# On (4, 2)-Labeling of Certain Graphs 

Arijit Mishra*1 and Pinku Chandra Dey ${ }^{2}$ ©<br>${ }^{1}$ Department of Mathematics, N. E. F. College (Gauhati University), Guwahati 781040, Assam, India<br>${ }^{2}$ Department of Mathematics, B. N. College (Gauhati University), Dhubri 783324, Assam, India<br>*Corresponding author: mishraarijit1012@gmail.com

Received: January 24, 2023

> Abstract. The (4,2)-labeling of a graph $G$ is a function $f: V(G) \rightarrow \mathbb{Z}^{+}$such that $|f(x)-f(y)| \geq 4$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 2$ if $d(x, y)=2$, for any $x, y \in V(G)$. In this paper, we label different types of graphs such as paths, cycles, complete and complete bipartite graphs, star graphs and ladder graphs to study the bounds of the span $\lambda$ of these graphs.

Keywords. Graph labeling, Path, Cycle, Complete bipartite graph, Star graph, Complete graph, Ladder graph
Mathematics Subject Classification (2020). 05C78
Copyright © 2023 Arijit Mishra and Pinku Chandra Dey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1. Introduction

Graph labeling has found application in various fields like astronomy, coding theory, database management, circuit design and radio frequency assignment among others. A graphical model of the frequency assignment problem was introduced in the year 1980 by Hale [3] with the vertices of the graph denoting stations and the edges denoting their proximity.

In the year 1992, Griggs and Yeh [2] introduced the $L(2,1)$-labeling of a graph $G$ as a function $f: V(G) \rightarrow \mathbb{Z}^{+}$such that $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$, for any $x, y \in V(G)$. One can find literature on $L(2,1)$-labeling of graphs in [6-9].

The $L(0,1)$-labeling of a graph G is a function $f: V(G) \rightarrow \mathbb{Z}^{+}$such that $|f(x)-f(y)| \geq 0$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$, for any $x, y \in V(G)$. One can find literature on $L(0,1)$-labeling of graphs in [5, 10-12].

In the year 2016, Ghosh and Pal [1] introduced the $L(3,1)$-labeling of a graph $G$ as a function $f: V(G) \rightarrow \mathbb{Z}^{+}$such that $|f(x)-f(y)| \geq 3$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$, for any $x, y \in V(G)$.

In this paper, we introduce $L(4,2)$-labeling of a graph G as a function $f: V(G) \rightarrow \mathbb{Z}^{+}$such that $|f(x)-f(y)| \geq 4$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 2$ if $d(x, y)=2$, for any $x, y \in V(G)$. Here we apply $L(4,2)$-labeling technique to label paths, cycles, complete graphs, complete bipartite graphs, star graphs and ladder graphs.

Definition 1.1. Let $G$ be a graph having vertex set $V$ and edge set $E$. A function $f: V(G) \rightarrow \mathbb{Z}^{+}$ is said to admit a (4,2)-labeling of G if for all $u, v \in V,|f(x)-f(y)| \geq 4$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq 2$ if $d(x, y)=2$.

Definition 1.2 ([5]). The difference between the largest and the smallest values of $f$, for every possible value of $f$, is called the span of the labeling and is denoted by $\lambda$.

Definition 1.3 ([3]). A path is a trail where all the vertices (except the starting and the terminating vertices) are distinct. A path having $n$ vertices and $n-1$ edges is denoted by $P_{n}$.

Definition 1.4 ([3]). A simple graph $G$ with $n$ vertices and $n$ edges is said to be a cycle graph if all its edges form a cycle of length $n$. A cycle graph of length n is denoted by $C_{n}$.

Definition 1.5 ([3]). A graph $G$ is said to be a complete graph if all its vertices are adjacent to each other. A complete graph on $n$ vertices is denoted by $K_{n}$.

Definition 1.6 ([3]). A graph $G$ is said to be a complete bipartite graph if its vertices can be partitioned into two subsets $V_{1}$ and $V_{2}$ such that each vertex of $V_{1}$ is adjacent to each vertex of $V_{2}$, but no two vertices on the same subset are adjacent. A complete bipartite graph with $\left|V_{1}\right|=m$ and $\left|V_{1}\right|=n$ is denoted by $K_{m, n}$.

Definition 1.7 ([3]). A star graph on $n$ vertices, denoted by $S_{n}$, is a graph with one vertex having degree $n-1$ and the other $n-1$ vertices having degree 1 .

Definition 1.8 ([3]). The ladder graph $L_{n}$ is a planar, undirected graph obtained as the Cartesian product of two path graphs, one of which has only one edge. A ladder graph contains $2 n$ vertices and $3 n-2$ edges.

## 2. Main Results

In this section, we label some special classes of graphs and obtain the span of the (4,2)-labeling of these graphs. We begin this section with the (4,2)-labeling of paths.

Proposition 2.1. $\lambda\left(P_{2}\right)=4$.

Proof. For a path $P_{2}$ with vertices $v_{0}$ and $v_{1}$, if we label $v_{0}$ by 0 , then other vertex must be labeled by at least 4 and so $\lambda\left(P_{2}\right)=4$.

Lemma 2.1. For any subgraph $H$ of $G, \lambda(H) \leq \lambda(G)$.
Proof. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k\}$ and let $\lambda(G)=k$. Then the function $g: V(H) \rightarrow\{0,1,2, \ldots, k\}$ defined by $g(v)=f(v), \forall v \in V(H)$, is a labeling of the vertex set of $H$ that uses no label greater than $k$. Therefore, $\lambda(H) \leq k=\lambda(G)$.

Proposition 2.2. (a) $\lambda\left(P_{3}\right)=6$.
(b) $\lambda\left(P_{4}\right)=6$.

Proof. (a) Since $\lambda\left(P_{2}\right)=4$, using Lemma 2.1, $\lambda\left(P_{3}\right) \geq 4=\lambda\left(P_{2}\right)$.
Let $P_{3}$ be a path having vertices $v_{0}, v_{1}$ and $v_{2}$ such that $v_{0}$ is adjacent to $v_{1}$ and $v_{1}$ is adjacent to $v_{2}$. Since $d\left(v_{0}, v_{1}\right)=d\left(v_{1}, v_{2}\right)=1$ and $d\left(v_{0}, v_{2}\right)=2$, so there are three possibilities of labeling these vertices:
(i) Let $v_{0}=a$. Then $v_{1}=a+4$ and $v_{2}=a+8$. Therefore $\lambda\left(P_{3}\right) \leq 8$.
(ii) Let $v_{0}=a$. Then $v_{2}=a+2$ and $v_{1}=a+6$. Therefore $\lambda\left(P_{3}\right) \leq 6$.
(iii) Let $v_{1}=a$. Then $v_{0}=a+4$ and $v_{2}=a+8$. Therefore $\lambda\left(P_{3}\right) \leq 8$.

In view of these possibilities, $\lambda\left(P_{3}\right)=6$.
(b) Since $P_{3}$ is a subgraph of $P_{4}$, so by Lemma 2.1, $\lambda\left(P_{4}\right) \geq 6=\lambda\left(P_{3}\right)$. Let $P_{4}$ be a path with vertices, $v_{0}, v_{1}, v_{2}$ and $v_{3}$ such that $v_{0}$ is adjacent to $v_{1}, v_{1}$ is adjacent to $v_{2}$ and $v_{2}$ is adjacent to $v_{3}$. One of the possible labeling options for these four vertices is given below:

$$
v_{0}=4, v_{1}=0, v_{2}=6 \text { and } v_{3}=2 .
$$

So $\lambda\left(P_{4}\right) \leq 6$. Consequently, $\lambda\left(P_{4}\right)=6$.
Proposition 2.3. $\lambda\left(P_{n}\right)=8, \forall n \geq 5$.
Proof. Let $n=5$. Since $P_{4}$ is a subgraph of $P_{5}$, so by Lemma 2.1, $\lambda\left(P_{5}\right) \geq 6=\lambda\left(P_{4}\right)$. Let $v_{0}-v_{1-}$ $v_{2}-v_{3}-v_{4}$ be the vertices of $P_{5}$. As in Proposition 2.2 b), one of the possible labeling options of $P_{5}$ is given below:

$$
v_{0}=4, v_{1}=0, v_{2}=6, v_{3}=2 \text { and } v_{4}=8 .
$$

Thus $\lambda\left(P_{5}\right)=8$.
For $n>5$, the same set of labels can be repeated all over again ( $4,0,6,2,8,4,0,6,2,8,4,0,6, \ldots$ ). Thus $\lambda\left(P_{n}\right)=8, \forall n \geq 5$.

Example 2.1. Figure 1 shows the (4,2)-labeling of the paths $P_{2}, P_{3}, P_{4}, P_{5}$ and $P_{6}$.


Figure 1. (4,2)-labeling of the paths $P_{2}, P_{3}, P_{4}, P_{5}$ and $P_{6}$

Proposition 2.4. For any cycle $C_{n}, \lambda\left(C_{n}\right)=8, \forall n \geq 3$.
Proof. For $n<5$, the result is easy to verify. For $n>5$, the cycle $C_{n}$ contains the path $P_{5}$ as a subgraph. Therefore, by Lemma 2.1, $\lambda\left(C_{n}\right) \geq\left(P_{5}\right)=8$.
Let $u_{0}, u_{1}, u_{2}, \ldots, u_{n-1}$ be the vertices of the cycle $C_{n}$.
We look at the following three cases:
Case 1: $n \equiv 0(\bmod 3)$.
For $u_{i} \in V\left(C_{n}\right)$, the vertices of the cycle $C_{n}$ can be labeled by the following function:

$$
f\left(u_{i}\right)= \begin{cases}0, & \text { if } i \equiv 0(\bmod 3), \\ 4, & \text { if } i \equiv 1(\bmod 3), \\ 8, & \text { if } i \equiv 2(\bmod 3)\end{cases}
$$

Case 2: $n \equiv 1(\bmod 3)$.
For $u_{i} \in V\left(C_{n}\right)$, the vertices of the cycle $C_{n}$ can be labeled by the following function:

$$
f\left(u_{i}\right)= \begin{cases}0, & \text { if } i=n-(3 k+1), \text { where } 1 \leq k \leq \frac{n-1}{3}, \\ 4, & \text { if } i=n-3 k, \text { where } 2 \leq k \leq \frac{n-1}{3}, \\ 8, & \text { if } i=n-1 \text { or } i=n-(3 k+2), \text { where } 1 \leq k \leq\left\lfloor\frac{n-2}{3}\right\rfloor, \\ 2, & \text { if } i=n-2, \\ 6, & \text { if } i=n-3 .\end{cases}
$$

Case 3: $n \equiv 2(\bmod 3)$.
For $u_{i} \in V\left(C_{n}\right)$, the vertices of the cycle $C_{n}$ can be labeled by the following function:

$$
f\left(u_{i}\right)= \begin{cases}0, & \text { if } i=n-(3 k+2), \text { where } 1 \leq k \leq \frac{n-2}{3}, \\ 4, & \text { if } i=n-(3 k+1), \text { where } 2 \leq k \leq \frac{n-2}{3}, \\ 8, & \text { if } i=n-3 k, \text { where } 1 \leq k \leq \frac{n-2}{3}, \\ 2, & \text { if } i=n-2, \\ 6, & \text { if } i=n-1 .\end{cases}
$$

In view of these three cases, we find that $\lambda\left(C_{n}\right)=8$.

Example 2.2. Figure 2 shows the (4,2)-labeling of the cycles $C_{7}, C_{9}$ and $C_{10}$.


Figure 2. (4,2)-labeling of the cycles $C_{7}, C_{9}$ and $C_{10}$

Proposition 2.5. For any complete graph $K_{n}, \lambda\left(K_{n}\right)=4(n-1)$.
Proof. Each $v_{i} \in K_{n}$ can be labeled by the function $f: V\left(K_{n}\right) \rightarrow\{0,4,8, \ldots, 4(n-1)\}$ defined by $f\left(v_{i}\right)=4 i$, for $0 \leq i \leq n-1$. Clearly, $\lambda\left(K_{n}\right)=4(n-1)$.

Proposition 2.6. For any complete bipartite graph $K_{m, n}, \lambda\left(K_{m, n}\right)=2(m+n)$.
Proof. Let $V_{1}$ and $V_{2}$ be the two vertex sets of $K_{m, n}$ such that $\left|V_{1}\right|=m$ and $\left|V_{2}\right|=n$. Since $d(u, v)=2, \forall u, v \in V_{1}$, we can label the vertices of $V_{1}$ with $a, a+2, a+4, \ldots, a+2(m-1)$.

Similarly, the vertices of $V_{2}$ can be labeled with $a+2(m-1)+4, a+2(m-1)+4+2, a+2(m-1)$ $+4+4, \ldots, a+2(m-1)+4+2(n-1)$. Taking $a=0$ gives us the minimum integers. Therefore, $\lambda\left(K_{m, n}\right)=2(m-1)+4+2(n-1)=2(m+n)$.

Example 2.3. Figure 3 shows the (4,2)-labeling of the complete bipartite graph $K_{3,4}$.


Figure 3. (4,2)-labeling of the complete bipartite graph $K_{3,4}$

Proposition 2.7. For any star graph graph $S_{n}, \lambda\left(S_{n}\right)=2+2 n$.
Proof. Since the star graph $S_{n}$ is a complete bipartite $K_{m, n}$ with $m=1$, thus by Proposition 2.6, $\lambda\left(S_{n}\right)=2(1+n)=2+2 n$.

Proposition 2.8. For the ladder graph $L_{n}, \lambda\left(L_{n}\right)=10$, for all $n \geq 2$.

Proof. Let $V=\left\{u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{j}: 1 \leq j \leq n\right\}$ be the vertex set of $L_{n}$. Since $L_{n}$ contains the cycle $C_{4}$ and $\lambda\left(C_{4}\right)=8$, thus by Lemma 2.1, $\lambda\left(L_{n}\right) \geq 8=\lambda\left(C_{4}\right)$.

We define a function $f: V\left(L_{n}\right) \rightarrow \mathbb{Z}^{+}$such that for $i \equiv 1(\bmod 3)$,

$$
f\left(u_{i}\right)=0, f\left(u_{i+1}\right)=8, f\left(u_{i+2}\right)=4
$$

and

$$
f\left(v_{i}\right)=6, f\left(v_{i+1}\right)=2, f\left(v_{i+2}\right)=10 .
$$

We now proceed to claim that the edges of $L_{n}$ conform to the adjacency rules for $L(4,2)$ labeling:
(1) $\left|f\left(u_{i}\right)-f\left(u_{i+1}\right)\right| \geq 4$, for all $i \equiv 1(\bmod 3)$,
(2) $\left|f\left(u_{i+1}\right)-f\left(u_{i+2}\right)\right| \geq 4$, for all $i \equiv 1(\bmod 3)$,
(3) $\left|f\left(v_{i}\right)-f\left(v_{i+1}\right)\right| \geq 4$, for all $i \equiv 1(\bmod 3)$,
(4) $\left|f\left(v_{i+1}\right)-f\left(v_{i+2}\right)\right| \geq 4$, for all $i \equiv 1(\bmod 3)$,
(5) $\left|f\left(u_{i}\right)-f\left(v_{i+1}\right)\right| \geq 2$, for all $i \equiv 1(\bmod 3)$,
(6) $\left|f\left(u_{i+1}\right)-f\left(v_{i}\right)\right| \geq 4$, for all $i \equiv 1(\bmod 3)$.

From (1)-(6), it can be seen that $L_{n}$ admits a (4,2)-labeling and $\lambda\left(L_{n}\right)=10$.
Example 2.4. Figure 4 shows the (4,2)-labeling of the ladder graph $L_{9}$.


Figure 4. (4,2)-labeling of the ladder graph $L_{9}$

## 3. Conclusion and Future Scope

The (4,2)-labeling of different classes of graphs including paths, cycles, complete and complete bipartite graphs, star graphs and ladder graphs have been studied to investigate the bounds of the span $\lambda$ of these graphs. Labeling other classes of graphs and studying their bounds leaves ample scope for future research on this topic.

## Acknowledgment

The authors are thankful to the referees for their kind comments and suggestions.

## Competing Interests

The authors declare that they have no competing interests.

## Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

## References

[1] S. Ghosh and A. Pal, L(3,1)-Labeling of some simple graphs, AMO - Advanced Modeling and Optimization 18(2) (2016), 243 - 248, URL: https://camo.ici.ro/journal/vol18/v18b7.pdf
[2] J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance 2, SIAM Journal on Discrete Mathematics 5(4) (1992), 586 - 595, DOI: 10.1137/0405048.
[3] W. K. Hale, Frequency assignment: Theory and applications, Proceedings of the IEEE 68(12) (1980), 1497 - 1514, DOI: 10.1109/PROC.1980.11899.
[4] N. Khan, M. Pal and A. Pal, L(0,1)-Labeling of cactus graphs, Communications and Network 4(1) (2012), 18 - 29, URL: https://www.scirp.org/pdf/CN20120100002_36636260.pdf.
[5] B. S. Panda and P. Goel, $L(2,1)$-Labeling of dually chordal graphs and strongly orderable graphs, Information Processing Letters 112(13) (2012), 552 - 556, DOI: 10.1016/j.ipl.2012.04.003.
[6] B. S. Panda and P. Goel, $L(2,1)$-Labeling of perfect elimination bipartitite graphs, Discrete Applied Mathematics 159(16) (2011), 1878 - 1888, DOI: 10.1016/j.dam.2010.07.008.
[7] S. Paul, M. Pal and A. Pal, L(0,1)-Labeling of permutation graphs, Journal of Mathematical Modelling and Algorithms in Operations Research 14 (2015), 469 - 479, DOI: 10.1007/s10852-015-9280-5.
[8] S. Paul, M. Pal and A. Pal, L(2,1)-Labeling of interval graphs, Journal of Applied Mathematics and Computing 49 (2015), 419 - 432, DOI: 10.1007/s12190-0140846-6.
[9] S. Paul, M. Pal and A. Pal, $L(2,1)$-Labeling of permutation and bipartite permutation graphs, Mathematics in Computer Science 9 (2015), 113 - 123, DOI: 10.1007/s11786-014-0180-2.
[10] S. Paul, M. Pal and A. Pal, An efficient algorithm to solve $L(0,1)$-labeling problem on interval graphs, Advanced modeling and Optimization 15(1) (2013), 31 - 43, URL: https://camo.ici.ro/ journal/vol15/v15a3.pdf
[11] C. Schwarz and D. S. Troxell, $L(2,1)$-Labelings of Cartesian products of two cycles, Discrete Applied Mathematics 154(10) (2006), 1522 - 1540, DOI: 10.1016/j.dam.2005.12.006.
[12] Z. Shao and R. Solis-Oba, $L(2,1)$-Labelings on the modular product of two graphs, Theoretical Computer Science 487 (2013), 74 - 81, DOI: 10.1016/j.tcs.2013.02.002.


