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1. Introduction
Finding the solution of nonlinear equations of the following form:

g(s)= 0 . (1.1)

These are the most common problems in mathematics, physics, and engineering. In most cases,
the roots of these equations cannot be obtained directly. Hence, we must use an iterative
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method to approximate the roots of these equations. For these issues, Newton Raphson Method
(NRM) (Traub [13]) is one of the most fundamental and well-known iterative methods and is
represented by

sn+1 = sn − g(sn)
g′(sn)

, g′(sn) ̸= 0, (1.2)

which is a single-step method with quadratically convergent and requires two functional
evaluations. Numerous numerical iterative algorithms have been developed recently to solve
these problems. These methods are created by combining a variety of different techniques. In this
paper, we proposed a new three-step iterative method for finding zeros of nonlinear equations.
It requires four functional evaluations, and the order of convergence is seven. Therefore,
the efficiency index is 1.6265. By evaluating the performance of the proposed method on many
real-world applications, we can conclude that the new method outperforms many other known
techniques in the same order in terms of the number of iterations and errors. Furthermore,
we additionally examine and evaluate the suggested method’s stability by applying complex
dynamics techniques. Using these tools makes it possible to compare numerous algorithms in
terms of their basins of attraction and the iterative method’s dynamic behavior on the complex
plane.

Some of the following existing seventh-order iterative methods:

Al-Subaihi and Al-Qarni [1] suggested the following seventh-order iterative process (SBM)

yn = sn − g(sn)
g′(sn)

,

zn = yn + g(yn)
g′(sn)

−2
g(sn)g(yn)

g′(sn)(g(sn)− g(yn))
,

sn+1 = zn − g(zn)
g[zn, yn]+h[zn, sn, sn](zn − yn)

.


(1.3)

Mohamed [7] presented an iterative method (HBM) and is given by

yn = sn − g(sn)
g′(sn)

,

zn = yn − g(yn)(1+µ/2)
g′(yn)

,

sn+1 = zn + g(zn)g(yn)(1+µ/2)
(g(zn)− g(yn))g′(yn)

,


(1.4)

where µ= g(yn)(g′(sn)−g′(yn))
g(sn)g′(yn) .

Srisarakham and Thongmoon [12] suggested a new iterative scheme (NSM) of order seven is
given by

yn = sn − g(sn)
g′(sn)

,

zn = yn − g(yn)
g′(yn)

− g(yn)2Q(sn, yn)
2(g′(yn))3 ,

sn+1 = zn − (sn − zn)g(zn)
g(sn)−2g(zn)

,


(1.5)

where Q(sn, yn)= 2
yn−sn

[
2g′(yn)+ g′(sn)−3 g(yn)−g(sn)

yn−sn

]
.
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Chicharro et al. [4] proposed a family of iterative methods (FCM) of order seven is given by

yn = sn − g(sn)
g′(sn)

,

zn = sn −G(η)
g(sn)
g′(sn)

,

wn = zn + g(zn)
g′(sn)

,

sn+1 = zn −
(
1−4

(
g(zn)
g(wn)

)
+8

(
g(zn)
g(wn)

)2) g(zn)
g′(sn)

,


(1.6)

where G(η)= 1+ g(yn)
g(sn) +2

(
g(yn)
g(sn)

)2
.

The remaining manuscript is structured as follows: In Section 2, we developed a seventh-
order iterative scheme. In Section 3, the theoretical order of convergence is derived. In Section 4,
some real-world application problems are solved for numerical comparisons and are made
between the newly proposed method and some existing methods of the same order. In Section 5,
we take three test functions to display the dynamic behavior of the developed method using
basins of attraction. In Section 6, conclusions and references are presented.

2. Seventh-Order Method (MSM)
Consider a straight-line equation (Wartono et al. [14]):

y(s)= ep(s−sn)(M(s− sn)+N) (2.1)

and its derivatives

y′(s)= pep(s−sn)(M(s− sn)+N)+ ep(s−sn)M, (2.2)

y′(s)= p2ep(s−sn)(M(s− sn)+N)+2pep(s−sn)M . (2.3)

Put s = sn in (2.1) and (2.2), we obtain y(sn)= g(sn) and y′(sn)= g′(sn), where

M = g′(sn)− pg(sn), N = g(sn). (2.4)

Let an equation (2.1) through the x-axis at s = sn+1, then y(sn+1)= 0, we get

sn+1 = sn − N
M

, (2.5)

sn+1 = sn − g(sn)
g′(sn)− pg(sn)

, n ≥ 0. (2.6)

From (2.3), we have

p2 g(sn)−2pg′(sn)+ g′′(sn)= 0 . (2.7)

Thus, we obtain

p = g′′(yn)
g′(yn)

(
1

1+√
1−µ

)
. (2.8)

From (2.6) and (2.8), we get

sn+1 = sn −
[

g(sn)
g′(sn)

· 1√
1−µ

]
, (2.9)
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where

µ= g(sn)g′′(sn)
(g′(sn))2 .

We develop an algorithm using (1.1) as the first step, (2.9) as the second step, and the
Newton variant as the third step.

Algorithm 1. The iterative method to compute sn+1 is
(1) yn = sn − g(sn)

g′(sn) .

(2) zn = yn −
[

g(yn)
g′(yn) · 1p

1−µ

]
,

where µ= g(yn)g′′(yn)
(g′(yn))2 , g′(yn)= 2g [yn, sn]− g′(sn), g′′(yn)= −2(g′(sn))2 g(yn)

(g(sn))2 .

(3) sn+1 = zn − g(zn)
g′(zn) , (2.10)

where g′(zn)= g[zn, yn]+ (zn − yn)g[zn, yn, sn].

The above algorithm (2.10) is denoted as MSM.

3. Convergence Criteria
Theorem 3.1 ([6]). For an open intervalD, let s0 ∈ D be a single zero of a sufficiently differentiable
function g(s), if the neighborhood of s∗ contains s0. A seventh-order convergence of the method
(2.10) is then obtained.

Proof. Let the single zero of g(s)= 0 be s∗ and s∗ = sn +εn. Thus, g(s∗)= 0.
By Taylor’s series expansion, writing g(sn) about s∗,

g(sn)= g′(s∗)(εn + c2ε
2
n + c3ε

3
n + c4ε

4
n + . . .), (3.1)

g′(sn)= g′(s∗)(1+2c2εn +3c3ε
2
n +4c4ε

3
n + . . .). (3.2)

From the first step of (2.10), we get

yn = s∗+ c2ε
2
n + (2c3 −2c2

2)ε3
n + (3c4 −7c2c3 +5c3

2)ε4
n + . . . . (3.3)

Now, we have

g(yn)= g′(s∗)(c2ε
2
n + (2c3 −2c2

2)ε3
n + (3c4 −7c2c3 +4c3

2)ε4
n + . . .), (3.4)

g′(yn)= g′(s∗)(1+ (2c2
2 − c3)ε2

n + (6c2c3 −4c3
2 −2c4)ε3

n + . . .) (3.5)

g′′(yn)=−2c2 −4c3εn + (6c4 +2c2c3)ε2
n + . . . . (3.6)

From (3.4), (3.5), and (3.6) we obtain

µ=−2c2
2εn + (4c3

2 −8c2c3)ε2
2 + . . . . (3.7)

From the second step of (2.10), we get

zn = s∗+Z1ε
4
n +Z2ε

5
n +Z3ε

6
n + . . . , (3.8)

where Z1 = 2c3
2 − c2c3, Z2 = 2c2

2c3, Z3 = 3c2c4 + c2
2c3 +21c3

2c3 −12c2c2
3 −3c2

2c4 − 37
2 c5

2.
Again, we have

g(zn)= g(s∗)(Z1ε
4
n +Z2ε

5
n +Z3ε

6
n + . . .). (3.9)
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Using (3.3) and (3.8), we have

zn − yn = η1e2 +η2e3 +η3e4 + . . . . (3.10)

Here η1 =−c2, η2 = 2c2
2 −2c3, η3 = 6c2c3 −2c3

2 −3c4 + . . . .
Then, we get

g[zn, yn]= g′(s∗)(V1 +V2εn +V3ε
2
n + . . .) (3.11)

where V1 = 1, V2 = 0, V3 = c2
2, . . .,

g[yn, sn]= 1+β1e+β2e2 +β3e3 . . . (3.12)

where β1 = c2, β2 = c3 + c2
2, β3 = c4 −2c3

2 +3c2c3.
From (3.10) and (3.11), we get

g′(zn)= g′(s∗)(V1 + (V2 +η1)e+ (V3 +η2 +η1β1)e2 + (V4 +η3 +η2β1)e3 . . .). (3.13)

From the third step of (2.10), we get

εn+1 = (η1Z3+(V3+η2−η2
1+η1β1)Z2+(V4+η3+η2β1−2V3η1−2η1η2+η3

1+η2
1β1)Z1)ε7

n+o(ε8
n)

which shows that the proposed method has seventh-order convergence, and its efficiency index
is 7

1
4 = 1.6265.

4. Numerical Examples
In this section, we take some real-world application problems in the form of nonlinear equations
to check the effectiveness of the proposed scheme (MSM). We compare our results with some well-
existing seventh-order methods, namely, NRM, SBM, HBM, NSM, and FCM. All the calculations
are made with mpmath-PYTHON, and the stopping criterion | f (xn)| < ε, where the tolerance is
set to ε= 10−199 and the required precision is set to 690 decimal places.

Table 1. Comparison of efficiency-index

Method P N E.I.

NRM 2 2 1.4142

SBM 7 4 1.6266

HBM 7 5 1.4757

NSM 7 5 1.4757

FCM 7 5 1.4757

MSM 7 4 1.6266

Note: P is the order of convergence and N is the functional evaluations

5. Applications
Application 1 (Azeotropic point of a binary solution, [5,11]). To find the azeotropic point of an
equation:

g1(s)= MN(N(1− s)2 −Ms2)
(s(M−N)+M)2 +0.14845.

We took, M = 0.38969 and N = 0.55954 were used. The root of the nonlinear equation is
0.69147373574714144, is displayed in the table below.
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Table 2

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g1(s) 0.2 0.9
NRM
SBM
HBM
NSM
FCM
MSM

10

5
5
5
4

2.60e-275
Divergent
4.10e-691
6.84e-691
1.91e-690
9.72e-227

2.86e-275

7.18e-691
7.18e-691
1.57e-690
1.07e-226

9
4
4
4
4
4

1.19e-237
1.89e-288
6.88e-202
2.39e-303
1.06e-264
7.39e-358

1.31e-237
1.41e-288
7.57e-202
2.63e-303
1.17e-264
8.14e-358

Application 2 (Ideal and Non-Ideal Gas Laws, [3]). The computation of the molal volume of
ideal and non-ideal gas is given by

g2(V )=
(
p+ a

V 2

)
(V −b)−RT.

We take the values of the parameters as, the universal constant of the gas R =
0.082054 L atm/(mol K) for carbon dioxide, temperature T = 300 K, pressure p = 1 atm and
a = 3.592, b = 0.04267 are constants. Therefore, 24.5125881284415006 is the root of the
nonlinear equation g2(V ).

Table 3

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g2(v) 4 30
NRM
SBM
HBM
NSM
FCM
MSM

9
4
5
4
4
4

4.67e-382
1.72e-207
4.38e-690
8.19e-261
9.55e-265
6.49e-332

4.64e-382
1.71e-207
3.94e-689
8.14e-261
9.49e-265
6.45e-332

8
4
4
4
4
4

3.78e-376
3.11e-688
2.97e-589
0
1.22e-688
3.51e-689

3.76e-376
6.13e-689
2.95e-589
3.94e-689
6.13e-689
3.94e-689

Application 3 (Study of Multifactor Effect [5,10]). The equation

s(t)= s0 + (s0 + eE0(mw)−1 sin(wt0 +η))(t− t0)+ eE0(mw2)−1(cos(wt0 +η)+sin(wt0 +η))

describes the moment of an electron in the space between two parallel plates. Regarding the
specific values, it is reduced in polynomial form as

g3(s)= s−0.5cos s+ π

4
.

This function has a simple root at s∗ ≈−0.309466139208214.

Table 4

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g3(s) −0.7 0.5
NRM
SBM
HBM
NSM
FCM
MSM

9
4
4
4
4
4

5.09e-241
3.07e-291
1.26e-204
4.17e-338
8.59e-288
2.94e-361

4.32e-241
2.60e-291
1.07e-204
3.54e-338
7.29e-288
2.49e-361

10
4
5
4
5
4

4.84e-374
6.22e-246
4.79e-691
1.16e-262
4.65e-690
5.41e-277

4.11e-374
5.28e-246
5.47e-691
9.85e-263
1.37e-690
4.59e-277
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Application 4 (The Vertical Stress, [5]). The vertical stress is one of the basic stresses that
describing about underground structures, and it can be written in the form of nonlinear equation
as

g4(s)= s+cos s ·sin s
π

− 1
4

.

The nonlinear equation g4(s)= 0 has a root of 0.4160444988100767043.

Table 5

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g4(s) 0.6 0.4
NRM
SBM
HBM
NSM
FCM
MSM

9
4
4
4
4
4

9.39e-260
2.80e-295
2.83e-219
6.06e-234
1.67e-298
1.21e-332

4.99e-260
1.49e-295
1.51e-219
3.23e-234
8.91e-299
6.45e-333

8
4
4
4
4
4

1.93e-276
6.23e-678
3.09e-466
3.42e-691
3.98e-677
6.84e-692

1.03e-276
3.31e-678
1.64e-466
3.42e-691
2.12e-677
1.37e-691

Application 5 (Volume from van der Waals Equation, [5]). An equation(
p+ An2

V 2

)
(V −nB)= nRT

represents the non-ideal gas in the Van der Waals equation. Regarding particular values, it is
converted to nonlinear polynomial function

g5(s)= 40s3 −95.26535116s2 +35.28s−5.6998368.

It has three roots in which one is real, i.e., 1.9707842194070294.

Table 6

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g5(s) 2.5 1.8

NRM
SBM
HBM
NSM
FCM
MSM

26
8
8
8
7
6

1.90e-203
1.78e-214
9.42e-407
3.63e-206
4.03e-207
2.67e-282

2.39e-201
2.24e-212
1.18e-404
4.57e-204
5.07e-205
3.36e-280

25
8
7
8
7
6

2.97e-201
2.51e-217
1.15e-292
2.03e-213
1.32e-215
4.39e-385

3.74e-199
3.16e-215
1.45e-291
2.56e-211
1.66e-213
5.52e-383

Application 6 (Blood Rheology Model, [8]). To evaluate the plug flow of Caisson fluids, we
consider the following function as a nonlinear equation:

H = 1− 16
7
p

u+ 4
3

u− 1
21

u4 ,

where H = 0.4 calculates the flow rate reduction. We get the nonlinear equation

g6(s)= 1
441

s8 − 8
63

s5 −0.0571428571s4 + 16
9

s2 −3.624489796s+0.3 .

The root of g6(s)= 0 is 0.0864335580522467.
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Table 7

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g6(s) 0 0.2

NRM
SBM
HBM
NSM
FCM
MSM

9
4
4
4
4
4

3.62e-347
1.38e-501
1.72e-331
1.18e-450
3.99e-408
1.11e-520

1.20e-346
4.58e-501
5.69e-331
3.90e-450
1.32e-407
3.69e-520

9
4
4
4
4
4

2.64e-305
2.51e-413
5.31e-266
7.91e-396
9.29e-357
1.51e-438

8.75e-305
8.34e-413
1.76e-265
2.62e-395
8.08e-356
5.01e-432

Application 7 (A reactor of the stirred tank, [9]). Think about the stirred tank’s reactor. The
reactor receives materials at rates of β and q−β, respectively. The equipment enhances mixed
reaction as follows:

H1 +H2 → H3; H3 +H2 → H4; H4 +H2 → H5; H4 +H2 → H6 .

In their initial investigation of this intricate control system, and the nonlinear polynomial
equation shown below:

2.98∗ (s+2.25)
(s+1.45)∗ (s+2.85)2 ∗ (s+4.35)

= 1
Tc

,

where Tc is the proportional controller’s gain. By taking Tc = 0, we have

g7(s)= s4 +11.50s3 +47.49s2 +83.06325s−51.23266875= 0 .

The root of the above equation is −1.45.

Table 8

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g7(s) −1.4 −1.5

NRM
SBM
HBM
NSM
FCM
MSM

9
4
4
4
4
4

6.03e-277
1.64e-367
1.47e-224
1.35e-357
1.51e-315
2.33e-455

3.42e-276
9.31e-367
8.39e-224
1.73e-357
8.61e-315
1.32e-454

9
4
4
4
4
4

1.59e-263
2.61e-328
4.04e-215
1.32e-339
3.52e-309
7.58e-352

9.08e-263
1.48e-327
2.29e-214
7.49e-339
2.00e-308
6.63e-349

Application 8 (Parachutist Problem, [2,5]). The total force for parachutists is calculated as

F = mg− sv ,

where m is the mass, g is the acceleration caused by gravity, s is the drag coefficient, v is the
parachutist’s velocity, and from the aforementioned equation, we obtain the nonlinear equation

g8(s)= gm
s

(1− e−
s
m t)−v .

We suppose that the parameters will have values of g = 9.8 m/s2, m = 68 kg, t = 8 s, and
v = 41 m/s. Therefore, 12.533522848184467 is the nonlinear equation’s root.
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Table 9

Method s0 n |sn+1 − sn| |g(sn+1)| s0 n |sn+1 − sn| |g(sn+1)|
g8(s) 13 4.5
NRM
SBM
HBM
NSM
FCM
MSM

9
4
4
4
4
4

6.03e-277
2.44e-584
7.55e-382
1.82e-602
3.81e-564
1.91e-602

3.42e-276
4.49e-584
1.39e-381
3.36e-602
7.01e-564
3.51e-606

10

5
5
5

1.41e-302
Divergent
Divergent
3.94e-687
1.29e-689
1.09e-689

2.60e-302

2.63e-689
2.63e-689
2.63e-689

Basins of Attraction
In this section, using computer technology, we compare the proposed method (MSM) with the
other existing algorithms, such as SBM, HBM, NSM, and FCM of same order. We consider a
square region [−2,2]× [−2,2] ∈ C2 with 250×250 grid points from a dynamic and graphical
perspective. For stopping criteria, we take |sn+1 − sn| < 10−16 and the maximum number of
iterations are 100. Consider the polynomial functions in a complex plane are f1(z) = 1− z2,
f2(z)= 1− z3 and f3(z)= 1− z4. All the figures are illustrated by PYTHON programming.

Example 1. f1(z)= 1− z2.

(a) (MSM) (b) (SBM)

(c) (HBM) (d) (NSM)

Figure Contd.
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(e) (FCM)

Figure 1. The polynomiographs of MSM, SBM, HBM, NSM, FCM for f1(z)

Example 2. f2(z)= 1− z3.

(a) (MSM) (b) (SBM)

(c) (HBM) (d) (NSM)

Figure Contd.
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(e) (FCM)

Figure 2. The polynomiographs of MSM, SBM, HBM, NSM, FCM for f2(z)

Example 3. f3(z)= 1− z4.

(a) (MSM) (b) (SBM)

(c) (HBM) (d) (NSM)

Figure Contd.
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(e) (FCM)

Figure 3. The polynomiographs of MSM, SBM, HBM, NSM, FCM for f3(z)

Figures 1-3 show that the method (MSM) gives better results when compared to other
methods. From the fractal graphs, the method MSM requires fewer iterations in the strong,
moderate, and weakly convergent areas than the methods SBM, HBM, NSM, and FCM. Thus,
the proposed technique MSM is the best for all three polynomials in terms of the number of
iterations per convergent point.

6. Conclusion
In this paper, we suggested a seventh-order iterative method for locating the roots of nonlinear
equations. To demonstrate the superiority of the proposed MSM approach, we examined existing
and suggested methods used to solve various real-world issues. The results are shown in
Tables 2-9. The introduced approach’s dynamic behavior has been examined to analyze the
stability. Figures 1-3 show our proposed iterative method’s effectiveness and best convergence,
which gives the best results compared to other methods.
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