# Solvability of a Class of Generalized System of Variational Inclusion Problems Involving $\oplus$ Operation 

Mohd. Iqbal Bhat ${ }^{\text {© }}$, Mudasir A. Malik* ${ }^{\star}$, Khalid Fayaz ${ }^{\text {© }}$ and Mahak Majeed<br>Department of Mathematics, University of Kashmir South Campus, Anantnag 192101, Jammu and Kashmir, India<br>*Corresponding author: mudasirmts09@gmail.com

Received: October 25, 2022
Accepted: November 4, 2023


#### Abstract

In this paper, a new type of operator known as $(\alpha, \rho)$-XOR-NODSM operator and its associated resolvent operator is introduced. Further, some important properties of the resolvent operator associated with the ( $\alpha, \rho$ )-XOR-NODSM operator, supported by a well constructed example, have been given. As an application, we have considered a generalized system of variational inclusion problems involving XOR operator in the setting of real ordered positive Hilbert space. Using the resolvent operator technique, we have proved the existence of solution for the system considered. Furthermore, the approximation solvability of the generalized system of variational inclusion problems involving the XOR operator has been studied. The results presented in this paper can be treated as the refinement and generalization of many known results present in the literature in this direction.


Keywords. Variational inclusion, $\oplus$ operation, Resolvent operator, Algorithm, Convergence
Mathematics Subject Classification (2020). 47H05, 47H10, 47J25, 49J40
Copyright © 2023 Mohd. Iqbal Bhat, Mudasir A. Malik, Khalid Fayaz and Mahak Majeed. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1. Introduction

Variational inequalities have been the subject of considerable research owing to its profound contributions in a variety of problems arising in the fields of optimization, economics, transportation, elasticity and applied sciences. The classical variational inequality problem was introduced and studied by Stampacchia [18] in early 1960's. Because of its wide
applications, the classical variational inequality problem has been studied and generalized in different directions. Among these generalizations, variational inclusion is of much interest and importance and has been extensively studied in the recent years (see, e.g., Ding and Feng [4], Ding and Lou [5], Fang and Huang [6], Fang et al. [7], He et al. [8], Malik et al. [14], Shan et al. [17] and the references therein).

One of the most important and challenging aspect in the theory of variational inequality is the development of an efficient and implementable algorithm for solving variational inequalities and its generalizations. Among several methods proposed for solving variational inclusion problems, resolvent operator technique has been widely used. It is well known that monotonicity of the underlying operators plays a crucial role in the solution of variational inequalities and variational inclusions. In the recent past, several researchers have explored and improved resolvent operator technique to discuss the approximation solvability of several classes of variational inclusions (see, for instance Ding and Feng [4], Ding and Lou [5], Fang and Huang [6], Fang et al. [7], Huang and Fang [9], Kazmi et al. [10, 11], Malik et al. [15], and Zeng et al. [19]).

In recent years, the fixed point theory and its applications have been extensively studied in real ordered Banach spaces. Therefore, it is very important and natural to study the generalized nonlinear ordered variational inequalities (inclusions). In 2008, Li [12] introduced the generalized nonlinear ordered variational inequalities and proposed an algorithm to approximate the solution for a class of generalized nonlinear ordered variational inequalities in real ordered Banach spaces. Since then several researchers have used XOR operation and its allied forms to solve some classes of variational inequality and variational inclusion problems in real ordered Hilbert and Banach spaces (see, e.g., Ahmad et al. [1]-3], Li [13], and Sarfaraz et al. [16]).

With inspiration and motivation from recent investigations in this area, we have defined a new type of operator known as ( $\alpha, \rho$ )-XOR-NODSM operator and the associated resolvent operator and discussed some of the important properties of the resolvent operator associated with the ( $\alpha, \rho$ )-XOR-NODSM operator supported by a well constructed example. As an application, we have considered a generalized system of variational inclusion problems involving XOR operator in the setting of real ordered positive Hilbert space. Using the resolvent operator technique, we proved the existence of solution for the system considered. Furthermore, we have discussed the approximation solvability of the generalized system of variational inclusion problems involving the XOR operator. The results proved in this paper unify and generalize many known results present in the literature in this direction.

## 2. Preliminaries

Let $C$ be a cone with partial ordering " $\leq$ ". An ordered Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$ is called positive if $0 \leq x$ and $0 \leq y$, then $0 \leq\langle x, y\rangle$ holds. Throughout the paper, $\mathcal{H}_{p}$ is assumed to be a real ordered positive Hilbert space. We denote by $2^{\mathcal{H}_{p}}$ (respectively, $C^{\star}\left(\mathcal{H}_{p}\right)$ ), the family of nonempty (respectively, compact) subsets of $\mathcal{H}_{p}, d$ is the metric induced by the norm and $\mathcal{D}(\cdot, \cdot)$ is the Hausdorff metric on $C^{\star}\left(\mathcal{H}_{p}\right)$.

We recall some known concepts and results which are needed to prove the main results of this paper.

Definition 2.1 ([2]). A nonempty closed convex subset $C$ of $\mathcal{H}_{p}$ is said to be a cone if:
(i) for any $x \in C$ and any $\lambda>0, \lambda x \in C$;
(ii) for $x \in C$ and $-x \in C$, then $x=0$.

Definition 2.2 ([2]). Let $C$ be the cone, then:
(i) $C$ is called a normal cone if there exists a constant $\lambda_{N}>0$ such that $0 \leq x \leq y$ implies $\|x\| \leq \lambda_{N}\|y\|$, for all $x, y \in \mathcal{H}_{p} ;$
(ii) for any $x, y \in \mathcal{H}_{p}, x \leq y$ if and only if $y-x \in C$;
(iii) $x$ and $y$ are said to be comparative to each other if either $x \leq y$ or $y \leq x$ holds and is denoted by $x \propto y$.

Definition 2.3 ([2]]). For any $x, y \in \mathcal{H}_{p}, l u b\{x, y\}$ denotes the least upper bound and $g l b\{x, y\}$ denotes the greatest lower bound of the set $\{x, y\}$. Suppose $l u b\{x, y\}$ and $g l b\{x, y\}$ exist, then some binary operations are given below:
(i) $x \vee y=l u b\{x, y\}$;
(ii) $x \wedge y=g l b\{x, y\}$;
(iii) $x \oplus y=(x-y) \vee(y-x)$;
(iv) $x \odot y=(x-y) \wedge(y-x)$.

The operations $\vee, \wedge, \oplus$ and $\odot$ are called OR, AND, XOR and XNOR operations, respectively.
Lemma 2.4 ([2]). If $x \propto y$, then $\operatorname{lub}\{x, y\}$ and $\operatorname{glb}\{x, y\}$ exist such that $(x-y) \propto(y-x)$ and $0 \leq(x-y) \vee(y-x)$.

Lemma 2.5 ([13]). For any natural number $n, x \propto y_{n}$ and $y_{n} \rightarrow y^{\star}$ as $n \rightarrow \infty$, then $x \propto y^{\star}$.
Proposition 2.6 ([|3]). Let $\oplus$ and $\odot$ be an XOR and XNOR operations, respectively. Then, the following relations hold for all $x, y, u, v, w \in \mathcal{H}_{p}$ and $\alpha, \beta, \lambda \in \mathbb{R}$ :
(i) $x \odot x=0, x \odot y=y \odot x=-(x \oplus y)=-(y \oplus x)$;
(ii) $x \propto 0$, then $-x \oplus 0 \leq x \leq x \oplus 0$;
(iii) $(\lambda x) \oplus(\lambda y)=|\lambda|(x \oplus y)$;
(iv) $0 \leq x \oplus y$, if $x \propto y$;
(v) if $x \propto y$, then $x \oplus y=0$ if and only if $x=y$;
(vi) $(x+y) \odot(u+v) \geq(x \odot u)+(y \odot v)$;
(vii) $(x+y) \odot(u+v) \geq(x \odot v)+(y \odot u)$;
(viii) if $x, y$ and $w$ are comparative to each other, then $(x \oplus y) \leq(x \oplus w)+(w \oplus y)$;
(ix) $\alpha x \oplus \beta x=|\alpha-\beta| x=(\alpha \oplus \beta) x$, if $x \propto 0$.

Proposition 2.7 ([2]). Let $C$ be a normal cone in $\mathcal{H}_{p}$ with constant $\lambda_{N}$, then for each $x, y \in \mathcal{H}_{p}$, the following relations hold:
(i) $\|0 \oplus 0\|=\|0\|=0$;
(ii) $\|x \vee y\| \leq\|x\| \vee\|y\| \leq\|x\|+\|y\|$;
(iii) $\|x \oplus y\| \leq\|x-y\| \leq \lambda_{N}\|x \oplus y\|$;
(iv) if $x \propto y$, then $\|x \oplus y\|=\|x-y\|$.

Definition 2.8 ([2]|). Let $F: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be a single-valued mapping, then
(i) $F$ is said to be comparison mapping, if for each $x, y \in \mathcal{H}_{p}, x \propto y$ then $F(x) \propto F(y), x \propto F(x)$ and $y \propto F(y)$;
(ii) $F$ is said to be strongly comparison mapping, if $F$ is a comparison mapping and $F(x) \propto F(y)$ if and only if $x \propto y$, for all $x, y \in \mathcal{H}_{p}$.

Definition 2.9 ([2]). A single-valued mapping $F: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ is said to be $\beta$-ordered compression mapping if $F$ is a comparison mapping and $F(x) \oplus F(y) \leq \beta(x \oplus y), \quad$ for $0<\beta<1$.

Definition 2.10 ([2]). Let $M: \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ be a set-valued mapping. Then:
(i) $M$ is said to be a comparison mapping if for any $v_{x} \in M(x), x \propto v_{x}$, and if $x \propto y$, then for $v_{x} \in M(x)$ and $v_{y} \in M(y), v_{x} \propto v_{y}$, for all $x, y \in \mathcal{H}_{p} ;$
(ii) A comparison mapping $M$ is said to be $\alpha$-non-ordinary difference mapping if there exists a constant $\theta>0$ such that:

$$
\left(v_{x} \oplus v_{y}\right) \oplus \alpha(x \oplus y)=0 \text { holds, for all } x, y \in \mathcal{H}_{p}, v_{x} \in M(x) \text { and } v_{y} \in M(y) \text {; }
$$

(iii) A comparison mapping $M$ is said to be $\theta$-ordered rectangular if there exists a constant $\theta>0$ such that:

$$
\left\langle v_{x} \odot v_{y},-(x \oplus y)\right\rangle \geq \theta\|x \oplus y\|^{2} \text { holds, for all } x, y \in \mathcal{H}_{p}, v_{x} \in M(x) \text { and } v_{y} \in M(y) .
$$

Definition 2.11 ([|]|]). Let $A, B: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ and $H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be single-valued mappings. Then $\forall x, y \in \mathcal{H}_{p}$, then $H$ is said to be:
(i) $t_{1}$-ordered compression mapping in the first argument, if

$$
H(x, \cdot) \oplus H(y, \cdot) \leq t_{1}(x \oplus y), \quad 0<t_{1}<1
$$

(ii) $t_{2}$-ordered compression mapping in the second argument, if

$$
H(\cdot, x) \oplus H(\cdot, y) \leq t_{2}(x \oplus y), \quad 0<t_{2}<1 ;
$$

(iii) $k_{1}$-ordered compression mapping with respect to $A$, if

$$
H(A(x), \cdot) \oplus H(A(y), \cdot) \leq k_{1}(x \oplus y), \quad 0<k_{1}<1 ;
$$

(iv) $k_{2}$-ordered compression mapping with respect to $B$, if

$$
H(\cdot, B(x)) \oplus H(\cdot, B(y)) \leq k_{2}(x \oplus y), \quad 0<k_{2}<1 .
$$

Definition 2.12 ([|]|). Let $A, B: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ and $H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be single-valued mappings. Then
(i) $H$ is said to be mixed comparison mapping with respect to $A$ and $B$, if for each $x, y \in \mathcal{H}_{p}$, $x \propto y$, then $H(A(x), B(x)) \propto H(A(y), B(y)), x \propto H(A(x), B(x))$ and $y \propto H(A(y), B(y)) ;$
(ii) $H$ is said to be mixed comparison mapping with respect to $A$ and $B$, if for each $x, y \in \mathcal{H}_{p}$, $x \propto y$, then $H(A(x), B(x)) \propto H(A(y), B(y))$, if and only if $x \propto y$.

Definition 2.13 ([1]). A set-valued mapping $M: \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ is said to be $\rho$-XOR-ordered strongly monotone compression mapping if $x \propto y$, then there exists a constant $\rho>0$ such that:

$$
\rho\left(v_{x} \oplus v_{y}\right) \geq x \oplus y, \quad \forall x, y \in \mathcal{H}_{p}, v_{x} \in M(x), v_{y} \in M(y) .
$$

Definition 2.14 ([1]). A set-valued mapping $T: \mathcal{H}_{p} \rightarrow C^{\star}\left(\mathcal{H}_{p}\right)$ is said to be $\mathcal{D}$-Lipschitz continuous if for all $x, y \in \mathcal{H}_{p}, x \propto y$, there exists a constant $\lambda_{T}>0$ such that:

$$
\mathcal{D}(T(x), T(y)) \leq \lambda_{T}\|x \oplus y\| .
$$

Definition 2.15 ([]]). A single-valued mapping $F: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ is said to be Lipschitz-type continuous if there exists a constant $\lambda_{F}>0$ such that:

$$
\|F(x) \oplus F(y)\| \leq \lambda_{F}\|x \oplus y\|, \quad \forall x, y \in \mathcal{H}_{p}
$$

Definition 2.16. Let $A, B: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$, and $H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be single-valued mappings such that $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$. Then, a set-valued comparison mapping $M: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ is said to be ( $\alpha, \rho$ )-XOR-NODSM if $M$ is an $\alpha$-non-ordinay difference mapping and $\rho$-XOR-ordered strongly monotone compression mapping and $[H(A, B) \oplus \rho M(\cdot, \zeta)]\left(\mathcal{H}_{p}\right)=\mathcal{H}_{p}$, for some fixed $\zeta \in \mathcal{H}_{p}$ and $\rho>0$.

Definition 2.17. Let $A, B: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$, and $H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be single-valued mappings such that $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$ and $M: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ be ( $\alpha, \rho$ )-XOR-NODSM mapping. Then the generalized resolvent operator $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ is defined for fixed $\zeta \in \mathcal{H}_{p}$ as:

$$
\begin{equation*}
\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(\omega)=[H(A, B) \oplus \rho M(\cdot, \zeta)]^{-1}(\omega), \quad \forall \omega \in \mathcal{H}_{p} . \tag{2.1}
\end{equation*}
$$

Now, we discuss some properties of the generalized resolvent operator.
Proposition 2.18. Let $A, B: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}, H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be single-valued mappings such that $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$. Let $M: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ is the set-valued $\theta$-ordered rectangular mapping with $\rho \theta>\left|k_{1}-k_{2}\right|$. Then, the generalized resolvent operator $\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ is single-valued.

Proof. For any given $u \in \mathcal{H}_{p}$ and $\rho>0$, let $x, y \in[H(A, B) \oplus \rho M(\cdot, \zeta)]^{-1}(u)$. Then,

$$
v_{x}=\frac{1}{\rho}[u \oplus H(A(x), B(x))] \in M(x, \zeta) \quad \text { and } \quad v_{y}=\frac{1}{\rho}[u \oplus H(A(y), B(y))] \in M(y, \zeta) .
$$

In view of (i) and (ii) of Proposition 2.6, we have

$$
\begin{align*}
v_{x} \odot v_{y} & =\frac{1}{\rho}[u \oplus H(A(x), B(x))] \odot \frac{1}{\rho}[u \oplus H(A(y), B(y))] \\
& =\frac{1}{\rho}\{[u \oplus H(A(x), B(x))] \odot[u \oplus H(A(y), B(y))]\} \\
& =-\frac{1}{\rho}\{[u \oplus H(A(x), B(x))] \oplus[u \oplus H(A(y), B(y))]\} \\
& =-\frac{1}{\rho}\{(u \oplus u) \oplus[H(A(x), B(x)) \oplus H(A(y), B(y))]\} \\
& =-\frac{1}{\rho}\{0 \oplus[H(A(x), B(x)) \oplus H(A(y), B(y))]\} \\
& \leq-\frac{1}{\rho}[H(A(x), B(x)) \oplus H(A(y), B(y))] \\
& \leq-\frac{1}{\rho}\{[H(A(x), B(x)) \oplus H(A(x), B(y))] \oplus[H(A(x), B(y)) \oplus H(A(y), B(y))]\} . \tag{2.2}
\end{align*}
$$

Using the fact that $M$ is $\theta$-ordered rectangular mapping, $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$ and using (2.2), we have

$$
\begin{aligned}
\theta\|x \oplus y\|^{2} & \leq\left\langle v_{x} \odot v_{y},-(x \oplus y)\right\rangle \\
& \leq\left\langle-\frac{1}{\rho}\{[H(A(x), B(x)) \oplus H(A(x), B(y))] \oplus[H(A(x), B(y)) \oplus H(A(y), B(y))]\},-(x \oplus y)\right\rangle \\
& \leq \frac{1}{\rho}\{\langle H(A(x), B(x)) \oplus H(A(x), B(y)), x \oplus y\rangle \oplus\langle H(A(x), B(y)) \oplus H(A(y), B(y)), x \oplus y\rangle\} \\
& \leq \frac{1}{\rho}\left\langle k_{1}(x \oplus y), x \oplus y\right\rangle \oplus\left\langle k_{2}(x \oplus y), x \oplus y\right\rangle \\
& \leq \frac{\left|k_{1}-k_{2}\right|}{\rho}\|x \oplus y\|^{2} .
\end{aligned}
$$

i.e.,

$$
\left(\theta-\frac{\left|k_{1}-k_{2}\right|}{\rho}\right)\|x \oplus y\|^{2} \leq 0, \quad \text { for } \theta>\frac{\left|k_{1}-k_{2}\right|}{\rho}
$$

which shows that $\|x \oplus y\|=0$, which implies $x \oplus y=0$.
Therefore, $x=y$, that is the resolvent operator $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$ is single-valued for $\rho \theta>\left|k_{1}-k_{2}\right|$.
Proposition 2.19. Let $M: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ be an ( $\alpha, \rho$ )-XOR-NODSM set-valued mapping with respect to $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$ such that $H(\cdot, \cdot)$ is mixed strongly comparison mapping with respect to $A$ and B. Then, the generalized resolvent operator $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$ is a comparison mapping.

Proof. Since $M$ is ( $\alpha, \rho$ )-XOR-NODSM set-valued mapping with respect to $\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}$, thus $M$ is $\alpha$-non-ordinary difference as well as $\rho$-XOR-ordered strongly monotone compression mapping with respect to $\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}$.

For any $x, y \in \mathcal{H}_{p}$, let $x \propto y$,

$$
\begin{equation*}
v_{x}^{*}=\frac{1}{\rho}\left[x \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right] \in M\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x), \zeta\right) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{y}^{*}=\frac{1}{\rho}\left[y \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right] \in M\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y), \zeta\right) . \tag{2.4}
\end{equation*}
$$

Since $M$ is $\rho$-XOR-ordered strongly monotone compression mapping with respect to $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$, therefore using (2.3) and ( 2.4 , we have

$$
\begin{aligned}
(x \oplus y) & \leq \rho\left(v_{x}^{*} \oplus v_{y}^{*}\right) \\
& \leq \frac{\rho}{\rho}\left\{\left[x \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(x)\right)\right)\right] \oplus\left[y \oplus H\left(A\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right]\right\} \\
& \leq(x \oplus y) \oplus\left[H\left(A\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(y)\right)\right)\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
0 \leq & H\left(A\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta}^{H(A, B)}(y)\right)\right) \\
0 \leq & {\left[H\left(A\left(\mathcal{R}_{\rho, M, B(, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(x)\right)\right)-H\left(A\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M,(\cdot \zeta)}^{H(A, B)}(y)\right)\right)\right] } \\
& \vee\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)-H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(x)\right)\right)\right] .
\end{aligned}
$$

It follows that either

$$
0 \leq\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)-H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right]
$$

or

$$
0 \leq\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)-H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right]
$$

Thus, in both cases, we have

$$
H(A, B)\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right) \propto H(A, B)\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right) .
$$

Since $H(\cdot, \cdot)$ is mixed strongly comparison mapping with respect to $A, B$ and $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$, thus we have, $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \propto \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)$, i.e., the resolvent operator $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$ is a comparison mapping.
Proposition 2.20. Let the mappings $A, B, H, M$ be same as defined in Proposition 2.18, then the generalized resolvent operator $\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}$ is $\frac{1}{\rho \theta-\left(k_{1}+k_{2}\right)}$-Lipschitz-type continuous for $\rho \theta>\left(k_{1}+k_{2}\right)$, i.e.,

$$
\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\| \leq \frac{1}{\rho \theta-\left(k_{1}+k_{2}\right)}\|x \oplus y\|, \forall x, y \in \mathcal{H}_{p} .
$$

Proof. Let $x, y \in \mathcal{H}_{p}, x \propto y$, and

$$
v_{x}^{*}=\frac{1}{\rho}\left[x \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right] \in M\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x), \zeta\right)
$$

and

$$
v_{y}^{*}=\frac{1}{\rho}\left[y \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right] \in M\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y), \zeta\right) .
$$

Now,

$$
\begin{align*}
v_{x}^{*} \oplus v_{y}^{*} & =\frac{1}{\rho}\left\{\left[x \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right] \oplus\left[y \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right]\right\} \\
& =\frac{1}{\rho}\left\{(x \oplus y) \oplus\left[H\left(A\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right]\right\} . \tag{2.5}
\end{align*}
$$

Since $M(\cdot, \zeta)$ is $\theta$-ordered rectangular mapping and using (2.5), for any
$\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \in M\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x), \zeta\right)$ and $\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y) \in M\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y), \zeta\right)$, we have

$$
\begin{align*}
& \theta\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\|^{2} \\
& \leq\left\langle v_{x}^{*} \odot v_{x}^{*},-\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right\rangle \\
& \leq\left\langle v_{x}^{*} \oplus v_{x}^{*}, \mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\rangle \\
& =\frac{1}{\rho}\left\langle( x \oplus y ) \oplus \left[ H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right.\right. \\
& \left.\left.\oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y)\right)\right)\right], \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\rangle \\
& \leq \frac{1}{\rho}\left\{\|(x \oplus y) \oplus\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(x)\right)\right)\right.\right. \\
& \left.\oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right]\left\|\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\|\right\} \\
& \leq \frac{1}{\rho}\left\{\|(x \oplus y)-\left[H\left(A\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(x)\right)\right)\right.\right. \\
& \left.\oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right]\left\|\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\|\right\} \\
& \leq \frac{1}{\rho}\left\{\left[\|x \oplus y\|+\| H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right.\right. \\
& \left.\left.\oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right) \|\right]\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\|\right\} \\
& \leq \frac{1}{\rho}\left\{\|x \oplus y\|\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y)\right\|+\| H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right. \\
& \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\left\|\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y)\right\|\right\} . \tag{2.6}
\end{align*}
$$

Since $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$, we have

$$
\begin{aligned}
& \left\|H\left(A\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right\| \\
& =\|\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(,, \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right] \\
& \oplus\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(, \zeta)}^{H(A, B)}(y)\right)\right)\right] \| \\
& \leq \|\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right)\right)\right] \\
& -\left[H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right] \| \\
& \leq\left\|H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x)\right)\right)\right\|
\end{aligned}
$$

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 19852001,2023

$$
\begin{aligned}
& +\left\|H\left(A\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(x)\right)\right) \oplus H\left(A\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right), B\left(\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right)\right)\right\| \\
\leq & \left(k_{1}+k_{2}\right)\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\| .
\end{aligned}
$$

Thus from (2.6), we obtain

$$
\begin{aligned}
& \theta\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot \zeta)}^{H(A, B)}(y)\right\|^{2} \\
& \quad \leq \frac{1}{\rho}\|x \oplus y\|\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\|+\frac{k_{1}+k_{2}}{\rho}\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\|^{2} .
\end{aligned}
$$

This implies,

$$
\left\|\mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M(\cdot, \zeta)}^{H(A, B)}(y)\right\| \leq \frac{1}{\rho \theta-\left(k_{1}+k_{2}\right)}\|x \oplus y\|, \quad \forall x, y \in \mathcal{H}_{p},
$$

for $\rho \theta>\left(k_{1}+k_{2}\right)$.
This completes the proof.
Example 2.1. Let $\mathcal{H}_{p}=[0, \infty) \times[0, \infty)$ with the usual inner product and norm, and let $C=[0,1] \times[0,1]$ be a normal cone. Let $A, B: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ and $H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be defined by

$$
A(x)=\left(\frac{x_{1}}{9}+3, \frac{x_{2}}{9}+6\right), \quad B(x)=\left(\frac{x_{1}}{3}+1, \frac{x_{2}}{3}+2\right)
$$

and

$$
H(A(x), B(x))=\frac{A(x)}{3} \oplus B(x), \quad \forall x=\left(x_{1}, x_{2}\right) \in \mathcal{H}_{p} .
$$

For $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathcal{H}_{p}, x \propto y$, we have

$$
\begin{aligned}
H(A(x), u) \oplus H(A(y), u)= & \left(\frac{A(x)}{3} \oplus u\right) \oplus\left(\frac{A(y)}{3} \oplus u\right) \\
= & \frac{1}{3}(A(x) \oplus A(y)) \\
= & \frac{1}{3}[(A(x)-A(y)) \vee(A(y)-A(x))] \\
= & \frac{1}{3}\left[\left\{\left(\frac{x_{1}}{9}+3, \frac{x_{2}}{9}+6\right)-\left(\frac{y_{1}}{9}+3, \frac{y_{2}}{9}+6\right)\right\}\right. \\
& \left.\vee\left\{\left(\frac{y_{1}}{9}+3, \frac{y_{2}}{9}+6\right)-\left(\frac{x_{1}}{9}+3, \frac{x_{2}}{9}+6\right)\right\}\right] \\
= & \frac{1}{3}\left[\left(\frac{x_{1}-y_{1}}{9}, \frac{x_{2}-y_{2}}{9}\right) \vee\left(\frac{y_{1}-x_{1}}{9}, \frac{y_{2}-x_{2}}{9}\right)\right] \\
= & \frac{1}{27}[(x-y) \vee(y-x)] \\
= & \frac{1}{27}(x \oplus y) \\
\leq & \frac{1}{24}(x \oplus y) .
\end{aligned}
$$

Hence, $H$ is $\frac{1}{24}$-ordered compression mapping with respect to $A$. Similarly, we can show that $H$ is $\frac{1}{2}$-ordered compression mapping with respect to $B$.

Suppose that the set-valued mapping $M: \mathcal{H}_{p} \rightarrow 2^{\mathscr{H}_{p}}$ be defined by

$$
M(x)=\left\{\left(3 x_{1}, 3 x_{2}\right)\right\}, \quad \forall x=\left(x_{1}, x_{2}\right) \in \mathcal{H}_{p} .
$$

It can be easily verified that $M$ is a comparison mapping, 1-XOR-ordered strongly monotone compression mapping and 3 -non-ordinary difference mapping. Further, it is clear that for $\rho=1$, $[H(A, B)+\rho M]\left(\mathcal{H}_{p}\right)=\mathcal{H}_{p}$. Hence, $M$ is an (3,1)-XOR-NODSM strongly monotone compression mapping.

Let $v_{x}=\left(3 x_{1}, 3 x_{2}\right) \in M(x)$ and $v_{y}=\left(3 y_{1}, 3 y_{2}\right) \in M(y)$, then

$$
\begin{aligned}
\left\langle v_{x} \odot v_{y},-(x \oplus y)\right\rangle & =\left\langle v_{x} \oplus v_{y}, x \oplus y\right\rangle \\
& =\langle 3 x \oplus 3 y, x \oplus y\rangle \\
& =3\langle x \oplus y, x \oplus y\rangle \\
& =3\|x \oplus y\|^{2} \\
& \geq 2\|x \oplus y\|^{2},
\end{aligned}
$$

i.e.,

$$
\left\langle v_{x} \odot v_{y},-(x \oplus y)\right\rangle \geq 2\|x \oplus y\|^{2}, \quad \forall x, y \in \mathcal{H}_{p} .
$$

Thus, $M$ is 2 -ordered rectangular comparison mapping.
The resolvent operator defined by (2.1) is given by

$$
\mathcal{R}_{\rho, M}^{H(A, B)}(x)=\left(\frac{27 x_{1}}{73}, \frac{27 x_{2}}{73}\right), \quad \forall x=\left(x_{1}, x_{2}\right) \in \mathcal{H}_{p} .
$$

It is easy to verify that the resolvent operator defined above is comparison and single-valued mapping.

Further,

$$
\begin{aligned}
\left\|\mathcal{R}_{\rho, M}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M}^{H(A, B)}(y)\right\| & =\left\|\frac{27 x}{73} \oplus \frac{27 y}{73}\right\| \\
& =\frac{27}{73}\|x \oplus y\| \\
& \leq \frac{24}{35}\|x \oplus y\| .
\end{aligned}
$$

i.e.,

$$
\left\|\mathcal{R}_{\rho, M}^{H(A, B)}(x) \oplus \mathcal{R}_{\rho, M}^{H(A, B)}(y)\right\| \leq \frac{24}{35}\|x \oplus y\|, \quad \forall x, y \in \mathcal{H}_{p} .
$$

This shows that the resolvent operator is $\mathcal{R}_{\rho, M}^{H(A, B)}$ is $\frac{24}{35}$-Lipschitz-type-continuous.

## 3. Generalized System of Set-Valued Variational Inclusion Problems and Associated Fixed Point Formulation

Let $A, B, g_{i}, p_{i}, G_{i}: \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}, N_{i}, H: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}, F_{i}: \mathcal{H}_{p} \times \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$, for $i=1,2$ be single-valued mappings and $S, T: \mathcal{H}_{p} \rightarrow C^{*}\left(\mathcal{H}_{p}\right), M_{i}: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow 2^{\mathscr{H}_{p}}$ be set-valued mappings. Then, for any fixed $\zeta \in \mathcal{H}_{p}$, we consider the following generalized system of set-valued variational inclusion problems (in short, GSSVIP):

Find $u, v \in \mathcal{H}_{p}, x \in S(u), y \in T(u)$ such that

$$
\left.\begin{array}{l}
0 \in N_{1}\left(\left(g_{1}-p_{1}\right)(x), G_{1}(y)\right) \oplus F_{1}(u, x, y) \oplus M_{1}(u, \zeta),  \tag{3.1}\\
0 \in N_{2}\left(\left(g_{2}-p_{2}\right)(y), G_{2}(x)\right) \oplus F_{2}(v, x, y) \oplus M_{2}(v, \zeta) .
\end{array}\right\}
$$

Here, we remark that the problem considered in [1] can be deduced from GSSVIP (3.1) by taking $N_{1} \equiv N_{2} \equiv N,\left(g_{1}-p_{1}\right) \equiv\left(g_{2}-p_{2}\right) \equiv I, G_{1} \equiv G_{2} \equiv I, F_{1} \equiv F_{2} \equiv 0$ and $M_{1}(u, \zeta)=M_{2}(v, \zeta)=$ $M(u)$ and the problem considered in [3] can be obtained by taking $N_{1} \equiv N_{2} \equiv 0, F_{1} \equiv F_{2} \equiv F$ and $M_{1}(u, \zeta)=M_{2}(v, \zeta)=M(u)$. Furthermore, under appropriate selections of different mappings and the underlying space $\mathcal{H}_{p}$ in GSSVIP (3.1), one can get many new and known classes of variational inequalities and variational inclusions (see, e.g., Ahmad et al. [1-3], Li [13] and the related references cited therein).

Lemma 3.1. Let $u, v \in \mathcal{H}_{p}, x \in S(u)$ and $y \in T(u)$, then $(u, v, x, y)$ is a solution of GSSVIP (3.1) involving $\oplus$ operation if and only if it satisfies:

$$
\begin{equation*}
u=\mathcal{R}_{\rho_{1}, M_{1}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)(x), G_{1}(y)\right) \oplus F_{1}(u, x, y)\right] \oplus H(A, B)(u)\right\} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\mathcal{R}_{\rho_{2}, M_{2}(\cdot,)}^{H(A, B)}\left\{\rho_{2}\left[N_{2}\left(\left(g_{2}-p_{2}\right)(y), G_{2}(x)\right) \oplus F_{2}(v, x, y)\right] \oplus H(A, B)(v)\right\}, \tag{3.3}
\end{equation*}
$$

where $\mathcal{R}_{\rho_{i}, M_{i}(\cdot, \zeta)}^{H(A, B)}=\left[H(A, B) \oplus \rho_{i} M_{i}(\cdot, \zeta)\right]^{-1}$, for $i=1,2$ and $\rho_{i}>0$.
Proof. Using the definition of the generalized resolvent operator, we have by (3.2)

$$
\begin{array}{ll} 
& u=\mathcal{R}_{\rho_{1}, M_{1}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)(x), G_{1}(y)\right) \oplus F_{1}(u, x, y)\right] \oplus H(A, B)(u)\right\} \\
\Longleftrightarrow & u=\left[H(A, B) \oplus \rho_{1} M_{1}(\cdot, \zeta)\right]^{-1}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)(x), G_{1}(y)\right) \oplus F_{1}(u, x, y)\right] \oplus H(A, B)(u)\right\} \\
\Longleftrightarrow & H(A, B)(u) \oplus \rho_{1} M_{1}(u, \zeta) \ni \rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)(x), G_{1}(y)\right) \oplus F_{1}(u, x, y)\right] \oplus H(A, B)(u) \\
\Longleftrightarrow & 0 \in N_{1}\left(\left(g_{1}-p_{1}\right)(x), G_{1}(y)\right) \oplus F_{1}(u, x, y) \oplus M_{1}(u, \zeta) .
\end{array}
$$

Similarly, using (3.3), we can prove that

$$
0 \in\left\{N_{2}\left(\left(g_{2}-p_{2}\right)(y), G_{2}(x)\right) \oplus F_{2}(v, x, y)\right\} \oplus M_{2}(v, \zeta) .
$$

## 4. Iterative Algorithm, Existence Result and Convergence Analysis

Lemma 3.1 along with Nadler's Theorem allows us to suggest the following iterative algorithm for finding the approximate solution of GSSVIP (3.1).

Iterative Algorithm 4.1. For any arbitrary $u_{0}, v_{0} \in \mathcal{H}_{p}$, choose $x_{0} \in S\left(u_{0}\right), y_{0} \in T\left(u_{0}\right)$, let

$$
u_{1}=(1-\alpha) u_{0}+\alpha \mathcal{R}_{\rho_{1}, M_{1}(, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{0}\right), G_{1}\left(y_{0}\right)\right) \oplus F_{1}\left(u_{0}, x_{0}, y_{0}\right)\right] \oplus H(A, B)\left(u_{0}\right)\right\}
$$

and

$$
v_{1}=(1-\alpha) v_{0}+\alpha \mathcal{R}_{\rho_{2}, M_{2}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{2}\left[N_{1}\left(\left(g_{2}-p_{2}\right)\left(y_{0}\right), G_{2}\left(x_{0}\right)\right) \oplus F_{2}\left(v_{0}, x_{0}, y_{0}\right)\right] \oplus H(A, B)\left(v_{0}\right)\right\} .
$$

Since $x_{0} \in S\left(u_{0}\right), y_{0} \in T\left(u_{0}\right)$, by Nadler's Theorem, there exists $x_{1} \in S\left(u_{1}\right), y_{1} \in T\left(u_{1}\right)$ and using Proposition 2.7, we have

$$
\left\|x_{0} \oplus x_{1}\right\| \leq\left\|x_{0}-x_{1}\right\| \leq(1+1) \mathcal{D}\left(S\left(u_{0}\right), S\left(u_{1}\right)\right)
$$

and

$$
\left\|y_{0} \oplus y_{1}\right\| \leq\left\|y_{0}-y_{1}\right\| \leq(1+1) \mathcal{D}\left(T\left(u_{0}\right), T\left(u_{1}\right)\right),
$$

where $\mathcal{D}(\cdot, \cdot)$ is the Hausdorff metric on $C^{\star}\left(\mathcal{H}_{P}\right)$. Let

$$
u_{2}=(1-\alpha) u_{1}+\alpha \mathcal{R}_{\rho_{1}, M_{1}(, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{1}\right), G_{1}\left(y_{1}\right)\right) \oplus F_{1}\left(u_{1}, x_{1}, y_{1}\right)\right] \oplus H(A, B)\left(u_{1}\right)\right\}
$$

and

$$
v_{2}=(1-\alpha) v_{1}+\alpha \mathcal{R}_{\rho_{2}, M_{2}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{2}\left[N_{2}\left(\left(g_{2}-p_{2}\right)\left(y_{1}\right), G_{2}\left(x_{1}\right)\right) \oplus F_{2}\left(v_{1}, x_{1}, y_{1}\right)\right] \oplus H(A, B)\left(v_{1}\right)\right\} .
$$

Again by Nadler's Theorem, there exists $x_{2} \in S\left(u_{2}\right), y_{2} \in T\left(u_{2}\right)$ such that

$$
\left\|x_{1} \oplus x_{2}\right\| \leq\left\|x_{1}-x_{2}\right\| \leq\left(1+2^{-1}\right) \mathcal{D}\left(S\left(u_{1}\right), S\left(u_{2}\right)\right)
$$

and

$$
\left\|y_{1} \oplus y_{2}\right\| \leq\left\|y_{1}-y_{2}\right\| \leq\left(1+2^{-1}\right) \mathcal{D}\left(T\left(u_{1}\right), T\left(u_{2}\right)\right) .
$$

Continuing the process inductively, we have the following scheme:

$$
u_{n+1}=(1-\alpha) u_{n}+\alpha \mathcal{R}_{\rho_{1}, M_{1}(, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right)\right) \oplus F_{1}\left(u_{n}, x_{n}, y_{n}\right)\right] \oplus H(A, B)\left(u_{n}\right)\right\}
$$

and

$$
v_{n+1}=(1-\alpha) v_{n}+\alpha \mathcal{R}_{\rho_{2}, M_{2}(, \zeta)}^{H(A, B)}\left\{\rho_{2}\left[N_{1}\left(\left(g_{2}-p_{2}\right)\left(y_{n}\right), G_{2}\left(x_{n}\right)\right) \oplus F_{2}\left(v_{n}, x_{n}, y_{n}\right)\right] \oplus H(A, B)\left(v_{n}\right)\right\} .
$$

Since $x_{n+1} \in S\left(u_{n+1}\right)$, $y_{n+1} \in T\left(u_{n+1}\right)$ such that

$$
\left\|x_{n} \oplus x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\| \leq\left(1+(1+n)^{-1}\right) \mathcal{D}\left(S\left(u_{n}\right), S\left(u_{n+1}\right)\right)
$$

and

$$
\left\|y_{n} \oplus y_{n+1}\right\| \leq\left\|y_{n}-y_{n+1}\right\| \leq\left(1+(1+n)^{-1}\right) \mathcal{D}\left(T\left(u_{n}\right), T\left(u_{n+1}\right)\right),
$$

where $\alpha \in[0,1], n=0,1,2, \ldots$.
Next, we prove the following theorem which ensures the existence of solution of GSSVIP (3.1) and convergence of sequences generated by the Iterative Algorithm 4.1.

Theorem 4.2. Let $C \subset \mathcal{H}_{p}$ be a normal cone with constant $\lambda_{N}$. For $i=1,2$, let $A, B, g_{i}, p_{i}$ : $\mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ and $H, N_{i}: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be single-valued mappings such that $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$; $N_{i}$ be $\tau_{i}$-Lipschitz-type continuous with respect to $\left(g_{i}-p_{i}\right)$ in first argument and $\sigma_{i}$-Lipschitztype continuous with respect to $G_{i}$ in second argument, respectively. Let $M_{i}: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow 2^{\mathcal{H}_{p}}$ and $S, T: \mathcal{H}_{p} \rightarrow C^{\star}\left(\mathcal{H}_{p}\right)$ be set-valued mappings such that $M_{i}$ is $\left(\alpha_{i}, \rho_{i}\right)$-XOR-NODSM and $\theta_{i}$-ordered rectangular mapping, respectively; $S$ is $\gamma_{1}-\mathcal{D}$-Lipschitz continuous and $T$ is $\gamma_{2}$-DLipschitz continuous. Further, let $F_{i}: \mathcal{H}_{p} \times \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ be ( $l_{i}, m_{i}, n_{i}$ )-Lipschitz-type continuous in first, second and third arguments, respectively. If $u_{n+1} \propto u_{n}, v_{n+1} \propto v_{n}$, for $n=0,1,2, \ldots$ and following conditions are satisfied: $\varphi<1$ and $\vartheta<1$, where

$$
\left.\begin{array}{l}
\varphi=\left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta\left(k_{1}+k_{2}\right)+\alpha \lambda_{N}\left|\rho_{1}\right| \Theta\left[\gamma_{1}\left(\tau_{1}+m_{1}\right)+\gamma_{2}\left(\sigma_{1}+n_{1}\right)+l_{1}\right]\right\},  \tag{4.1}\\
\vartheta=\left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta^{\prime}+\alpha \lambda_{N} \Theta^{\prime}\left(k_{1}+k_{2}\right)\right\}, \\
\Theta=\frac{1}{\rho_{1} \theta_{1}-\left(k_{1}+k_{2}\right)}, \Theta^{\prime}=\frac{1}{\rho_{2} \theta_{2}-\left(k_{1}+k_{2}\right)} .
\end{array}\right\}
$$

Then GSSVIP (3.1) has a solution ( $u, v, x, y$ ), where $u, v \in \mathcal{H}_{p}, x \in S(u), y \in T(u)$. Also, the Iterative sequences $\left\{u_{n}\right\},\left\{v_{n}\right\},\left\{x_{n}\right\},\left\{y_{n}\right\}$ generated by the Iterative Algorithm 4.1 converge strongly to $u, v, x, y$, respectively.

Proof. By Algorithm 4.1 and Proposition 2.6, we have

$$
\begin{aligned}
0 \leq & u_{n+1} \oplus u_{n} \\
= & {\left[(1-\alpha) u_{n}+\alpha \mathcal{R}_{\rho_{1}, M_{1}(\cdot,)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right)\right) \oplus F_{1}\left(u_{n}, x_{n}, y_{n}\right)\right] \oplus H(A, B)\left(u_{n}\right)\right\}\right] } \\
& \oplus\left[(1-\alpha) u_{n-1}+\alpha \mathcal{R}_{\rho_{1}, M_{1}(\cdot \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right)\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right)\right]\right.\right. \\
& \left.\left.\oplus H(A, B)\left(u_{n-1}\right)\right\}\right] \\
= & (1-\alpha)\left(u_{n} \oplus u_{n-1}\right)+\alpha\left[\mathcal { R } _ { \rho _ { 1 } , M _ { 1 } ( \cdot , \zeta ) } ^ { H ( A , B ) } \left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right)\right) \oplus F_{1}\left(u_{n}, x_{n}, y_{n}\right)\right]\right.\right. \\
& \left.\oplus H(A, B)\left(u_{n}\right)\right\} \oplus \mathcal{R}_{\rho_{1}, M_{1}(\cdot \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right)\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right)\right]\right. \\
& \left.\left.\oplus H(A, B)\left(u_{n-1}\right)\right\}\right] .
\end{aligned}
$$

Now, using Proposition 2.7 and Lipschitz-type continuity of the generalized resolvent operator, we have

$$
\begin{align*}
& \left\|u_{n+1} \oplus u_{n}\right\| \\
& \leq \\
& \lambda_{N} \|(1-\alpha)\left(u_{n} \oplus u_{n-1}\right)+\alpha\left[\mathcal { R } _ { \rho _ { 1 } , M _ { 1 } ( , \zeta ) } ^ { H ( A , B ) } \left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right)\right) \oplus F_{1}\left(u_{n}, x_{n}, y_{n}\right)\right]\right.\right. \\
& \left.\quad \oplus H(A, B)\left(u_{n}\right)\right\} \oplus \mathcal{R}_{\rho_{1}, M_{1}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right)\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right)\right]\right. \\
& \left.\left.\quad \oplus H(A, B)\left(u_{n-1}\right)\right\}\right] \| \\
& \leq \lambda_{N}(1-\alpha)\left\|u_{n} \oplus u_{n-1}\right\|+\alpha \lambda_{N} \| \mathcal{R}_{\rho_{1}, M_{1}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right)\right) \oplus F_{1}\left(u_{n}, x_{n}, y_{n}\right)\right]\right. \\
& \left.\quad \oplus H(A, B)\left(u_{n}\right)\right\} \oplus \mathcal{R}_{\rho_{1}, M_{1}(\cdot, \zeta)}^{H(A, B)}\left\{\rho_{1}\left[N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right)\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right)\right]\right. \\
& \left.\quad \oplus H(A, B)\left(u_{n-1}\right)\right\} \| \\
& \leq \lambda_{N}(1-\alpha)\left\|u_{n} \oplus u_{n-1}\right\|+\alpha \lambda_{N} \Theta\left|\rho_{1}\right| \| N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right)\right. \\
& \quad \oplus N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right)\left\|+\alpha \lambda_{N} \Theta\left|\rho_{1}\right|\right\| F_{1}\left(u_{n}, x_{n}, y_{n}\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right) \|\right.  \tag{4.2}\\
& \quad+\alpha \lambda_{N} \Theta\left\|H(A, B)\left(u_{n}\right) \oplus H(A, B)\left(u_{n-1}\right)\right\| .
\end{align*}
$$

Since, XOR operator is associative, $N_{1}: \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ is $\tau_{1}$-Lipschitz-type continuous with respect to $\left(g_{1}-p_{1}\right)$ in first argument and $\sigma_{1}$-Lipschitz-type continuous with respect to $G_{1}$ in second argument, respectively, and $S, T$ are $\gamma_{1}, \gamma_{2}-\mathcal{D}$-Lipschitz-type continuous,respectively, therefore in view of Algorithm 4.1, we have

$$
\begin{align*}
& \| N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right) \oplus N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right) \|\right.\right. \\
& \leq \| N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n}\right), G_{1}\left(y_{n}\right) \oplus N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n}\right) \|\right.\right. \\
& \quad+\| N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n}\right) \oplus N_{1}\left(\left(g_{1}-p_{1}\right)\left(x_{n-1}\right), G_{1}\left(y_{n-1}\right) \|\right.\right. \\
& \leq \tau_{1}\left\|x_{n} \oplus x_{n-1}\right\|+\sigma_{1}\left\|y_{n} \oplus y_{n-1}\right\| \\
& \leq \tau_{1}\left(1+n^{-1}\right) \mathcal{D}\left(S\left(u_{n}\right), S\left(u_{n-1}\right)\right)+\sigma_{1}\left(1+n^{-1}\right) \mathcal{D}\left(T\left(u_{n}\right), T\left(u_{n-1}\right)\right) \\
& \leq \tau_{1} \gamma_{1}\left(1+n^{-1}\right)\left\|u_{n}-u_{n-1}\right\|+\sigma_{1} \gamma_{2}\left(1+n^{-1}\right)\left\|u_{n}-u_{n-1}\right\| \\
&= {\left[\left(\tau_{1} \gamma_{1}+\sigma_{1} \gamma_{2}\right)\left(1+n^{-1}\right)\right]\left\|u_{n}-u_{n-1}\right\| . } \tag{4.3}
\end{align*}
$$

Since $F_{1}: \mathcal{H}_{p} \times \mathcal{H}_{p} \times \mathcal{H}_{p} \rightarrow \mathcal{H}_{p}$ is $\left(l_{1}, m_{1}, n_{1}\right)$-Lipschitz-type continuous in first, second and third arguments, respectively, and using Algorithm4.1, we have

$$
\begin{align*}
\| & F_{1}\left(u_{n}, x_{n}, y_{n}\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right) \| \\
\leq & \left\|F_{1}\left(u_{n}, x_{n}, y_{n}\right) \oplus F_{1}\left(u_{n-1}, x_{n}, y_{n}\right)\right\|+\left\|F_{1}\left(u_{n-1}, x_{n}, y_{n}\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n}\right)\right\| \\
& +\left\|F_{1}\left(u_{n-1}, x_{n-1}, y_{n}\right) \oplus F_{1}\left(u_{n-1}, x_{n-1}, y_{n-1}\right)\right\| \\
\leq & l_{1}\left\|u_{n} \oplus u_{n-1}\right\|+m_{1}\left\|x_{n} \oplus x_{n-1}\right\|+n_{1}\left\|y_{n} \oplus y_{n-1}\right\| \\
\leq & l_{1}\left\|u_{n}-u_{n-1}\right\|+m_{1} \gamma_{1}\left(1+n^{-1}\right)\left\|u_{n}-u_{n-1}\right\|+n_{1} \gamma_{2}\left(1+n^{-1}\right)\left\|u_{n}-u_{n-1}\right\| \\
= & {\left[l_{1}+\left(m_{1} \gamma_{1}+n_{1} \gamma_{2}\right)\left(1+n^{-1}\right)\right]\left\|u_{n}-u_{n-1}\right\| . } \tag{4.4}
\end{align*}
$$

Since $H(\cdot, \cdot)$ is $k_{1}$-ordered compression mapping with respect to $A$ and $k_{2}$-ordered compression mapping with respect to $B$, we have

$$
\begin{align*}
\left\|H(A, B)\left(u_{n}\right) \oplus H(A, B)\left(u_{n-1}\right)\right\|= & \left\|H\left(A\left(u_{n}\right), B\left(u_{n}\right)\right) \oplus H\left(A\left(u_{n-1}\right), B\left(u_{n-1}\right)\right)\right\| \\
\leq & \left\|H\left(A\left(u_{n}\right), B\left(u_{n}\right)\right) \oplus H\left(A\left(u_{n-1}\right), B\left(u_{n}\right)\right)\right\| \\
& +\left\|H\left(A\left(u_{n-1}\right), B\left(u_{n}\right)\right) \oplus H\left(A\left(u_{n-1}\right), B\left(u_{n-1}\right)\right)\right\| \\
\leq & k_{1}\left\|u_{n} \oplus u_{n-1}\right\|+k_{2}\left\|u_{n} \oplus u_{n-1}\right\| \\
\leq & \left(k_{1}+k_{2}\right)\left\|u_{n}-u_{n-1}\right\| . \tag{4.5}
\end{align*}
$$

Using (4.3)-(4.5) in (4.2), we have

$$
\begin{aligned}
\left\|u_{n+1} \oplus u_{n}\right\| \leq & \left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta\left|\rho_{1}\right|\left[\left(\tau_{1} \gamma_{1}+\sigma_{1} \gamma_{2}\right)\left(1+n^{-1}\right)\right]\right. \\
& \left.+\alpha \lambda_{N} \Theta\left|\rho_{1}\right|\left[l_{1}+\left(m_{1} \gamma_{1}+n_{1} \gamma_{2}\right)\left(1+n^{-1}\right)\right]+\alpha \lambda_{N} \Theta\left(k_{1}+k_{2}\right)\right\}\left\|u_{n}-u_{n-1}\right\| \\
= & \left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta\left(k_{1}+k_{2}\right)\right. \\
& \left.+\alpha \lambda_{N}\left|\rho_{1}\right| \Theta\left[\left(\gamma_{1}\left(\tau_{1}+m_{1}\right)+\gamma_{2}\left(\sigma_{1}+n_{1}\right)\right)\left(1+n^{-1}\right)+l_{1}\right]\right\}\left\|u_{n}-u_{n-1}\right\| .
\end{aligned}
$$

Since $u_{n+1} \propto u_{n}, n=0,1,2, \ldots$, we have

$$
\left\|u_{n+1}-u_{n}\right\| \leq \varphi_{n}\left\|u_{n}-u_{n-1}\right\|,
$$

where

$$
\varphi_{n}=\left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta\left(k_{1}+k_{2}\right)+\alpha \lambda_{N}\left|\rho_{1}\right| \Theta\left[\left(\gamma_{1}\left(\tau_{1}+m_{1}\right)+\gamma_{2}\left(\sigma_{1}+n_{1}\right)\right)\left(1+n^{-1}\right)+l_{1}\right]\right\}
$$

Let

$$
\varphi=\left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta\left(k_{1}+k_{2}\right)+\alpha \lambda_{N}\left|\rho_{1}\right| \Theta\left[\gamma_{1}\left(\tau_{1}+m_{1}\right)+\gamma_{2}\left(\sigma_{1}+n_{1}\right)+l_{1}\right]\right\} .
$$

We know that $\varphi_{n} \rightarrow \varphi$ as $n \rightarrow \infty$. It follows from condition (4.1) that $0<\varphi<1$, and consequently $\left\{u_{n}\right\}$ is a Cauchy sequence in $\mathcal{H}_{p}$ and since $\mathcal{H}_{p}$ is complete, there exists $u \in \mathcal{H}_{p}$ such that $u_{n} \rightarrow u$ as $n \rightarrow \infty$. Proceeding the same way, we arrive at

$$
\begin{aligned}
\left\|v_{n+1} \oplus v_{n}\right\| \leq & \alpha \lambda_{N}\left|\rho_{2}\right| \Theta^{\prime}\left\{\left[\gamma_{1}\left(\sigma_{2}+m_{2}\right)+\gamma_{2}\left(\tau_{2}+n_{2}\right)\right]\left(1+n^{-1}\right)\right\}\left\|u_{n}-u_{n-1}\right\| \\
& +\left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta^{\prime}+\alpha \lambda_{N} \Theta^{\prime}\left(k_{1}+k_{2}\right)\right\}\left\|v_{n}-v_{n-1}\right\| .
\end{aligned}
$$

As $v_{n+1} \propto v_{n}, n=0,1,2, \ldots$, we have

$$
\left\|v_{n+1}-v_{n}\right\| \leq \alpha \lambda_{N}\left|\rho_{2}\right| \Theta^{\prime}\left\{\left[\gamma_{1}\left(\sigma_{2}+m_{2}\right)+\gamma_{2}\left(\tau_{2}+n_{2}\right)\right]\left(1+n^{-1}\right)\right\}\left\|u_{n}-u_{n-1}\right\|+\vartheta\left\|v_{n}-v_{n-1}\right\|,
$$

where

$$
\vartheta=\left\{\lambda_{N}(1-\alpha)+\alpha \lambda_{N} \Theta^{\prime}+\alpha \lambda_{N} \Theta^{\prime}\left(k_{1}+k_{2}\right)\right\} .
$$

Using the fact that $\left\{u_{n}\right\}$ is a Cauchy sequence and $0<\vartheta<1$, by condition (4.1), it follows that $\left\{v_{n}\right\}$ is a Cauchy sequence in $\mathcal{H}_{p}$ and since $\mathcal{H}_{p}$ is complete, there exists $v \in \mathcal{H}_{p}$ such that $v_{n} \rightarrow v$, as $n \rightarrow \infty$.

By Algorithm 4.1 and the $\mathcal{D}$-Lipschitz-type continuity of $S$ and $T$, we have

$$
\left.\begin{array}{l}
\left\|x_{n+1} \oplus x_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\| \leq\left(1+(1+n)^{-1}\right) \gamma_{1}\left\|u_{n+1}-u_{n}\right\|,  \tag{4.6}\\
\left\|y_{n+1} \oplus y_{n}\right\| \leq\left\|y_{n+1}-y_{n}\right\| \leq\left(1+(1+n)^{-1}\right) \gamma_{2}\left\|v_{n+1}-v_{n}\right\| .
\end{array}\right\}
$$

Sequences $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ being Cauchy in $\mathcal{H}_{p}$, 4.6) implies that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are also Cauchy sequence in $\mathcal{H}_{p}$. Thus, there exist $x, y$ in $\mathcal{H}_{p}$ such that $x_{n} \rightarrow x, y_{n} \rightarrow y$ as $n \rightarrow \infty$.
Now, we show that $x \in S(u)$ and $y \in T(u)$. Since $x_{n} \in S\left(u_{n}\right)$, we have

$$
\begin{aligned}
d(x, S(u)) & \leq\left\|x-x_{n}\right\|+d\left(x_{n}, S(u)\right) \\
& \leq\left\|x-x_{n}\right\|+\mathcal{D}\left(S\left(u_{n}\right), S(u)\right) \\
& \leq\left\|x-x_{n}\right\|+\gamma_{1}\left\|u_{n}-u\right\| \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Since $S(u)$ is closed, it follows that $x \in S(u)$. Similarly, we can show that $y \in T(u)$. Thus, in view of Lemma 3.1, we conclude that ( $u, v, x, y$ ) is a solution of GSSVIP (3.1). This completes the proof.

## 5. Conclusion

The problems considered in this paper are more general than previously studied problems in ordered spaces. The problem considered in [1] can be deduced from our problem by taking $N_{1} \equiv N_{2} \equiv N,\left(g_{1}-p_{1}\right) \equiv\left(g_{2}-p_{2}\right) \equiv I, G_{1} \equiv G_{2} \equiv I, F_{1} \equiv F_{2} \equiv 0$ and $M_{1}(u, \zeta)=M_{2}(v, \zeta)=M(u)$ and that considered in [3] can be obtained by taking $N_{1} \equiv N_{2} \equiv 0, F_{1} \equiv F_{2} \equiv F$ and $M_{1}(u, \zeta)=$ $M_{2}(v, \zeta)=M(u)$. It is pertinent to mention that the solution of variational inclusions involving $\oplus$ operator is of recent origin and can be exploited to solve various classes of known and new variational inclusions.

## Competing Interests

The authors declare that they have no competing interests.

## Authors' Contributions

All the authors contributed significantly in writing this article. The authors read and approved the final manuscript.

## References

[1] R. Ahmad, I. Ahmad, I. Ali, S. Alhomidan and Y. H. Wang, $H(\cdot, \cdot)$-ordered-compression mapping for solving XOR-variational inclusion problem, Journal of Nonlinear and Convex Analysis 19(2) (2018), 2189 - 2201, URL: http://www.yokohamapublishers.jp/online2/opjnca/vol19/p2189.html.
[2] I. Ahmad, R. Ahmad and J. Iqbal, A resolvent approach for solving a set-valued variational inclusion problem using weak-RRD set-valued mapping, Korean Journal of Mathematics 24(2) (2016), 199 213, DOI: $10.11568 / \mathrm{kjm} .2016 .24 .2 .199$.
[3] R. Ahmad, I. Ali, S. Husain, A. Latif and C. F. Wen, Generalized implicit set-valued variational inclusion problem with $\oplus$ operation, Mathematics 7(5) (2019), 421, DOI: 10.3390/math7050421.
[4] X. P. Ding and H. R. Feng, The $p$-step iterative algorithms for a system of generalized mixed quasi-variational inclusions with ( $A, \eta$ )-accretive operators in $q$-uniformly smooth Banach spaces, Journal of Computational and Applied Mathematics 220(1-2) (2008), 163 - 174, DOI: 10.1016/j.cam.2007.08.003.
[5] X. P. Ding and C. L. Lou, Perturbed proximal point algorithms for general quasi-variationallike inclusions, Journal of Computational and Applied Mathematics 113(1-2) (2000), 153 - 165, DOI: 10.1016/S0377-0427(99)00250-2.
[6] Y.-P. Fang and N.-P. Huang, $H$-Monotone operator and resolvent operator technique for variational inclusions, Applied Mathematics and Computation 145(2-3) (2003), 795 - 803, DOI: 10.1016/S0096-3003(03)00275-3.
[7] Y.-P. Fang, N.-J. Huang and H. B. Thompson, A new system of variational inclusions with ( $H, \eta$ )monotone operators in Hilbert spaces, Computers \& Mathematics with Applications 49(2-3) (2005), 365 - 374, DOI: 10.1016/j.camwa.2004.04.037.
[8] X.-F. He, J. Lou and Z. He, Iterative methods for solving variational inclusions in Banach spaces, Journal of Computational and Applied Mathematics 203(1) (2007), 80 - 86, DOI: 10.1016/j.cam.2006.03.011.
[9] N.-J. Huang and Y.-P. Fang, A new class of general variational inclusions involving maximal $\eta$-monotone mappings, Publicationes Mathematicae Debrecen 62(1-2) (2003), 83 - 98, DOI: 10.5486/PMD.2003.2629,
[10] K. R. Kazmi, M. I. Bhat and N. Ahmad, An iterative algorithm based on $M$-proximal mappings for a system of generalized implicit variational inclusions in Banach spaces, Journal of Computational and Applied Mathematics 233(2) (2009), 361 - 371, DOI: 10.1016/j.cam.2009.07.028.
[11] K. R. Kazmi, F. A. Khan and M. Shahzad, A system of generalized variational inclusions involving generalized $H(\cdot, \cdot)$-accretive mapping in real $q$-uniformly smooth Banach spaces, Applied Mathematics and Computation 217(23) (2011), 9679 - 9688, DOI: 10.1016/j.amc.2011.04.052,
[12] H.-G. Li, Approximation solution for generalized nonlinear ordered variational inequality and ordered equation in ordered Banach space, Nonlinear Analysis Forum 13(2) (2008), 205 - 214, URL: http://prof.ks.ac.kr/bslee/naf/table/vol-1302/NAF130209.pdf.
[13] H.-G. Li, A nonlinear inclusion problem involving ( $\alpha, \lambda$ )-NODM set-valued mappings in ordered Hilbert space, Applied Mathematics Letters 25(10) (2012), 1384 - 1388, DOI: 10.1016/j.aml.2011.12.007.
[14] M. A. Malik, M. I. Bhat and H. G. Hyun, Graph convergence and generalized cayley operator with an application to a system of cayley inclusions in semi-inner product spaces, Nonlinear Functional Analysis and Applications 28(1) (2023), 265 - 286, DOI: 10.22771/nfaa.2023.28.01.14.
[15] M. A. Malik, M. I. Bhat and B. Zahoor, Solvability of a class of set-valued implicit quasi-variational inequalities: A Wiener-Hopf equation method, Results in Control and Optimization 9 (2022), 100169, DOI: 10.1016/j.rico.2022.100169.
[16] M. Sarfaraz, M. K. Kaleem and A. Kilicman, Approximation solution for system of generalized ordered variational inclusions with $\oplus$ operator in ordered Banach space, Journal of Inequalities and Applications 2017 (2017), Article number: 81, DOI: 10.1186/s13660-017-1351-x.
[17] S.-Q. Shan, Y.-B. Xiao and N.-J. Huang, A new system of generalized implicit set-valued variational inclusions in Banach spaces, Nonlinear Functional Analysis and Applications 22(5) (2017), 1091 1105, URL: http://nfaa.kyungnam.ac.kr/journal-nfaa/index.php/NFAA/article/view/1031.
[18] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, Académie des Sciences de Paris 258 (1964), 4413 - 4416
[19] L.-C. Zeng, S.-M. Guu and J.-C. Yao, Characterization of $H$-monotone operators with applications to variational inclusions, Computers \& Mathematics with Applications 50(3-4) (2005), 329 - 337, DOI: 10.1016/j.camwa.2005.06.001.


Communications in Mathematics and Applications, Vol. 14, No. 5, pp.1985 2001, 2023

