
Communications in Mathematics and Applications
Vol. 14, No. 2, pp. 1001–1017, 2023
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v14i2.2119

Research Article

Sensitivity Analysis of Vector-host Dynamic
Dengue Epidemic Model
Md. Rifat Hasan*1,2 , Aatef Hobiny1 and Ahmed Alshehri1

1Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
2Department of Applied Mathematics, Noakhali Science and Technology University, Noakhali, Bangladesh
*Corresponding author: rifatmathdu@gmail.com

Received: November 14, 2022 Accepted: March 25, 2023

Abstract. A global health hazard, dengue fever causes or contributes to the deaths of 10,000 people
and 100 million cases of symptomatic cases every year in more than half of the globe. The goal of
this work is to construct a compartmental vector-borne dengue model that takes into account the
typical incidence connection between infected humans and susceptible vectors in order to examine the
impact of model parameters that are within our control on the basic reproduction number. In order to
determine the basic reproduction number R0, the next-generation matrix is used. The theoretical study
reveals that disease-free equilibrium occurs as a locally asymptotically stable if R0 < 1. To measure
the disease-free and endemic equilibrium points’ global stability, LaSalle’s concept is applied. The
normalized forward sensitivity index methods show that the epidemic spread can reduce by increasing
the rate of symptomatically infected humans to isolated infected humans and the rate of recovery of
symptomatically infected humans.
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1. Introduction
Dengue fever is an endemic illness in many tropical nations, particularly in their metropolitan
regions (Valencia et al. [39]). More than half of the globe is affected by this virus, which places a
heavy cost on public health systems everywhere (Shragai et al. [35], and Oladipo et al. [24]).
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Aedes mosquitoes, especially Aedes aegypti, are the primary vectors for the Dengue virus, which
is a member of the Flavivirus family and causes dengue fever (Orellano et al. [27]). According to
the World Health Organization (WHO), Aedes mosquitoes have a lifespan of around 10 days
and may fly up to 100 meters. The eggs of mosquitoes mature every 5-8 days. After a mosquito
bite carries the dengue virus, symptoms might take 3-14 days to manifest (Huy et al. [13]).
Adults and teenagers are the most afflicted by viral dengue (Huy et al. [12]). Dengue Fever (DF)
symptoms include high fevers, headaches, pains around the eye socket, and muscular problems
(Agusto and Khan [2], and Ndii et al. [22]). Dengue Hemorrhagic Fever (DHF) can cause severe
symptoms such as nosebleeds, vomiting blood, and plasma leakage, as well as hypotension,
anuria, and shock, which is known as dengue shock syndrome (Zou et al. [42]).

Until now, the only effective treatment against dengue virus has been fluid replacement
therapy, which can be initiated at an early stage, along with some traditional treatments
(Rodrigues et al. [32]). Aside from the lack of treatment options for dengue virus-infected
persons, there is currently no viable vaccine on the market to vaccinate vulnerable individuals
(Nie and Xue [23]). The WHO proposed several vaccine developments for dengue, even though
there is no such effective immunization against dengue on the market.

Mathematical modeling has been demonstrated to be an effective method for better
understanding specific diseases and formulating treatment approaches (Hasan et al. [11],
Rawson et al. [30], and Sepulveda-Salcedo et al. [33]). The formulation of the model, and
the capability of a simulation with parameter estimates, allow for sensitivity testing and
conjuncture comparisons (Shim [34]). Numerous mathematical models have been utilized and
researched to better understand the mechanics of vector-borne diseases (Ullah et al. [38]).
Abidemi et al. [1] introduced and evaluated a compartmentalized mathematical model for a
dengue disease transmission model that describes Lyapunov stability analysis. The influence of
extreme climates on Dengue Fever infection was investigated, and improved planning of Dengue
Fever management strategies in response to climate change was advised by Wang et al. [40].
Li-Martín et al. [17] studied the dengue dynamics transmission model with a two-stage structure
in humans as an age risk factor. The co-dynamics mathematical model of COVID-19 and malaria
were examined and evaluated its optimal control by Omame et al. [26]. In their study of the
optimal vaccine method for dengue epidemics in Kupang City, Indonesia, Ndii et al. [21] used a
global sensitivity analysis. Claypool et al. [7] conducted research on the cost-effectiveness of
dengue and chikungunya control in Colombia.

Pandey et al. [28] used Bayesian Markov chain Monte Carlo estimate to investigate vector-
host and SIR models. An analysis of the internal dengue epidemic model using fractional
piecewise derivatives was done numerically by Ahmad et al. [3]. Ndii [20] implemented an
effective media campaign dengue dynamic model, which influences the reduction of dengue
illnesses by raising individual awareness. Hasan et al. [10] analyzed a vector-host SEIR-SEI
Dengue epidemiological model that took panic, tension, or anxiety into consideration. Tay et
al. [37] developed an SI-SIR dengue epidemiological characteristics model for dengue control in
Malaysia. An analysis of a dynamic transmission model was carried out by Knerer et al. [15] in
Thailand to determine the economic benefits and costs of combining vector-control and dengue
vaccine techniques.
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The research article is systematized as follows. In Section 2, the formulation of the model
is presented. The qualitative analysis of the model is given in Section 3 and stability of the
equilibrium points is in Section 4. In Section 5, the sensitivity analysis is performed. Section 6
contains the model’s numerical simulation done to validate the theoretical analysis shown in
Sections 3, 4 and 5. Lastly, the conclusion is in Section 7.

2. Formulation of the Dengue Model
The compartmental epidemic models explain how the epidemic spreads and the numerous
preventative actions that may be implemented to stop it (Srivastav et al. [36]). On the basis
of the study, we presented a Dengue vector-host mathematical model. The total human (host)
population categorizes into five groups: susceptible human, Sh (individuals who can contract the
disease), infected human, Ih0 (infected individuals who are not capable to transmit to others),
symptomatically infected human, Ih1 (individuals who are able to transmit to others), isolated
infected human, Ih2 (individuals who tested positive and isolated from others), and recovered
human, Rh (individuals who acquired immunity). Thus, the total host population

Nh = Sh + Ih0 + Ih1 + Ih2 +Rh .

Also, the vector(mosquito) population categorizes into two groups: susceptible vector (Sm), and
infected vector (Im). Therefore, the total vector population

Nm = Sm + Im .

The dynamics Dengue virus may be depicted by the following non-linear system of differential
equations based on the assumptions and flow diagram Figure 1

Figure 1. Dengue virus transmission dynamics in different population stages

Human population (h)
dSh

dt
=Λ1 −β11ShIm −β12ShIh1 −µ1Sh ,
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dIh0

dt
=β11ShIm −µ1Ih0 ,

dIh1

dt
=β12ShIh1 −β13Ih1 −β14Ih1 −µ1Ih1 ,

dIh2

dt
=β13Ih1 −β15Ih2 −µ1Ih2 ,

dRh

dt
=β14Ih1 +β15Ih2 −µ1Rh .

Vector population (m)
dSm

dt
=Λ2 −β16SmIh1 −µ2Sm ,

dIm

dt
=β16SmIh1 −µ2Im . (2.1)

With initial condition

Sh(0)≥ 0, Ih0(0)≥ 0, Ih1(0)≥ 0, Ih2(0)≥ 0, Rh(0)≥ 0, Sm(0)≥ 0 and Im(0)≥ 0.

The biological description of the parameters is itemized in Table 1.

Table 1. Values for baseline parameters with definitions and biological descriptions of Dengue model

Parameter Biological descriptions

Λ1 Recruitment rates of human population

β11 Rate of infectious from vector to host

β12 Rate of infectious with in host

µ1 Natural death rate of human population

β13 Rate of symptomatically infected to isolated infected humans

β14 Recovery rate of symptomatically infected humans

β15 Recovery rate of isolated infected human

Λ2 Recruitment rates of vector population

β16 Infection rate from human to vector

µ2 Natural death rate of vector population

3. Qualitative Analyses of Model
3.1 Positivity and Boundedness of Solutions
An epidemiological model must have solutions that are both non-negative and bounded. As a
result, it is crucial to show that all variables are positive at all times t > 0.

Theorem 3.1. The feasible region defined by

τ=
{

Sh(t), Ih0(t), Ih1(t), Ih2(t), Rh(t), Sm(t), Im(t) ∈R+
7 : Nh(t)≤ Λ1

µ1
, Nm(t)≤ Λ2

µ2

}
is positively invariant for the system (2.1) with the initial condition defined by R+

7 .
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Proof. The system (2.1) can be written as
dY
dt

= KY +Z , (3.1)

Y = (Sh, Ih0, Ih1, Ih2, Rh, Sm, Im)t ,

K =



−k1 0 0 0 0 0 0
k2 −µ1 0 0 0 0 0
k3 0 −k4 0 0 0 0
0 0 k5 −k6 0 0 0
0 0 k7 k8 −µ1 0 0
0 0 0 0 0 −k9 0
0 0 0 0 0 k10 −µ2


,

where

k1 =β11Im +β12Ih1 +µ1, k2 =β12Sh, k3 =β13Ih1, k4 =β13 +β14 +µ1, k5 =β13Ih1,

k6 =β15 +µ1, k7 =β14, k8 =β15, k9 =β16Ih1 +µ2, k10 =β14Ih1

and Z = (Λ1,0,0,0,0,Λ2,0)t.
Here, all the off-diagonal entries of the matrix K(Y ) are non-negative. Hence, the matrix is

the Metzler matrix (Maiga and Hugo [18]). Also, the vector Z has positive in nature. Therefore,
it implies that system (3.1) is positively invariant in R+

7 , which means that any trajectory of
(3.1) starting from an initial state remains in R+

7 forever.

3.2 Disease-Free Equilibrium
The Disease-Free Equilibrium (DFE) of the system (2.1) is produced by setting each system of
model system (2.1) to zero. Furthermore, there are no infections or recovery at the DFE. Thus,
the Dengue model’s DFE (2.1) is provided by

E0 = (S0
h, I0

h0, I0
h1, I0

h2, R0
h, S0

m, I0
m)=

(
Λ1

µ1
,0,0,0,0,

Λ2

µ2
,0

)
.

3.3 Basic Reproduction Number
In the research of mathematical epidemiology, the basic reproduction number is a crucial
threshold (Zheng and Nie [41]). It aids in forecasting the disease transmission potential. To
determine R0 of the system (2.1) with help of the next-generation matrix, the following result

F =
0 0 β11Sh

0 β12Sh 0
0 β16 0

 , V =
µ1 0 0

0 β13 +β14 +µ1 0
0 0 µ2

 .

The Dengue model’s basic reproduction number is the dominating eigenvalue of the next-
generation matrix FV−1 generated by

R0 = β12Λ1

µ1(β13 +β14 +µ1)
.

3.4 Endemic Equilibria
The endemic equilibria point for the Dengue dynamical system (2.1)

E1 = (S∗
h, I∗h0, I∗h1, I∗h2, R∗

h, S∗
m, I∗m),
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where

S∗
h = β13 +β14 +µ1

β12
,

I∗h0 =
β11β16Λ2(β13 +β14 +µ1)I∗h1

µ1µ2(β16 +µ2)
,

I∗h1 =
µ1µ2(β15 +µ1)(β16 +µ2)(R0 −1)

β11β16Λ2(β15 +µ1)+β11β16µ2(β16 +µ2)
,

I∗h2 =
β13I∗h1

β15 +µ1
,

R∗
h = (β13β14 +β14β15 +β14µ1)I∗h1

µ1(β15 +µ1)
,

S∗
m = Λ2

β16I∗h1 +µ2
,

I∗m = Λ2β16I∗h1

µ2(β16 +µ2)
.

The endemic equilibria exist if R0 > 1.

4. Stability Analysis
4.1 Local Stability Around Equilibrium Point
Theorem 4.1. For R0 < 1 the disease-free equilibrium (E0) of the system (2.1) is locally
asymptotically stable and unstable if R0 > 1.

Proof. The Jacobian matrix of the system (2.1) at the disease-free equilibrium point (E0) is

J(E0)=



−µ1 0 −β12S0
h 0 0 0 −β11S0

h
0 −µ1 0 0 0 0 β11S0

h
0 0 β12S0

h − (β13 +β14 +µ1) 0 0 0 0
0 0 β13 −β15 −µ1 0 0 0
0 0 β14 β15 −µ1 0 0
0 0 −β16S0

m 0 0 −µ2 0
0 0 β16S0

m 0 0 0 −µ2


.

The eigenvalues for the matrix J(E0) are −µ1 (multiplicity 3), −µ2 (multiplicity 2), −(β15 +µ1),
and β12S0

h − (β13+β14+µ1). Clearly, first six eigenvalues are negative. Therefore, the DFE E0

is locally asymptotically stable if

β12S0
h − (β13 +β14 +µ1)< 0 ,

β12S0
h < (β13 +β14 +µ1) ,

β12S0
h

(β13 +β14 +µ1)
< 1 ,

β12Λ1

µ1(β13 +β14 +µ1)
< 1 ,

R0 < 1 .
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Hence, the DFE E0 is locally asymptotically stable if R0 < 1, otherwise, it is unstable.

Theorem 4.2. The endemic equilibrium (E1) of the system (2.1) is locally asymptotically stable
if R0 > 1.

Proof. The Jacobian matrix of the system (2.1) at the endemic equilibrium point (E1) is

J(E1)=



−a 0 −β12S∗
h 0 0 0 −β11S∗

h
β11I∗m −µ1 0 0 0 0 β11S∗

h
β12I∗h1 0 −b 0 0 0 0

0 0 β13 −β15 −µ1 0 0 0
0 0 β14 β15 −µ1 0 0
0 0 −c 0 0 −d−µ2 0
0 0 c 0 0 d −µ2


,

where

a =β11I∗m +β12I∗h1 +µ1, b =β13 +β14 +µ1 +β12S∗
h, c =β16S∗

m, d =β16I∗h1 .

Three eigenvalues of the above matrix are −µ1, −µ1, −(β15+µ1), and the following biquadratic
equation will give the rest of the roots

λ4 +ϵ1λ
3 +ϵ2λ

2 +ϵ3λ+ϵ4 = 0 , (4.1)

where

ϵ1 = a+b+d+2µ2,ϵ2 =µ2
2 +2aµ2 +2bµ2 +dµ2 +ab+ad+bd ,

ϵ3 = aµ2
2 +bµ2

2 +2abµ2 +adµ2 +bdµ2 +abd+ cβ2
12I∗h1S∗

h + cβ11β12I∗h1S∗
h ,

ϵ4 = abµ2
2 +abdµ2 + cµ2β11β12I∗h1S∗

h + cµ2β
2
12I∗h1S∗

h .

Here ϵ1 > 0, ϵ1ϵ2 −ϵ3 > 0, ϵ1ϵ2ϵ3 −ϵ2
3 −ϵ4ϵ

2
1 > 0.

For this

ϵ1 = a+b+d+2µ2

=β11I∗m +β12I∗h1 +µ1 +β13 +β14 +µ1 +β12S∗
h +β16I∗h1 +2µ2

=β11I∗m +β12
µ1µ2(β15 +µ1)(β16 +µ2)(R0 −1)

β11β16Λ2
(
β15 +µ1

)+β11β16µ2(β16 +µ2)
+2µ1 +β13

+β14 +β12S∗
h +β16

µ1µ2(β15 +µ1)(β16 +µ2)(R0 −1)
β11β16Λ2

(
β15 +µ1

)+β11β16µ2(β16 +µ2)
+2µ2 > 0, if R0 > 1.

Therefore, Routh-Hurwitz criterion satisfied, and the system (2.1) is locally asymptotically
stable for R0 > 1.

4.2 Global Stability Around Equilibrium Point
In this segment, we will evaluate equilibrium points E0 and E1 stability. The next two theorems
show the results of the stability analysis of these equilibrium sites.

Theorem 4.3. If R0 < 1, the disease-free equilibrium (E0) is globally asymptotically stable on τ

with assumption

β12S0
h +β16S0

m =µ1 , (4.2)

β11S0
h =µ2 . (4.3)
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Proof. We consider the Lyapunov function of the form in

G(t)= (Sh −S0
h lnSh)+ Ih0 + Ih1 + Ih2 +Rh + (Sm −S0

m lnSm)+ Im.

Differentiating with respect to t, we get

G′(t)=
(
1− S0

h

Sh

)
S′

h + I ′h0 + I ′h1 + I ′h2 +R′
h +

(
1− S0

m

Sm

)
S′

m + I ′m

=
(
1− S0

h

Sh

)
(Λ1 −β11ShIm −β12ShIh1 −µ1Sh)+β11ShIm −µ1Ih0

+β12ShIh1 −β13Ih1 −β14Ih1 −µ1Ih1 +β13Ih1 −β15Ih2 −µ1Ih2 +β14Ih1

+β15Ih2 −µ1Rh +
(
1− S0

m

Sm

)
(Λ2 −β16SmIh1 −µ2Sm)+β16SmIh1 −µ2Im .

On solving further get:

G′(t)=
(
1− S0

h

Sh

)
Λ1 −µ1Sh +β11S0

hIm +β12S0
hIh1 −µ1S0

h −µ1Ih0 −µ1Ih1

−µ1Ih2 −µ1Rh +
(
1− S0

m

Sm

)
Λ2 −µ2Sm +β16S0

mIh1 +µ2S0
m−µ2Im .

Using the equilibrium condition µ1S0
h =Λ1 and µ2S0

m =Λ2 into the above equation

G′(t)=
(
2− S0

h

Sh
− Sh

S0
h

)
Λ1 +

(
2− S0

m

Sm
− Sm

S0
m

)
Λ2 +β11S0

hIm +β12S0
hIh1

+β16S0
mIh1 −µ1Ih0 −µ1Ih1 −µ1Ih2 −µ1Rh−µ2Im

=−Λ1
(Sh−S0

h)2

ShS0
h

−Λ2
(Sm−S0

m)2

SmS0
m

−µ1Ih0 −µ1Ih2 −µ1Rh

+ (β12S0
h +β16S0

m −µ1)Ih1 + (β11S0
h −µ2)Im .

The condition (4.2) and (4.3) ensure that G′(t) ≤ 0 and G′(t) = 0 for Sh = S0
h, Ih0 = 0, Ih2 = 0,

Rh = 0, Sm = S0
m. So, the largest invariance set is the singleton set {E0}. Therefore, by using the

principle of LaSalle’s invariance the disease-free equilibrium (E0) is globally asymptotically
stable.

Theorem 4.4. If R0 > 1, the endemic equilibrium (E1) is globally asymptotically stable.

Proof. We consider the Lyapunov function of the form in

W(t)= 1
2

(Sh −S∗
h)2 + 1

2
(Ih0 − I∗h0)2 + 1

2
(Ih1 − I∗h1)2 + 1

2
(Ih2 − I∗h2)2 + 1

2
(Rh −R∗

h)2

+ 1
2

(Sm −S∗
m)2 + 1

2
(Im − I∗m)2 .

Differentiating with respect to time t, we get

W ′(t)= (Sh −S∗
h)S′

h + (Ih0 − I∗h0)I ′h0 + (Ih1 − I∗h1)I ′h1 + (Ih2 − I∗h2)I ′h2 + (Rh −R∗
h)R′

h

+ (Sm −S∗
m)S′

m + (Im − I∗m)I ′m
= (Sh −S∗

h)(Λ1 −β11ShIm −β12ShIh1 −µ1Sh)+ (Ih0 − I∗h0)
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(β11ShIm −µ1Ih0)+ (Ih1 − I∗h1)(β12ShIh1 −β13Ih1 −β14Ih1 −µ1Ih1)

+ (Ih2 − I∗h2)(β13Ih1 −β15Ih2 −µ1Ih2)+ (Rh −R∗
h)(β14Ih1 +β15Ih2 −µ1Rh)

+ (Sm −S∗
m)(Λ2 −β16SmIh1 −µ2Sm)+ (Im − I∗m)(β5Em −µ2Im) .

Using the equilibrium conditions

Λ1 =µ1S∗
h +µ1I∗h0 +µ1I∗h1 +µ1I∗h2 +µ1R∗

h

and

Λ2 =µ2S∗
m +µ2I∗m

into the above equation

W ′(t)= (Sh −S∗
h)(µ1S∗

h +µ1I∗h0 +µ1I∗h1 +µ1I∗h2 +µ1R∗
h −β11ShIm −β12ShIh1 −µ1Sh)

+ (Ih0 − I∗h0)(β11ShIm −µ1Ih0)

+ (Ih1 − I∗h1)(β12ShIh1 −β13Ih1 −β14Ih1 −µ1Ih1)

+ (Ih2 − I∗h2)(β13Ih1 −β15Ih2 −µ1Ih2)+ (Rh −R∗
h)(β14Ih1 +β15Ih2 −µ1Rh)

+ (Sm −S∗
m)(µ2S∗

m +µ2I∗m −β16SmIh1 −µ2Sm)+ (Im − I∗m)(β16SmIh1 −µ2Im)

=−µ1(Sh −S∗
h)2 +µ1I∗h0(Sh −S∗

h)+µ1I∗h1(Sh −S∗
h)−β12ShI∗h1(Sh −S∗

h)

+µ1I∗h2(Sh −S∗
h)+µ1R∗

h(Sh −S∗
h)−β11ShIm(Sh −S∗

h)+β11ShIm(Ih0 − I∗h0)

−µ1Ih0(Ih0 − I∗h0)+β12ShIh1(Ih1 − I∗h1)− (β13 +β14)Ih1(Ih1 − I∗h1)

−µ1Ih1(Ih1 − I∗h1)+β13Ih1(Ih2 − I∗h2)−β15Ih2(Ih2 − I∗h2)−µ1Ih2(Ih2 − I∗h2)

+β14Ih1(Rh −R∗
h)+β15Ih2(Rh −R∗

h)−µ1Rh(Rh −R∗
h)−µ2(Sm −S∗

m)2

+µ2I∗m(Sm −S∗
m)−β16SmIh1(Sm −S∗

m)+β16SmIh1(Im − I∗m)−µ2Sm(Im − I∗m)

=−µ1(Sh −S∗
h)2 −µ1{Ih0(Ih0 − I∗h0)− I∗h0(Sh −S∗

h)}

−β12Sh{I∗h1(Sh −S∗
h)− Ih1(Ih1 − I∗h1)}−µ1{Ih1(Ih1 − I∗h1)− I∗h1(Sh −S∗

h)}

−µ1{Ih2(Ih2 − I∗h2)− I∗h2(Sh −S∗
h)}−β11ShIm(Sh −S∗

h − Ih0 + I∗h0)

−β13Ih1(Ih1 − I∗h1 − Ih2 + I∗h2)−β14Ih1(Ih1 − I∗h1 −Rh +R∗
h)

−β15Ih2(Ih2 − I∗h2 −Rh +R∗
h)−µ1{Rh(Rh −R∗

h)−R∗
h(Sh −S∗

h)}

−µ2(Sm −S∗
m)2 −µ2{(Im − I∗m)Sm − I∗m(Sm −S∗

m)}

−β16SmIh1(Sm −S∗
m − Im + I∗m).

The above equation shows that W ′(t) ≤ 0 and W ′(t) = 0 for Sh = S0
h, Ih0 = 0, Ih1 = 0, Ih2 = 0,

Rh = 0, Sm = S0
m, Im = 0. So, the largest invariance set is the singleton set {E1}. Therefore, by

using the principle of LaSalle’s invariance the endemic equilibrium E1 is globally asymptotically
stable.

5. Sensitivity Analysis
Sensitivity analysis reveals the significance of each parameter on the transmission of disease
(Chien and Yu [6]). A complicated nonlinear model’s data minimization and assimilation
both depend on this knowledge, which is also essential for experimental design. Due to
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frequent mistakes in the collection of data and presumption parameter values, sensitivity
analysis can be frequently used to assess how robust the model predictions of the parameter
values (Lee et al. [16]). It serves to identify parameters with a large influence on R0 that should
be addressed by intervention techniques.

This study will be conducted using the normalized forward sensitivity index of a variable
with regard to a parameter, which is calculated as the ratio of the relative variation in the
variable to the relative variation in the parameter. Partial derivatives can be used to define the
sensitivity index. The normalized forward sensitivity index of the basic reproduction number
R0 regarding the system (2.1) parameter ϕ, which is signified by ΓϕR0

= ∂R0
∂ϕ

. ϕR0
.

Table 2. Sensitivity indices of R0 evaluated at the baseline parameter values of the model

Parameter Sensitivity index

Λ1 +1.0

β12 +1.0

µ1 −1.002715595

β13 −0.434589236

β14 −0.5626951736

The sensitivity indices of R0, Table 2 and Figure 2 indicate that the recruitment rates of
human population and rate of infectious with in host is +1, i.e., if the recruitment rates of
human population and rate of infectious with in the host increase (decrease) 10%, the value
of R0 increases (decreases) 10%. The sensitivity index rate of symptomatically infected to
isolated infected human and recovery rate of symptomatically infected human is negative,
which means that if increase β13 and β14 then R0 decreases 4.3% and 5.6%, respectively.
Therefore, the increases of symptomatically infected to isolated infected human and recovery
rate of symptomatically infected human can reduce the epidemic spreads.

Figure 2. Sensitivity indices of R0
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6. Numerical Simulation
To demonstrate the preceding analysis finding, the model’s numerical simulations are performed
with help of the parameter values shown in Table 3. Simulated times of susceptible, infected,
symptomatically infected, and isolated infected carriers were displayed for the host population,
while simulated times of susceptible and infected individuals were presented for the vector
population.

Table 3. System (2.1) parameters values

Parameter Values Units Reference

Λ1 .9999 day−1 [8]
β11 .8500 day−1 [14]
β12 .6294 day−1 [29]
µ1 .003468 day−1 [19]
β13 .555 day−1 [5]
β14 .7186 day−1 [31]
β15 .0062 day−1 Assumed
Λ2 .00034 day−1 [25]
β16 .009 day−1 [9]
µ2 .000244 day−1 [4]

The dynamical system simulation shown in Figures 3–14 exhibits the various parameter’s
influence on the transmission dynamics model and demonstrates how these parameters are
effective in causing epidemics in various human populations as well as vector populations. The
population dynamics of the susceptible class are shown in Figures 3 and 4, with varied rates
of infection within the host (β12) and rates of symptomatic infection to isolated infected (β13)
individuals. Figures show that the first 20 days have a fluctuation, but afterwards, it becomes
stable.

 

Figure 3. Effect on variation of β12 on Sh

 
  

       

 

Figure 4. Effect on variation of β13 on Sh

Figures 5 and 6, indicate the effect on variation of β12 and β13 on infected individuals. There
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is a slight impact of β13, whereas huge impact on rates of infection within the host (β12) of
infected individuals. Both the figures decrease in the first 50 days, and after that they grow
exponentially.

 

Figure 5. Effect on variation of β12 on Ih0

 

    

 
Figure 6. Effect on variation of β13 on Ih0

The population dynamics of the symptomatic infected individuals are shown in Figures 7
and 8, with variations β12 and β13. Within the first 20 days have a fluctuation, but later it
becomes stable.

 

Figure 7. Effect on variation of β12 on Ih1

 
  

Figure 8. Effect on variation of β13 on Ih1

The effect on variation of β12 and β13 on the isolated infected individuals exhibit in Figures 9
and 10. Both the figures grows exponentially up to 100 days, while there is no effect on variation
of β12 and β13 in between 0 to 25 days.

Infection rates from humans to vectors and rates of symptomatic infection to isolated infected
are shown in Figures 11–12 with the behavior of a susceptible vector population. In between
the first 60 days, the susceptible vector decreases after that it increases. Figure 11 shows when
β13 increases to 10%, the susceptible vectors slightly up to the original, whereas in Figure 12,
increases of β16 to 10% down to the original.
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Figure 9. Effect on variation of β12 on Ih2

 
  

Figure 10. Effect on variation of β13 on Ih2

 

Figure 11. Effect on variation of β13 on Sm

 
  

Figure 12. Effect on variation of β16 on Sm

Figures 13 and 14 show the variation of the infected vector with respect to time t for various
values of β13 and β16. Figure 13 demonstrates that if the rates of symptomatic infection to
isolated infected increases then the infected vector decreases to the originals. On the other hand,
Figure 14 illustrates that the increase of infection rates from humans to vectors increases the
infected vector.

7. Conclusion
Dengue fever is a potentially fatal and dangerous illness that affects individuals all around
the world. Developing appropriate management approaches for this viral disease is now a
challenge for politicians, researchers, and public health experts. This article concentrated on
examining the dynamics of dengue disease. We presented a mathematical model that models
them while also accounting for the influence of the variable human with exponential growth.
We used the Metzler property to investigate the positivity and boundedness of the system, as
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Figure 13. Effect on variation of β13 on Im

 
      

Figure 14. Effect on variation of β16 on Im

well as the basic reproduction number (R0), which controls disease transmission and the growth
rate of the infected human population. The evolution of epidemics, the system’s behaviors, and
theoretical outcomes were all demonstrated using numerical simulation with varied parameter
values. It was demonstrated that the sensitivity of R0 achieved very high sensitivity for the
model’s parameters, such as the rate of symptomatically infected individuals to isolated infected
individuals, as well as the rate of recovery of symptomatically infected humans can reduce the
Dengue epidemic.
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