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Abstract. Let f: V(G)— {1,2,...,p + q} be an injective function, where p = |V(G)| and q = |[E(G)|. For
a vertex labeling f the induced edge labeling f*(e = uv) is defined by,

_ | @+ Vo) + f(v)J o V(u)+\/f(u)f(v)+ f@)

f (e) 3 3

Then f is called a super Heronian mean labeling if {f(V(G))}u{f(e):e € E(G)} ={1,2,3,...,p +q}.
A graph which admits super Heronian mean labeling is called super Heronian mean graph.
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1. Introduction

Graphs considered in this paper are connected, finite and undirected, i.e., with no loops and
parallel edges and where the vertices and edges of a graph G is denoted by V(G) and E(G),
respectively. A graph labeling is an assignment of integers to the vertices or edges or both,
subject to certain conditions (Sandhya et al. [5]). All of the detailed survey of graph labeling are
refered to Gallian [2].

The super Heronian mean labeling is a type of labeling was introduced by Sandhya et
al. [3H6] and proved that P,, C,, L,, TL,, M(P,), T(P,), T,, Q,, A(T,), AQ,), D(Q,) and
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other corona graphs are super Heronian mean graph. So far, there were already 25 results
published regarding this topic. In this paper, we proved that the subdivision of the graphs:
Triangular snake T, quadrilateral snake @,, double triangular snake D(T,) and double
quadrilateral snake D(@®,) are super Heronian mean graphs for all n = 3.

2. Proof of the Theorem

Theorem 2.1. The subdivision of any triangular snake graph T,, n =3 is a super Heronian
mean graph.

Proof. Let S(T,,) be a subdivision of T',,. Let u;,x; and y;, 1 <i <n—1 be the vertices which
subdivide the edges v;v;.1, v;z; and v;,1z;, respectively. Note that |V (S(T},))| = 5n —4 and
|[E(S(T,))| = 6n —6 (refer to Figure [1).

21 29 23 Zn-1
X1 Y1 X2 Y2 X3 Y3 Xn-1 f ? Yn-1
U1 ui U2 uz U3 us U4 Un-1 Unp-1 Un

Figure 1. The subdivision of the triangular snake graph T},

Define a function f : V(S(T,)) — {1,2,...,11n — 10} by:
Forl1<i<n,
fw;)=11i-10
andfor1<i<n-1,
flup=11i-5; f(x)=11i-7;
fly=11i-1; f(z;)=11i—4.
And the edges are labeled with:
Forl<i<sn-1,
floju))=11i-8; f(u;v;41)=11i-3;
fix))=11i-9;  [f(x;z;) =11i - 6;
flyivis1) =11i;  f(yiz;)=11i -2.

Therefore, S(T',) is a super Heronian mean graph, for all n > 3. O

Example 2.1. The graph in Figure [2|shows the subdivision of the triangular snake 7T'5 and its
super Heronian mean labeling.
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6 12 17 23 28 34 39

Figure 2. The subdivision of the triangular snake T5 and its super Heronian mean labeling

Theorem 2.2. The subdivision of any quadrilateral snake graph @, n =3 is a super Heronian
mean graph.

Proof. Let S(Q,) be a subdivision of @,,. Let u;,x;,y;, and b;, 1 <i <n—1 be the vertices which
subdivide the edges v,;v;;+1,v;a;,v;+1¢; and a;c;, respectively. Note that |V(S(T,))| = 7n -6 and
|[E(S(T,))| = 8n — 8 (refer to Figure |3).

b1 b
ai c1 Qa2

U1 ui U2 uz U3 Un-1 Un-1 Un

Figure 3. The subdivision of the quadrilateral snake graph @,

Define a function f: V(S(Q,)) — {1,2,...,15n — 14} by:
For 1<i<n,
f(v;))=15i-14
andfor1<i<n-1,
fwi)=15i-7, f(a;)=15i-9;
f(x;)=15i-12; f(b;)=15i-6;
flyi)=16i-1; f(c;)=151-3.
And the edges are labeled with:
Forl<i<n-1,
fiu)) =150 -11; f(uivis1) =151 —4;
fix;)=15i-13; f(x;a;)=15i-10;
fla;b;)=15i-8;  f(b;c;)=15i-5;
fleiyi)=15i-2;  f(y;viv1) = 151

Therefore, S(Q;) is a super Heronian mean graph, for all n = 3. O
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Example 2.2. The graph in Figure |4| shows the subdivision of the quadrilateral snake @4 and
its super Heronian mean labeling.

1 4 8 11 16 19 23 26 31 34 38 41 46

Figure 4. The subdivision of the quadrilateral snake @4 and its super Heronian mean labeling

Theorem 2.3. The subdivision of any double triangular snake D(T,,), n =2 is a super Heronian
mean graph.

Proof. Let S(D(T},)) be a subdivision of D(T},). Let u;,x;,y;,x; and y;,1 <i <n—1 be the
vertices which subdivide the edges v;v;+1,v;2i,0;+12i,0;Z; and Z;v;+1, respectively. Note that
IV(S(T,))|=8n—-"7and |[E(S(T,))| =10n — 10 (refer to Figure |5).

Zn-1

Figure 5. The subdivision of double triangular snake graph D(T},)

Define a function f : V(D(T),)) — {1,2,...,18n — 17} by:
Forl1<i<n,
f(;)=18i-17
andforl<i<n-1,
fu;)=18i-8; f(x;)=18i-12;
flx;))=18i—-14; f(y;)=18i-2;
fly)=18i-4; f(z;)=18i-1,
f(z;) =181 -9.
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And the edges are labeled with:
Forl1<i<n-1,
floju;)=18i-13; f(u;v;+1)=18i-3;
f(wix;) =181 —-16; f(x;2;)=18i—-11;
f(yiviz1) =18i-1; f(y;z;)=18i -6;
fix;))=18i—15; f(y;v;+1)=18i;
f(x;z;)=18i-10; f(y;z;)=18i-5.
Therefore, S(D(T},) is a super Heronian mean graph, for all n = 2. O

Example 2.3. The graph in Figure [6| shows the subdivision of the double triangular snake T’
and its super Heronian mean labeling.

9 27 45 63

11 29 47 65

Figure 6. The subdivision of the double triangular snake T’5 and its super Heronian mean labeling

Theorem 2.4. The subdivision of any double quadrilateral snake D(Q,), n = 2 is a super
Heronian mean graph.

Proof. Let S(D(Q,)) be a subdivision of D(®,,). Let u;,x;,y;,b;,%;,y, and Zi, 1<i<n-1Dbethe
vertices which subdivide the edges v;v;;+1,v;a;,vi+1¢;,a;c;,v;a;,v;+1c; and a;c;, respectively.
Note that |V(S(T,))| =12n - 11 and |E(S(T},))| = 14n — 14 (refer to Figure .

Define a function f: V(D(Q,)) — {1,2,...,26n — 25} by:
Forl<i<n,
f(v;)=26i-25
andforl1<i<n-1,
f(u;)=26i—-12; f(x;)=26i-21,
flx;)=26i-22; [f(y;)=26i—-2;
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Figure 7. The subdivision of the double quadrilateral snake graph S(D(Q))

f(yi) =26i-3; f@i)=26i—16;
fla;)=261-17; f(b;)=26i—-11;
f(b;)=26i-13; f(c;)=26i-7T,
f(c;)=26i-8.

And the edges are labeled with:

Forl<i<n-1,
foiu;)=26i-19; f(u;vis1) =261 -5;
f(vix;)=26i—-24; f(x;ja;)=26i—20;
flyivis1)=26i—-1; f(yic;) =26i-6;
f(aibi):26i—15; f(bici)=26i—10;
fvix;)=26i—-23; f(x;a;)=26i—18;
f(ivis1) = 26i; f(yici) =26i-4;
f(aibi)=26i—14; f(biEi)ZQGi—Q.

Therefore, S(D(Q;) is a super Heronian mean graph, for all n = 2. O

Example 2.4. The graph in Figure |8/ shows the subdivision of the double quadrilateral snake
D(@®4) and its super Heronian mean labeling.

Figure 8. The subdivision of the double quadrilateral snake D(®Q4) and its super Heronian mean labeling
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