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Abstract. Two single server queues are considered in this paper. The models are (i) Finite source and
(ii) Finite waiting line models. For both the models, if there are no customers at a service completion
epoch, the server takes single vacation. Also, the waiting customers may become impatient and leaves
the queue without getting service called reneging behaviour of the customer. In addition the services
are given in batches of fixed service. It is assumed that the inter arrival times, service times, vacation
times and reneging times all follows different exponential distributions. Steady state analysis is
carried out for both models. Cost and profit analyses are also provided. The two models are compared
numerically.
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1. Introduction
The population of potential customers, called calling population. The calling population can be
finite or infinite. In an infinite population model, the arrival rate is not affected by the number
of customers in the system. Whereas, the arrival rate of finite population model, the arrival rate
is affected by the population size. In an infinite population size model, the number of arrival
can be controlled by restricting the queue size. If the queue size is finite, then the model is finite
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capacity model. In this paper, we consider both the models. Finite source queueing system has
attention in terms of machine repairman problem (Stecke [25], Ke and Wang [17]). Definition
of finite source models with analytical results and literature review can be found in Sztrik
[27]. For solving machine interference problem, homogeneous M/M/r//N queueing system has
been used by many authors. It should be noted that the analysis of the system is presented in
Kleinrock [18], Gross et al. [11], Carmichael [3], and Allen [1].

Satty [23] analyzed finite population model, called machine interference model. Queue
with infinite population have been developed and analyzed by many authors. But relatively
few researches worked on finite population queue. In 1975, Kleinrock considered the finite
population model M/M/c//m. An application of the model M/M/N//N in electronics is considered
by Konigsberg [19]. The M/G/1//N system, some times called machine interference problem
(Satty [23]) is analyzed in detail by Takacs [28], Jaiswal [14], Cooper [7], Stecke [25], Stecke
and Aronson [24], and Bunday [2], in their papers mainly concentrate on cyclic queues and
manufacturing system modelling. Some other notable works in this area are Papadopoulos
and Heavey [22], Syski [26], Ching [6], and Chakravarthy and Agarwal [4]. A detail survey
of the machine interference problem has been given by Haque and Armstrong [12]. Jain [13]
obtained the product form solution for the stationary state distribution for the finite population
queueing model with a queue dependent servers. Queueing models with batch service have been
extensively studied by many researches (see Chaudhry and Templetan [5], Medhi [20,21] and
Dshalalow [10]). In transportation problems, one can note that the service is in bulk. Relatively
few works are cited in this area. Notable among them are, Kalyanaraman and Saritha [16] have
analyzed a finite population model with bulk service rule and with accessible and non-accessible
batches. Kalyanaraman and Saritha [15] have studied a multiserver batch service queue with
delay and with finite population.

In a queueing system, if there are no customers waiting for service, if the server has the
option to leaves the service station for a random period of time called vacation period. Vacation
models are very reasonable models by seeing real life situations. Many modifications vacation
period are defined and analyzed by researchers. The importance of vacation models has been
established in survey of Doshi [8,9], Teghem [31] and also in the monograph of Takagi [29]. At a
service completion epoch, if there are no customers in the system, the server takes vacation
of random period. After completion of this random period, the server returns to the system
without considering the number of customers in the system. This vacation policy is called single
vacation policy. Zhang and Tian [32] considered an M/M/C queue with a single vacation. Zhang
and Tian [33] analyzed an M/M/C queue as a quasi-birth-death process.

The content of this article is a finite source Markovian queue with single vacation. Based
on service rule two models are defined. The models are analyzed in sections 2 and 3. Some
numerical results are provided in section 4. Cost and profit model are defined in section 5.
A conclusion is given in section 6.
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2. The Finite Population Queue and Analysis
A single server finite population model with the following assumption have been considered:

(i) The arrival follows Poisson process.

(ii) The service time distribution is negative exponential.

(iii) The services are given in batches of size K . At a service completion point, if there are less
than K customer in the queue the server waits, that is server becomes idle until, the size
reaches K .

(iv) At the completion of a service, if there are no customer in the queue the server takes
vacation of duration V , which follows exponential distribution with rate θ.

(v) A customer waiting for service may get impatient due to delay and decide to renege from
the queue. Reneging times are exponential with rate α. The average reneging rate is
(n−1)α for n ≥ 1.

(vi) The population size is N .

(vii) The arrival rate is λ j =
{

(N − j)λ, j = 0,1,2, . . . , N −1,
0, j = N, N +1, . . . .

(viii) The service rate is µ j =
{
µ, j = 1,2, . . . ,LK ,
µ1, j = LK +1, . . . , N .

That is, up to L batches the service rate is µ and after L batches the service rate is µ1.

(ix) The queue discipline is First in First out.

2.1 The Queue Length Distribution
To analyze the queueing model we define the following notations: Let X (t) be the number of
customers in the system at time t, Y (t) be the number of customers in the source at time t,
N(t)= X (t)+Y (t)and Z(t) be the server state at time t where

Z(t)=
{

1, the server is in busy state,
2, the server is in single vacation state.

The process {(X (t), Z(t)) : t ≥ 0} is a finite Markov process with state space S = {(i,1) : i = 0,1,
2, . . . , N}∪{(i,2) : i = 1,2, . . . , N}. Let pi j(t)=Pr{X (t)= i, Z(t)= j} be the corresponding probability
distribution. The differential difference equations satisfied by pi j(t) are obtained, using birth
death arguments as
d
dt

p01(t)=−Nλp01(t)+µpK1(t) , (2.1)

d
dt

p j1(t)=−(N − j)λp j1(t)+µpK+ j1(t)+ (N − j+1)λp j−11 +θp j2(t); j = 1,2, . . . ,K −1, (2.2)

d
dt

p j1(t)=−(µ+ (N − j)λ)p j1(t)+µpK+ j1(t)+ (N − j+1)λp j−11(t)+θp j2(t);

j = K ,K +1, . . . ,LK −1, (2.3)
d
dt

pLK1(t)=−(µ+ (N −LK)λ)pLK1(t)+µ1 pK+LK1(t)+ (N −LK +1)λpLK−11(t)+θpLK2(t), (2.4)

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 527–549, 2023



530 Finite Population and Finite Capacity Single Server Batch Service. . . : R. Kalyanaraman and G. Janani

d
dt

p j1(t)=−(µ1 + (N − j)λ)p j1(t)+µ1 pK+ j1(t)+ (N − j+1)λp j−11(t)+θp j2(t);

j = LK +1,LK +2, . . . , N −K , (2.5)
d
dt

p j1(t)=−(µ1 + (N − j)λ)p j1(t)+ (N − j+1)λp j−11(t)+θp j2(t);

j = N −K +1, N −K +2, . . . , N −1 (2.6)
d
dt

pN1(t)=−µ1 pN1(t)+λpN−11(t)+θpN2(t), (2.7)

d
dt

p j2(t)=−(θ+ (N − j)λ+ ( j−1)α)p j2(t)+ (N − j+1)λp j−12(t)+ jαp j+12(t);

j = 1,2, . . . , N −1, (2.8)
d
dt

pN2(t)=−(θ+ (N −1)α)pN2(t)+λpN−12(t) . (2.9)

In steady state, lim
n→∞ pn(t)= pn, the equations (2.1) to (2.9) becomes

Nλp01 =µpK1 , (2.10)

(N − j)λp j1 =µpK+ j1 + (N − j+1)λp j−11 +θp j2; j = 1,2, . . . ,K −1 (2.11)

(µ+ (N − j)λ)p j1 =µpK+ j1 + (N − j+1)λp j−11 +θp j2; j = K ,K +1, . . . ,LK −1, (2.12)

(µ+ (N −LK)λ)pLK1 =µ1 pK+LK1 + (N −LK +1)λpLK−11 +θpLK2 , (2.13)

(µ1 + (N − j)λ)p j1 =µ1 pK+ j1 + (N − j+1)λp j−11 +θp j2; j = LK +1, . . . , N −K , (2.14)

(µ1 + (N − j)λ)p j1 = (N − j+1)λp j−11 +θp j2; j = N −K +1, . . . , N −1, (2.15)

µ1 pN1 =λpN−11 +θpN2 , (2.16)

(θ+ (N − j)λ+ ( j−1)α)p j2 = (N − j+1)λp j−12 + jαp j+12; j = 1,2, . . . , N −1, (2.17)

(θ+ (N −1)α)pN2 =λpN−12 . (2.18)

The equations (2.10) to (2.18)are recursively solved and the probabilities are obtained as

pN−i2 = B′′
i pN2; i = 1,2,3, . . . , N , (2.19)

pN−i1 = (Bi −C′
i)pN2; i = 1,2,3, . . . ,K , (2.20)

pN−i1 = (Ci −D i)pN2; i = K +1,K +2, . . . ,2K +1 , (2.21)

pN−i1 = (E i −E′
i)pN2; i = 2K +2,2K +3, . . . , N −LK , (2.22)

PLK−11 =
{
µ+ (N −LK)λ
(N −LK +1)λ

(CN−LK − AN−(LK+1)CN−(K+LK+1) − AN−LK CN−(K+LK)

−DN−LK + AN−(LK+1)DN−(K+LK+1) − A′′
N−LK B′′

LK+1)

− AN−LK DN−(K+LK) + A′′
N−LK B′′

LK

}
pN2, (2.23)

pN−i1 = (Hi −H′
i)pN2; i = N −LK +2, N −LK +3, . . . , N −K +1 , (2.24)

pi1 = N − (i+1)
N − i

[(HN−(i+1) − A′
N−(i+1)HN−(K+i+1))−H′

N−(i+1) + A′
N−(i+1)H

′
N−(K+i+1)

+ A′′
N−(i+1)B

′
i+1]pN2; i = K −1,K −2, . . . ,0, (2.25)
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where

Bi =
i∏

j=1

( j−1)λ+µ1

jλ
, (2.26)

B′
i =

i∏
j=1

( j−1)λ+θ

jλ
, (2.27)

B′′
i =

i∏
j=1

(N − j)α+ ( j−1)λ+θ

jλ
− (N − (i−1))α

iλ
, (2.28)

Ci = Bi −
i−1∑

l=K+1

i−l∏
j=1

µ1 + (i− j)λ
(i− ( j−1))λ

Al−1Bl−(K+1) − A i−1Bi−(K+1) , (2.29)

C′
i =

i−1∏
j=1

µ1 + (i− j)λ
(i− j+1)λ

B′
1 +

i−1∑
l=2

i−l∏
j=1

µ1 + (i− j)λ
(i− j+1)λ

A′′
l−1B′′

l−1 + A′′
i−1B′′

i−1 , (2.30)

D i = C′
i −

i−(K+2)∏
j=1

µ1 + (i− j)λ
(i− j+1)λ

AK+1B′′
1

−
i−1∑

l=K+3

i−l∏
j=1

µ1 + (i− j)λ
(i− ( j−1))λ

A′′
l−1C′

l−(K+1) − A′′
i−1C′

i−(K+1) , (2.31)

E i = Ci − A i−1Ci−(K+1) , (2.32)

E′
i = D i − A i−1D i−(K+1) + A′′

i B′′
i , (2.33)

Hi =
i−(N−LK)∏

j=1

µ+ (i− j)λ
(i− ( j−1))λ

CN−LK − AN−(LK+1)CN−(K+LK+1)

−
i−(N−LK+1)∏

j=1

µ+ (i− j)λ
(i− ( j−1))λ

AN−LK CN−(K+LK)

−
i−1∑

m=N−LK+2

i−m∏
j=1

µ+ (i− j)λ
(i− ( j−1))λ

A′
m−1C(m−1)−K − A′

i−1C(i−1)−K , (2.34)

H′
i =

i−(N−LK)∏
j=1

µ+ (i− j)λ
(i− ( j−1))λ

DN−LK − AN−(LK+1)DN−(K+LK+1)

−
i−(N−LK+1)∏

j=1

µ+ (i− j)λ
(i− ( j−1))λ

(AN−LK DN−(K+LK) + A′′
N−LK B′′

LK+1)

−
i−1∑

m=N−LK+2

i−n∏
j=1

µ+ (i− j)λ
(i− ( j−1))λ

(A′
n−1D(n−1)−K + A′′

n−1B′′
n−N)+ A′′

i−1B′′
N−(i−1) , (2.35)

A i = µ1

(i+1)λ
, (2.36)

A′
i =

µ

(i+1)λ
, (2.37)

A′′
i =

θ

iλ
. (2.38)
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Using the normalization condition
∑N

i=0 pi1 +∑N
i=1 pi2 = 1, we can obtain pN2 as,

pN2 =
[
1+

L−2∑
i=0

N − (i+1)
N − i

(HN−(i+1) − A′
N−(i+1)HN−(K+i+1) −H′

N−(i+1)

+ A′
N−(i+1)H

′
N−(K+i+1) + A′′

N−(i+1)B
′
i+1)+

L+K−2∑
i=L−1

(Hi −H′
i)+

N−2K−2∑
i=L+K−1

(E i −E′
i)

+
N−K−1∑

i=N−2K−1
(Ci −D i)+

N−1∑
i=N−K

(Bi −C′
i)+

N−1∑
i=0

B′′
i

]−1
pN2 . (2.39)

Equations (2.19) to (2.39) represents the steady state probabilities of the model discussed in
this paper.

Theorem 2.1. The steady state probabilities for the model discussed in this section are

pN−i2 = B′′
i pN2; i = 1,2,3, . . . , N ,

pN−i1 = (Bi −C′
i)pN2; i = 1,2,3, . . . ,K ,

pN−i1 = (Ci −D i)pN2; i = K +1,K +2, . . . ,2K +1 ,

pN−i1 = (E i −E′
i)pN2; i = 2K +2,2K +3, . . . , N −LK ,

PLK−11 =
[
µ+ (N −LK)λ
(N −LK +1)λ

(CN−LK − AN−(LK+1)CN−(K+LK+1) − AN−LK CN−(K+LK)

−DN−LK + AN−(LK+1)DN−(K+LK+1) − A′′
N−LK B′′

LK+1)

− AN−LK DN−(K+LK) + A′′
N−LK B′′

LK

]
pN2 ,

pN−i1 = (Hi −H′
i)pN2; i = N −LK +2, N −LK +3, . . . , N −K +1 ,

pi1 = N − (i+1)
N − i

[(HN−(i+1) − A′
N−(i+1)HN−(K+i+1))−H′

N−(i+1)

+ A′
N−(i+1)H

′
N−(K+i+1) + A′′

N−(i+1)B
′
i+1]pN2; i = K −2,K −1, . . . ,0,

where Bi , Ci , D i , E i , Fi , Hi , B′′
i , C′

i , E′
i , F ′

i and H′
i are given in equations (2.26) to (2.35).

2.2 Some Performance Measures
Using straight forward calculations the following performance measures are calculated:

2.2.1 Mean Number of Customers in the System

L =
N∑

i=0
ipi1 +

N∑
i=1

ipi2

L =
{

1+
L−2∑
i=0

N − (i+1)
N − i

i(HN−(i+1) − A′
N−(i+1)HN−(K+i+1) −H′

N−(i+1)

+ A′
N−(i+1)H

′
N−(K+i+1) + A′′

N−(i+1)B
′
i+1)+

L+K−2∑
i=L−1

i(Hi −H′
i)+

N−2K−2∑
i=L+K−1

i(E i −E′
i)

+
N−K−1∑

i=N−2K−1
i(Ci −D i)+

N−1∑
i=N−K

i(Bi −C′
i)+

N−1∑
i=0

iB′′
i +N

}
pN2
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2.2.2 Idle Probability

p01 = N −1
N

[(HN−1 − A′
N−1HN−(K+1))−H′

N−1 + A′
N−1H′

N−(K+1) ++A′′
N−1B′

1]pN2

2.2.3 Probability that the Server is Busy

pb =
N∑

i=1
pi1

2.2.4 Probability That the Server Is an Vacation

pv =
N∑

i=1
pi2

2.2.5 Expected Number of Customers Served per Unit Time

L1 =µ
L∑

i=1
ipi1 +µ1

N∑
i=L+1

ipi1

2.2.6 Effective Input Rate

λ′ =λ(1− pN2)

=λ

[
1−

((
1+

L−2∑
i=0

N − (i+1)
N − i

i(HN−(i+1) − A′
N−(i+1)HN−(K+i+1) −H′

N−(i+1)

+ A′
N−(i+1)H

′
N−(K+i+1) + A′′

N−(i+1)B
′
i+1)+

L+K−2∑
i=L−1

i(Hi −H′
i)+

N−2K−2∑
i=L+K−1

i(E i −E′
i)

The expression for the notations Bi , Ci , D i , E i , B′
i , C′

i , E′
i are given in equations (2.26) to

(2.35).

2.2.7 Utilization Factor of the Service Station

ρ′ = λ′

µ+µ1 +θ

2.2.8 Mean Waiting Time in the System (using Little’s Law)

W = L
λ′

2.3 Particular Model
If K = 1, L = 1, µ1 = µ, θ = 0, α= 0 the model M/M/1//N coincide with the model in [18, 106 –
107].

3. The Finite Waiting Line Model and Analysis
As a modification of the model discussed in section 2, we assume that the source population is
infinite but the waiting line capacity is N −1.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 527–549, 2023



534 Finite Population and Finite Capacity Single Server Batch Service. . . : R. Kalyanaraman and G. Janani

The arrival rate is

λ j =
{
λ, j = 0,1,2, . . . , N −1,
0, j = N, N +1, . . . .

All other assumptions are as in the case of the model in section 2 except the population size.

3.1 The Queue Length Distribution
To analyze the queueing model we define the following notations:

Let X (t) be the number of customers in the system at time t, Z(t) be the server state at time
t where

Z(t)=
{

1, the server is in busy state,
2, the server is in single vacation state

The process {(X (t), Z(t)) : t ≥ 0} is a finite Markov process with state space

S = {(i,1) : i = 0,1,2, . . . , N}∪ {(i,2) : i = 1,2, . . . , N}.

Let pi j(t)=Pr{X (t)= i, Z(t)= j} be the corresponding probability distribution.

λp01 =µpK1 , (3.1)

λp j1 =µpK+ j1 +λp j−11 +θp j2, j = 1,2, . . . ,K −1 , (3.2)

(µ+λ)p j1 =µpK+ j1 +λp j−11 +θp j2, j = K ,K +1, . . . ,LK −1 , (3.3)

(µ+λ)pLK1 =µ1 pK+LK1 +λpLK−11 +θpLK2 , (3.4)

(µ1 +λ)p j1 =µ1 pK+ j1 +λp j−11 +θp j2, j = LK +1, . . . , N −K , (3.5)

(µ1 +λ)p j1 =λp j−11 +θp j2, j = N −K +1, N −K +2, . . . , N −1 , (3.6)

µ1 pN1 =λpN−11 +θpN2 , (3.7)

(θ+λ+ ( j−1)α)p j2 =λp j−12 + jαp j+12, j = 1,2, . . . , N −1 , (3.8)

(θ+ (N −1)α)pN2 =λpN−12 . (3.9)

The equations (3.1) to (3.9) are recursively solved and the probabilities are obtained as

pN−i2 = bi pN2, i = 1,2,3, . . . , N , (3.10)

pN−i1 = (c′i − c′′i )pN2, i = 1,2, . . . ,K , (3.11)

pN−i1 = (d′
i −d′′

i )pN2, i = K +1,K +2, . . . ,2K +1 , (3.12)

pN−i1 = ( f ′i − f ′′i )pN2, i = 2K +2,2K +3, . . . , N −LK , (3.13)

pLK−11 =
(
(1+γ)
γ

f ′N−LK − 1
ρ

( f ′N−(K+LK+1) + f ′N−(K+LK))

− (1+γ)
γ

f ′′N−LK + 1
ρ

( f ′′N−(K+LK+1) + f ′′N−(K+LK))−
1
ρ1

bLK

)
pN2 , (3.14)

pN−i1 = (e′i − e′′i )pN2, i = N −LK +2, N −LK +3, . . . , N −K +1 , (3.15)

pi1 =
(
e′N−(i+1) −

1
γ

e′N−(i+K+1) − e′′N−(i+1) +
1
γ

e′′N−(i+K+1) −
1
ρ1

bi

)
pN2, i = K −2,K −3, . . . ,0 ,

(3.16)
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where

bi = (1+ρ2)i−1

ρ2 i − N − (i−1)
α

, (3.17)

c′i =
(1+ρ)i−1

ρ i , (3.18)

c′′i =
1
ρ1

i∑
K=1

K∑
j=1

(
1+ρ

ρ

)i− j

b j−1 , (3.19)

d′
i = c′i −

1
ρ i−K ((1+ρ)i−(K+1) + (i− (K +1))(1+ρ)i−(K+2)) , (3.20)

d′′
i =

(
1+ρ

ρ

)i−(K+1)

c′′K+1 −
i∑

j=K+2

[
(1+ρ)i− j

ρ i− j+1 c′′j−(K+1) +
1
ρ1

(
1+ρ

ρ

)i− j

b j−(K+1)

]
, (3.21)

e′i =
(
1+γ

γ

)i−(N−LK)

f ′N−LK − 1
ρ

(
1+γ

γ

)i−(N−LK+1)

−
(
1+α

α
f ′N−(K+LK+1) + f ′N−(K+LK)

)
− 1
γ

i∑
j=N−LK+2

(
1+α

α

)i− j

f ′j−(K+1) , (3.22)

e′′i =
(
1+γ

γ

)i−(N−LK)

f ′′N−LK − 1
ρ

(
1+γ

γ

)i−(N−LK+1)(1+γ

γ
f ′′N−(K+LK+1) + f ′′N−(K+LK) +bLK−1

)
− 1
γ

i∑
j=N−LK+2

(
1+γ

γ

)i− j

f ′′j−(K+1) +
1
ρ1

i∑
j=N−LK+2

(
1+γ

γ

)i− j

b j−(N−LK) , (3.23)

ρ = λ

µ1
, (3.24)

ρ1 = λ

θ
, (3.25)

ρ2 = λ

θ+ (N −1)α
, (3.26)

γ= λ

µ
. (3.27)

Theorem 3.1. The steady state probabilities for the model discussed in this section are

pN−i2 = bi pN2, i = 1,2,3, . . . , N ,

pN−i1 = (c′i − c′′i )pN2, i = 1,2, . . . ,K ,

pN−i1 = (d′
i −d′′

i )pN2, i = K +1,K +2, . . . ,2K +1 ,

pN−i1 = ( f ′i − f ′′i )pN2, i = 2K +2,2K +3, . . . , N −LK ,

pLK−11 =
(
(1+γ)
γ

f ′N−LK − 1
ρ

( f ′N−(K+LK+1) + f ′N−(K+LK))

− (1+γ)
γ

f ′′N−LK + 1
ρ

( f ′′N−(K+LK+1) + f ′′N−(K+LK))−
1
ρ1

bLK

)
pN2 ,

pN−i1 = (e′i − e′′i )pN2, i = N −LK +2, N −LK +3, . . . , N −K +1 ,
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pi1 =
(
e′N−(i+1) −

1
γ

e′N−(i+K+1) − e′′N−(i+1) +
1
γ

e′′N−(i+K+1) −
1
ρ1

bi

)
pN2, i = K −2,K −3, . . . ,0,

where bi , c′i , d′
i , d′′

i , e′i , and e′′i are given in equations (3.17) to (3.23).

3.2 Some Performance Measures
Using straight forward calculation the following performance measures can be calculated:

3.2.1 Mean Number of Customers in the System

L2 =
N∑

i=1
ipi

=
(K−2∑

i=1
i
(
e′N−(i+1) −

1
γ

e′N−(i+K+1) − e′′N−(i+1) +
1
γ

e′′N−(i+K+1) −
1
ρ1

bi

)
+

LK−1∑
i=K−1

i(e′i − e′′i )

+
N−2K−2∑

i=LK
i( f ′i − f ′′i )+

N−K−1∑
i=N−2K−1

i(d′
i −d′′

i )+
N−1∑

i=N−K
i(c′i − c′′i )+

N−1∑
i=1

ibi +N
)
pN2 .

3.2.2 Idle Probability

p01 = (e′N−(i+1) −
1
γ

e′N−(i+K+1) − e′′N−(i+1) +
1
γ

e′′N−(i+K+1) .− 1
ρ1

bi)pN2 .

3.2.3 Blocking Probability

pN2 =
(
1+

K−2∑
i=1

(
e′N−(i+1) −

1
γ

e′N−(i+K+1) − e′′N−(i+1) +
1
γ

e′′N−(i+K+1) −
1
ρ1

bi

)
+

LK−1∑
i=K−1

(e′i − e′′i )

+
N−2K−2∑

i=LK
( f ′i − f ′′i )+

N−K−1∑
i=N−2K−1

(d′
i −d′′

i )+
N−1∑

i=N−K
(c′i − c′′i )+

N−1∑
i=1

bi

)−1

.

3.2.4 Probability that the server is busy

pb =
N∑

i=1
pi1

3.2.5 Probability that the server is an vacation

pv =
N∑

i=1
pi2

3.2.6 Expected number of customers served per unit time

L1 =µ
L∑

i=1
ipi1 +µ1

N∑
i=L+1

ipi1

3.2.7 Effective input rate

λ′
1 =λ(1− pN2)

=λ

[
1−

((
1+

K−2∑
i=1

(
e′N−(i+1) −

1
γ

e′N−(i+K+1) − e′′N−(i+1) +
1
γ

e′′N−(i+K+1)

)
− 1
ρ1

bi

)

+
LK−1∑
i=K−1

(e′i − e′′i )+
N−2K−2∑

i=LK
( f ′i − f ′′i )+

N−K−1∑
i=N−2K−1

(d′
i −d′′

i )+
N−1∑

i=N−K
i(c′i − c′′i )+

N−1∑
i=1

bi

)−1]
.
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The expression for the notations are bi , c′i , d′
i , d′′

i , e′i , and e′′i are given in equations (3.17) to
(3.23).

3.2.8 Utilization factor of service station is

ρ′
2 =

λ′
1

µ+µ1 +θ

3.2.9 Mean waiting time in the system (using Little’s law)

W1 = L2

λ′
1

3.3 Particular Model
If K = 1, L = 1, µ1 =µ, θ = 0, α= 0 the model coincide with the model M/M/1/N in [, Kleinrock,
103 – 104] (1975).

4. Some Numerical Results and Comparison of the Models
This section shows the numerical tractability of the performance measures provided in
sections 2.2 (for model I(MI)) and 3.2 (for model II(MII)).

Numerical results for probabilities are presented in Tables 1 to 8 and system performance
measures are displayed in Figures 1 to 4. Tables 1 to 8 depicts the probabilities by fixing N = 10,
L = 4 and changing K = 8,9,10. Also, we fix µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8 and we vary the
arrival rate λ from 1.1 to 2.0. Figures 1 and 2 displays the mean number of customers in the
system for MI and MII against arrival rate λ. In general, the mean system size increases if λ
increases for both the models. The first row of each table shows idle probability of MI and MII. It
is observed that the idle probabilities p01 decreases with increasing arrival rate λ. Comparing
with MI, the idle probability of MII is too small. p10 for MII are called blocking probabilities,
the value decreases as λ increases, we experiences the same in all the tables.

Figures 1 and 2, shows the mean number of customers in the system for both the models
and for various values of K . The values of mean number of customers increases arrival rate
increases. The functions are increasing functions with respect to arrival rate λ. Figures 3 and 4,
shows the mean waiting time for various values of λ, for K = 8,9, and 10. The mean function of
MII is an increasing function with respect to λ. For MI, the mean waiting time function is a
combination of increasing, convex and concave with respect to the arrival rate λ.

Table 1. N = 10, K = 8, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.1 λ= 1.2 λ= 1.3
pi MI MII MI MII MI MII
p01 0.2866 0.1532 0.2810 0.1513 0.2758 0.1509
p11 0.1268 0.1431 0.1245 0.1425 0.1224 0.1456
p21 0.0828 0.1261 0.0819 0.1378 0.0811 0.1436
p31 0.0698 0.1247 0.0606 0.1337 0.0604 0.1418
p41 0.0495 0.1018 0.0478 0.1235 0.0480 0.1246

Table Contd.
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λ= 1.1 λ= 1.2 λ= 1.3
pi MI MII MI MII MI MII
p51 0.0480 0.0986 0.0468 0.1141 0.0457 0.0839
p61 0.0476 0.0691 0.0392 0.0730 0.0397 0.0777
p71 0.0388 0.0380 0.0334 0.0417 0.0338 0.4370
p81 0.0325 0.0209 0.0332 0.0238 0.0334 0.0258
p91 0.0285 0.0092 0.0289 0.0189 0.0296 0.0183
p12 0.0261 0.0087 0.0268 0.0136 0.0274 0.0152
p22 0.0256 0.0063 0.0267 0.0077 0.0273 0.0094
p32 0.0246 0.0045 0.0255 0.0060 0.0266 0.0090
p42 0.0244 0.0040 0.0254 0.0055 0.0261 0.0053
p52 0.0237 0.0034 0.0245 0.0044 0.0253 0.0036
p62 0.0230 0.0031 0.0238 0.0020 0.0247 0.0019
p72 0.0225 0.0006 0.0234 0.0004 0.0242 0.0001
p82 0.0217 0.0001 0.0230 0.0001 0.0240 0.0000
p92 0.0216 0.0000 0.0227 0.0000 0.0238 0.0000
p102 0.0015 0.0000 0.0009 0.0000 0.0007 0.0000

Table 2. N = 10, K = 8, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.4 λ= 1.5
pi MI MII MI MII
p01 0.2750 0.1496 0.2658 0.1484
p11 0.1228 0.1485 0.1186 0.1376
p21 0.0818 0.1388 0.0796 0.1296
p31 0.0614 0.1229 0.0607 0.1290
p41 0.0499 0.1179 0.0483 0.1185
p51 0.0489 0.0946 0.0437 0.0815
p61 0.0409 0.0836 0.0405 0.0745
p71 0.0350 0.0483 0.0350 0.0569
p81 0.0341 0.0350 0.0335 0.0493
p91 0.0317 0.0195 0.0308 0.0296
p12 0.0293 0.0105 0.0293 0.0215
p22 0.0290 0.0099 0.0284 0.0097
p32 0.0289 0.0077 0.0282 0.0087
p42 0.0280 0.0076 0.0274 0.0032
p52 0.0265 0.0034 0.0267 0.0019
p62 0.0264 0.0021 0.0263 0.0001
p72 0.0256 0.0001 0.0259 0.0000
p82 0.0253 0.0000 0.0257 0.0000
p92 0.0249 0.0000 0.0252 0.0000
p102 0.0006 0.0000 0.0004 0.0000
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Table 3. N = 10, K = 9, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.1 λ= 1.2 λ= 1.3
pi MI MII MI MII MI MII
p01 0.2869 0.1416 0.2816 0.1393 0.2767 0.1345
p11 0.1269 0.1392 0.1248 0.1327 0.1228 0.1319
p21 0.0829 0.1370 0.0821 0.1319 0.0813 0.1293
p31 0.0609 0.1256 0.0607 0.1252 0.0606 0.1271
p41 0.0480 0.1124 0.0479 0.1189 0.0481 0.1026
p51 0.0477 0.0935 0.0469 0.0967 0.0458 0.0987
p61 0.0388 0.0615 0.0393 0.0581 0.0398 0.0949
p71 0.0334 0.0514 0.0325 0.0552 0.0339 0.0683
p81 0.0326 0.0333 0.0332 0.0380 0.0335 0.0344
p91 0.0286 0.0282 0.0290 0.0315 0.0294 0.0262

Table 4. N = 10, K = 9, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.1 λ= 1.2 λ= 1.3
pi MI MII MI MII MI MII
p12 0.0261 0.0205 0.0268 0.0228 0.0274 0.0203
p22 0.0247 0.0189 0.0254 0.0143 0.0262 0.0120
p32 0.0242 0.0155 0.0251 0.0145 0.0260 0.0065
p42 0.0239 0.0085 0.0250 0.0058 0.0256 0.0062
p52 0.0237 0.0047 0.0245 0.0053 0.0253 0.0042
p62 0.0230 0.0045 0.0239 0.0033 0.0248 0.0016
p72 0.0225 0.0025 0.0234 0.0012 0.0243 0.0003
p82 0.0221 0.0009 0.0230 0.0002 0.0240 0.0001
p92 0.0217 0.0002 0.0228 0.0001 0.0235 0.0000
p102 0.0014 0.0001 0.0011 0.0000 0.0010 0.0000

Table 5. N = 10, K = 9, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.4 λ= 1.5
pi MI MII MI MII
p01 0.2757 0.1310 0.2667 0.1296
p11 0.1226 0.1273 0.1190 0.1284
p21 0.0777 0.1262 0.0798 0.1259
p31 0.0613 0.1253 0.0603 0.1257
p41 0.0482 0.1182 0.0485 0.1205
p51 0.0456 0.1052 0.0438 0.1043
p61 0.0350 0.0867 0.0407 0.0836
p71 0.0342 0.0615 0.0354 0.0653
p81 0.0308 0.0374 0.0336 0.0356

Table Contd.
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λ= 1.4 λ= 1.5
pi MI MII MI MII
p91 0.0305 0.0229 0.0309 0.0319
p12 0.0285 0.0228 0.0285 0.0219
p22 0.0274 0.0138 0.0276 0.0180
p32 0.0272 0.0084 0.0275 0.0095
p42 0.0268 0.0060 0.0271 0.0063
p52 0.0266 0.0051 0.0268 0.0056
p62 0.0261 0.0015 0.0264 0.0010
p72 0.0256 0.0002 0.0260 0.0001
p82 0.0250 0.0001 0.0257 0.0000
p92 0.0245 0.0000 0.0250 0.0000
p102 0.0009 0.0000 0.0007 0.0000

Table 6. N = 10, K = 10, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.1 λ= 1.2 λ= 1.3

pi MI MII MI MII MI MII

p01 0.2877 0.1395 0.2824 0.1386 0.2769 0.1375

p11 0.1273 0.1289 0.1252 0.1250 0.1231 0.1236

p21 0.0831 0.1196 0.0820 0.1158 0.0815 0.1125

p31 0.0610 0.1157 0.0609 0.1145 0.0607 0.1029

p41 0.0481 0.1089 0.0480 0.1085 0.0482 0.0986

p51 0.0478 0.0958 0.0470 0.0863 0.0459 0.0846

p61 0.0390 0.0875 0.0394 0.0689 0.0399 0.0680

p71 0.0335 0.0619 0.0336 0.0678 0.0340 0.0678

p81 0.0326 0.0319 0.0333 0.0450 0.0336 0.0549

p91 0.0286 0.0286 0.0291 0.0359 0.0295 0.0418

p12 0.0262 0.0190 0.0268 0.0256 0.0274 0.0379

p22 0.0247 0.0154 0.0255 0.0216 0.0262 0.0276

p32 0.0242 0.0115 0.0252 0.0195 0.0260 0.0199

p42 0.0238 0.0093 0.0246 0.0099 0.0254 0.0109

p52 0.0231 0.0090 0.0240 0.0079 0.0249 0.0065

p62 0.0225 0.0073 0.0235 0.0063 0.0248 0.0045

p72 0.0221 0.0059 0.0231 0.0023 0.0240 0.00004

p82 0.0218 0.0036 0.0228 0.0005 0.0238 0.0001

p92 0.0213 0.0006 0.0223 0.0001 0.0233 0.0000

p102 0.0016 0.0001 0.0013 0.0000 0.0009 0.0000
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Table 7. N = 10, K = 10, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.4 λ= 1.5
pi MI MII MI MII
p01 0.2760 0.1355 0.2671 0.1339
p11 0.1234 0.1214 0.1192 0.1206
p21 0.0802 0.1115 0.0800 0.1109
p31 0.0617 0.1015 0.0603 0.1005
p41 0.0496 0.0945 0.0486 0.0913
p51 0.0430 0.0819 0.0439 0.0856
p61 0.0353 0.0715 0.0418 0.0801
p71 0.0343 0.0653 0.0330 0.0739
p81 0.0311 0.0596 0.0321 0.0685
p91 0.0308 0.0575 0.0309 0.0639

Table 8. N = 10, K = 10, L = 9, µ= 2.5, µ1 = 3.9, θ = 3.7, α= 2.8

λ= 1.4 λ= 1.5

pi MI MII MI MII

p12 0.0286 0.0419 0.0307 0.0331

p22 0.0274 0.0296 0.0286 0.0173

p32 0.0267 0.0215 0.0276 0.0416

p42 0.0261 0.0035 0.0269 0.0049

p52 0.0257 0.0029 0.0264 0.0008

p62 0.0254 0.0003 0.0260 0.0001

p72 0.0251 0.0001 0.0257 0.0000

p82 0.0246 0.0000 0.0255 0.0000

p92 0.0244 0.0000 0.0251 0.0000

p102 0.0007 0.0000 0.0006 0.0000

Figure 1. Mean number of the customers in the system for MI
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Figure 2. Mean number of the customers in the system for MII

Figure 3. Mean waiting time for MI

Figure 4. Mean waiting time for MII
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5. Cost and Profit Analysis
In this section, we define a cost structure to the model discussed in this paper. To carry out the
cost and profit analysis we introduce the following cost and profit related elements.

Ch: Unit’s holding cost per unit time

Cbb: Cost per unit time when the server busy with batch service

Cl : Cost associate each lost cost per unit time

Cv: Cost per unit time when the server is an vacation

C1: Cost per service by server1 per unit time

C2: Cost per service by server2 per unit time

C: Cost

P : Profit

R: Revenue

T(C): Total expected cost per unit time

T(R): Total expected revenue of the system

T(P): Total expected profit of the system

For model (MI), the total expected cost per unit time of the systems is

T = Cbb pbb +Cv pv +ChL+C1µ+C2µ1 .

For model (MII), the total expected cost per unit time of the systems is

T = Cbb pbb +Cv pv +ChL+ClλpN .

Total expected revenue of the system is T(R)= R(µ+µ1)L1

Total expected profit of the systems is T(P)= T(R)−T(C)

By fixing the cost parameters Cbb = 8, Cv = 6, Ch = 13, C1 = 7, C2 = 4, R = 8, L = 5, the
queueing µ= 3.9, µ1 = 4.1, N = 10 and varying λ= 1.1 to 2.0, K = 8,9,10, the functional values
T(C), T(R) and T(P) are obtained and are depicted in the Tables 9, 10 and 11, respectively.
Also, the corresponding graphs are drawn in the Figures 5 to 10.

From the numerical calculations, for MI it is clear that the total expected cost per unit
time is minimum at λ= 1.7 for K = 8, at λ= 1.6 for K = 9 and at λ= 1.9 for K = 10. The total
expected profit is maximum at λ = 1.6 for K = 8, at λ = 1.6 for K = 9 and λ = 1.7 for K = 10.
The minimum of total expected revenue at λ= 1.7 for K = 8, at λ= 1.5 for K = 9 and λ= 1.8 for
K = 10.

For MII it is clear that the total expected cost per unit time is minimum at λ= 1.5 for K = 8,
at λ= 1.8 for K = 9 and at λ= 1.4 for K = 10. The total expected profit is maximum at λ= 1.6
for K = 8, at λ= 1.4 for K = 9 and at λ= 1.3 for K = 10. The minimum of total expected revenue
at λ= 1.6 for K = 8, at λ= 1.4 for K = 9 and λ= 1.8 for K = 10.

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 527–549, 2023



544 Finite Population and Finite Capacity Single Server Batch Service. . . : R. Kalyanaraman and G. Janani

Table 9. Total expected cost per unit time T(C) (Cbb = 8, Cv = 6, Ch = 13, C1 = 7, C2 = 4, R = 8, L = 5,
µ= 3.9, µ1 = 4.1)

K = 8 K = 9 K = 10
λ MI MII MI MII MI MII

1.1 89.7546 84.8198 93.2193 87.2004 96.1127 88.8846
1.2 92.0373 89.2215 94.6288 91.9508 98.7894 94.2017
1.3 93.6158 90.1123 95.8042 93.4084 100.9513 97.0954
1.4 96.2211 92.3507 97.7484 96.6512 102.1074 73.2435
1.5 98.5028 69.3738 100.6211 97.6779 103.5851 102.6270
1.6 100.7166 98.5873 76.3292 100.7471 105.5951 103.7529
1.7 65.2375 99.7290 104.1279 102.8282 112.4542 105.4355
1.8 103.9009 101.7164 106.2373 65.8386 113.6530 107.4563
1.9 104.3142 103.4016 107.2356 106.1631 73.6259 109.3759
2.0 108.8637 105.8333 111.4001 108.3437 114.4898 111.5271

Table 10. Total expected profit per unit time T(P) (Cbb = 8, Cv = 6, Ch = 13, C1 = 7, C2 = 4, R = 8, L = 5,
µ= 3.9, µ1 = 4.1)

K = 8 K = 9 K = 10
λ MI MII MI MII MI MII

1.1 58.5670 69.5183 59.5669 71.3581 60.7915 74.8576
1.2 59.3675 70.9715 60.3786 72.7635 61.3619 75.1935
1.3 61.7834 71.6346 61.1739 73.1419 63.4054 76.8319
1.4 62.8999 72.3599 63.3599 75.9783 65.3689 45.9736
1.5 63.6350 73.1783 65.4819 43.8769 67.2515 44.5419
1.6 65.5636 74.4756 67.7345 40.8856 69.4856 43.4377
1.7 43.4787 49.3577 40.5986 39.1736 73.8990 40.6569
1.8 40.1579 47.4981 39.3579 38.9907 36.9786 39.1974
1.9 39.7430 45.7386 37.4531 37.1989 35.1993 38.8926
2.0 38.9136 44.5993 36.7816 36.3964 33.1786 36.9810

Table 11. Total expected revenue per unit time T(R) (Cbb = 8, Cv = 6, Ch = 13, C1 = 7, C2 = 4, R = 8,
L = 5, µ= 3.9, µ1 = 4.1)

K = 8 K = 9 K = 10
λ MI MII MI MII MI MII

1.1 148.3216 173.3659 152.7862 175.8559 154.6741 179.3615
1.2 149.9986 174.1735 153.3635 176.3517 155.8529 180.7840
1.3 150.7816 175.8993 154.5416 177.8931 156.1457 181.8019
1.4 151.3589 176.9875 155.6953 139.4563 157.5316 182.7388
1.5 152.7677 177.7319 120.4382 179.7919 158.3103 183.9781
1.6 154.4639 135.8426 156.9186 180.8515 159.4935 185.3659
1.7 112.3519 178.5519 158.1078 181.4366 161.8859 187.4566
1.8 157.5760 179.3679 160.0763 182.567 123.7326 143.7310
1.9 158.4837 180.4815 161.3845 183.3514 162.6583 188.8531
2.0 160.2919 182.5989 162.2647 184.1819 163.1938 190.6354
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Figure 5. Total expected cost per unit time for MI

Figure 6. Total expected cost per unit time for MII

Figure 7. Total expected profit per unit time for MI
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Figure 8. Total expected profit per unit time for MII

Figure 9. Total expected revenue per unit time for MI

Figure 10. Total expected revenue per unit time for MII
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6. Conclusion
Single vacation, batch service, impatient customers are the characters of the queueing systems
analyzed in this paper with the above characters, two models are defined and analyzed by
assuming finite population customers, infinite population customers with finite waiting line
separately. The two models are completely analyzed in steady state. The efficiency of the models
are identified by defining cost and profit structure. The models are compared numerically.
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