg-
continuous, but it is not S∂-continuous, because for the S-closed set {(m1, {x})} in (V , ṽ,E), we
have f −1

up ({(m1, {x})})= {(m1, {x})} is not S∂-closed set in (U , c̃, M). Since {(m1, {x})} is an Sg-open
set containing itself but c̃({(m1, {x})})= Ũ ̸⊑ {(m1, {x})}.

Theorem 3.5. An S-map fup : (U , c̃, M)→ (V , ṽ,E) is S∂-continuous if and only if f −1
up (HE) is an

S∂-open set in (U , c̃, M) for any S-open set HE in (V , ṽ,E).

Proof. It is obvious.

Proposition 3.6. For the SC-spaces (U , c̃, M), (V , ṽ,E), and (W , ũ,K). If fup : (U , c̃, M)→ (V , ṽ,E)
is S∂-continuous and fvq : (V , ṽ,E) → (W , ũ,K) is S-continuous, then fvq ◦ fup : (U , c̃, M) →
(W , ũ,K) is S∂-continuous.

Proof. Let HK be an S-closed set in (W , ũ,K). From definition of the composition ( f −1
vq ◦

f −1
up )(HK )= f −1

up ( f −1
vq (HK )). Since fvq is S-continuous, we have f −1

vq (HK ) is S-closed set in (V , ṽ,E).
Again fup is S∂-continuous, we get f −1

up ( f −1
vq (HK )) is an S∂-closed set in (U , c̃, M). Therefore,

fvq ◦ fup : (U , c̃, M)→ (W , ũ,K) is S∂-continuous.

Definition 3.7. For two SC-spaces (U , c̃, M), (V , ṽ,E). An S-map fup : (U , c̃, M) → (V , ṽ,E) is
called S∂-closed if fup(HM) is an S∂-closed set in (V , ṽ,E) for any S-closed in (U , c̃, M).

Remark 3.8. Every S-closed map can be categorized as an S∂-closed map. However, the
converse does not hold true, as illustrated by the following example.

Example 3.9. Let U = {x, y}, V = {a,b} and M = {t1, t2}, E = {e1, e2}. Define an SC-operator c̃
on U by: c̃(;̃)= ;̃, c̃({(m1, {y})})= {(m1, {y})} and c̃(FM)= Ũ for all other FM ∈SS(U). Define an
SC-operator ũ on V as ṽ(;̃)= ;̃, and ṽ(GE)= Ṽ for all other GM ∈SS(V ). Then (U , c̃, M), (V , ṽ,E)
are SC-spaces. Now let fup : (U , c̃, M)→ (V , ṽ,E) be an S-map, where u, p are maps defined as
u(x) = a, u(y) = b and p(m1) = e1, p(m2) = e2. Clearly, fup is S∂-closed but it is not S-closed.
Indeed, for the S-closed set {(m1, {y})} in (U , c̃, M) we have, fup ({(m1, {y})}) = {(e1, {b})} is not
S-closed set in (V , ṽ,E).

Theorem 3.10. An S-map fup : (U , c̃, M)→ (V , ṽ,E) S∂-closed if and only if for any S-set FE in
(V , ṽ,E) and for any S-open set GM in (U , c̃, M) with f −1

vq (FE)⊑GM , there is an S∂-open set HE

in (V , ṽ,E) such that FE ⊑ HE and f −1
vq (HE)⊑GM .

Proof. Suppose that fup is S∂-closed. Let FE is an S-set in (V , ṽ,E) and GM is an S-open
set in (U , c̃, M) with f −1

vq (FE) ⊑ GM , then fup(Gc
M) is an S∂-closed set in (V , ṽ,E). Now take
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HE = [ fup(Gc
M)]c which is an S∂-open set, then f −1

up (HE) = f −1
up ([ fup(Gc

M)]c) = [ f −1
up ( fup(Gc

M))]c ⊑
f −1
up ( fup(GM))=GM . The result holds.

Conversely, let FM be an S-closed in (U , c̃, M), then f −1
up ([ f up(FM)]c) ⊑ F c

M which is S-
open. From hypothesis, there is an S∂-open set in HE in (V , ṽ,E) such that ( f up(FM))c ⊑ HE

and f −1
up (HE) ⊑F c

M . Thus, FM ⊑ ( f −1
up (HE))c and so, Hc

E ⊑ fup(FM) ⊑ fup(( f −1
up (HE))c) ⊑ Hc

E , this
implies that fup(FM) = Hc

E . This means that fup(FM) is an S∂-closed set. Hence the proof is
complete.

Based on the previous results, one can to verify the subsequent proposition.

Proposition 3.11. For the SC-spaces (U , c̃, M), (V , ṽ,E), and (W , ũ,K). Let fup : (U , c̃, M) →
(V , ṽ,E) and fvq : (V , ṽ,E)→ (W , ũ,K) be S-maps, we have:

(i) If fup is S∂-closed and fvq is S-closed, then fvq ◦ fup is S∂-closed.
(ii) If fvq ◦ fup is S∂-closed and fup is S-continuous and onto, then fvq is S-closed.

(iii) If fvq ◦ fup is S-closed and fvq is S∂-continuous and one-to-one, then fup is S∂-closed.

4. Two New Types of Soft Separation Axioms
Here, we apply the notion of S∂-closed sets to introduce two types of separation properties
called, soft ∂T 1

2
and soft ∂T∗

1
2

spaces and investigate some of their properties.

Definition 4.1. An SC-space (U , c̃, M) is said to be:
(i) Soft ∂T 1

2
(briefly, S∂-T 1

2
) if any S∂-closed set is S-closed in (U , c̃, M).

(ii) Soft ∂T∗
1
2

(briefly, S∂-T∗
1
2
) if any Sg-closed set is S∂-closed in (U , c̃, M).

Example 4.2. Consider Example 2.2, the S-closed sets in (U , c̃, M) are:

{;̃,Ũ ,F1M ,F3M ,F4M ,F6M ,F7M ,F11M ,F13M}

which are equal to the S∂-closed sets and the Sg-closed sets. So that the SC-space (U , c̃, M)
is an S∂-T 1

2
and S∂-T∗

1
2

space. because, every Sg-closed set in (U , c̃, M) is S∂-closed and every

S∂-closed set is S-closed.

Remark 4.3. Clearly, every ST 1
2
-space (U , c̃, M) is an S∂-T 1

2
space but not conversely. This fact

can be shown by the next example.

Example 4.4. Let U = {a,b} and M = {m1,m2}. Define an SC-operator c̃ on U by:
c̃(;̃)= ;̃ and c̃(FM)= Ũ for all other FT ∈SS(U). Then (U , c̃, M) is an SC-space. one can verify
that (U , c̃, M) is an S∂-T 1

2
space but it is not ST 1

2
because, {(m1, {a})} is an Sg-closed set in

(U , c̃, M) but it is not S-closed set.

Remark 4.5. Clearly, every ST 1
2
-space (U , c̃, M) is an S∂-T∗

1
2

space but not conversely. This fact

can be shown by the next example.

Example 4.6. Consider Example 2.2. Define the SC-operator c̃ : SS(U)→SS(U) by:

c̃(;̃)= ;̃, c̃(F1M)= c̃(F5M)= {(m1, {a}), (m2, {b})}, c̃(F2M)= {(m1,U)},

c̃(F3M)= c̃(F9M)= c̃(F13M)= {(m1,U), (m2, {a})}, c̃(F4M)= {(m2, {a})},
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c̃(F6M)= c̃(F8M)= c̃(F11M)= {(m1, {a}), (m2,U)},

c̃(F7M)= {(m1, {a}), (m2, {a})}, c̃(F10M)= {(m1,U), (m2, {b})},

and

c̃(F12M)= c̃(F14M)= c̃(Ũ)= Ũ .

Then (U , c̃, M) is an SC-space. One can verify (U , c̃, M) is an S∂-T∗
1
2

space but not ST 1
2
. Indeed,

for FM = {(m2,U)} ∈SS(U), we have FM is an Sg-closed set in (U , c̃, M) but it is not S-closed set.

Proposition 4.7. An SC-space (U , c̃, M) is ST 1
2

if and only if it is both S∂-T 1
2

and S∂-T∗
1
2

space.

Proof. It is obvious.

Remark 4.8. The notions of S∂-T 1
2

and S∂-T∗
1
2

spaces are independent.

Example 4.9. From Example 4.6, we have (U , c̃, M) is an S∂-T∗
1
2

space but it is not S∂-T 1
2
.

Clearly, the S-set FM = {(m2,U)} is an S∂-closed set in (U , c̃, M) but it is not S-closed.

Example 4.10. From Example 4.4, one can verify that (U , c̃, M) is an S∂-T 1
2

space but it is not
S∂-T∗

1
2
. Indeed, for the S-set FM = {(m1, {b})}, we have FM is an Sg-closed set in (U , c̃, M) but it

is not S∂-closed.

Proposition 4.11. For an SC-space (U , c̃, M). If (U , c̃, M) is S∂-T 1
2
, then the closed SC-subspace

(Y , c̃Y , M) of (U , c̃, M) is S∂-T 1
2
.

Proof. It follows from Proposition 2.13 and Definition 1.4.

Proposition 4.12. For two SC-spaces (U , c̃, M) and (V , ṽ,E) such that (U , c̃, M) is an S∂-T∗
1
2

space. If fup : (U , c̃, M)→ (V , ṽ,E) is Sg-continuous, then fup is S∂-continuous.

Proof. Let HM be an S-closed set in (V , ṽ,E). Clearly, fup is Sg-continuous, we have f −1
up (HM )

is an Sg-closed set in (U , c̃, M) which is an S∂-T∗
1
2

space, Thus f −1
up (HM) is an S∂-closed set in

(U , c̃, M). Therefore, fup is S∂-continuous.

Proposition 4.13. For the SC-spaces (U , c̃, M), (V , ṽ,E), and (W , ũ,K) such that (V , ṽ,E) is ST 1
2
.

Then if fup : (U , c̃, M)→ (V , ṽ,E) is Sg-continuous and fvq : (V , ṽ,E)→ (W , ũ,K) is S∂-continuous,
then fvq ◦ fup : (U , c̃, M)→ (W , ũ,K) is S∂-continuous.

Proof. Let HM be an S-closed set in (W , ũ,K). Since fvq is Sg-continuous, we have f −1
vq (HM) is

an Sg-closed set in (V , ṽ,E). By hypothesis (V , ṽ,E) is ST 1
2
, we have f −1

vq (HM) is an S-closed set

in (V , ṽ,E). Since fup is Sg-continuous, then ( f −1
up ( f −1

vq (HM))= ( fvq ◦ fup)−1(HM) is an S∂-closed
set in (U , c̃, M). This completes the proof.

Proposition 4.14. For the SC-spaces (U , c̃, M), (V , ṽ,E), and (W , ũ,K) such that (V , ṽ,E) is
S∂-ST 1

2
, then if fup : (U , c̃, M)→ (V , ṽ,E) and fvq : (V , ṽ,E)→ (W , ũ,K) are S∂-continuous, then

fvq ◦ fup : (U , c̃, M)→ (W , ũ,K) is also S∂-continuous.
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Proof. By similar way of that in the above proposition.

5. Conclusion
In this paper, we defined and studied the concept of soft S∂-closed sets in soft closure
spaces, which are lying between S-closed sets and Sg-closed sets. We investigated the basic
properties for them and examined their implications in the context of soft closure spaces.
Further, we introduced the concepts of S∂-continuous and S∂-closed maps and present their
various properties with the help of supported examples. Moreover, we defined and studied two
separation properties, namely S∂-T 1

2
and S∂-T∗

1
2
, which utilize the notion of S∂-closed sets. Our

study provides a deeper understanding of the topological properties of soft closure spaces and
contributes significantly to the ongoing exploration of this field of research.
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