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Abstract. The linear and non-linear instability theories of a Maxwell fluid in a Darcy-Benard setup
with coriolis effect is studied. For linear theory, the method of normal modes has been employed to solve
governing dimensionless equations which led an eigenvalue problem and it is solved analytically. We
obtained the expressions for steady and oscillatory thermal Rayleigh numbers. The effects of different
physical parameters on steady and oscillatory convective phenomena are presented and described. In
order to study the heat transport by convection the well-known equation, Landau-Ginzburg equation
has been derived.
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1. Introduction
Double-diffusive convection is of important study due its practical applications in many
geological processes. Also, this study has wide range of geotechnical applications, in particular,
liquid re-injection, the migration, underground disposal of nuclear wastes, and drying processes
(Chandrasekhar [5], Beckermann and Viskanta [4], Coriell et al. [6], Prescott and Incropera
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[14], Zhou and Zebib [20], and Babu et al. [2, 3]). Similarly, Double-diffusive instability of a
Newtonian fluid in a porous layer is well studied [13]. Similarly, convective phenomena in a
porous layer saturated with non-Newtonian fluids is of interest due to its vast applications in
science and engineering. Non-Newtonian fluids are frequently treated using the viscoelastic
fluid model, power-law model, Maxwell fluid model etc. (see Dharmadhikari and Kale [7], Reddy
and Ragoju [16], and Shenoy [17]).

Double-diffusive convection in a porous layer saturated by Oldroyd fluid was discussed by
Malashetty and Swamy [11]. They obtained the analytical conditions for steady, overstable, and
finite amplitude convective phenomena. Malashetty et al. [12] and Kumar and Bhadauria [10]
extended the work done by Malashetty and Swamy [11] by considering thermal non-equilibrium
effect. The double-diffusive convective motion of a Maxwell liquid was considered by Awad et
al. [1]. They deduce that the minimal value of thermal Rayleigh number decreases with the
Maxwell parameter. Wang and Tan [18] derived the condition for onset of convective instability
of a non-Newtonian type liquid in a porous layer. They used modified Maxwell-Darcy model.
Internally heated double-diffusive instability in a non-Newtonian type of coupled stress fluid in
a porous layer was discussed by Gaikwad and Kouser [9].

Gaikwad and Dhanraj [8] discussed the effects of anisotropic and internal heating on the
binary Maxwell liquid in a permeable layer. Reddy and Ragoju [15] studied the thermo solutal
convection of a Maxwell fluid in a porous layer with the chemical reaction effect. They found
that the Damkohler number has a contrast effect on steady and oscillatory convection. Yadav et
al. [19] extended the work done by Reddy and Ragoju [15] by considering internal heat source.

In the present analysis, we consider linear and weakly non-linear instability theories of
Maxwell fluid in a porous layer with coriolis effect. The organization of the present analysis
is as follows: In Section 2, we describe the mathematical formulation. The linear stability
analysis is described in Section 3. In Section 4, two dimensional amplitude equation is derived.
The discussions of obtained results are presented in Section 5. In the last section, conclusions
are written.

2. Mathematical Formulation
Let us assume a porous layer of maxwell fluid heated and salted from below, and zone
placed between two infinitely, parallel, horizontal plates at z = 0 and z = d. The z-axis is
oriented upward. It is rotating at a constant rate Ω. The governing equations under the
Oberbeck–Boussinesq approximation are

∇·u= 0, (1)(
1+λ1

∂

∂t

)(
ρ0

φ

∂u
∂t

+∇P −ρg
)
+ µ

κ
u+ 2ρ0Ω

φ
êz ×u= 0, (2)

(ρc)m
∂θ

∂t
+ (ρc) f (u ·∇)θ = (ρc)mkT∇2θ, (3)

ρ = ρ0(1−α(θ−θ0)), (4)
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u= θ = 0 on z = 0,1. (5)

The conductive state of the Maxwell fluid is as follows:

ub = 0, ρ = ρb(z), θb = θ0 −
(
∆θ

d

)
. (6)

We introduce the dimensionless parameters as follows

(x, y, z)= (x∗d, y∗d, z∗d),

(u,v,w)=
(
φk
d

u∗,
φk
d

v∗,
φk
d

w∗
)
,

t = d2

k
t∗, p = µφk

κ
p∗, θ =∆θθ∗. (7)

Then the governing equations for non-dimensional quantities can be written as

∇·u= 0, (8)(
1+λ ∂

∂t

)(
1

Pr
∂u
∂t

+∇P −Rêz

)
+u+Ta êz ×u= 0, (9)

∂θ

∂t
+γ(u ·∇)θ = w+∇2θ, (10)

u= θ = 0 on z = 0,1, (11)

where

R = ρ0δθgκd
µφkT

, Ta=
(
2ρ0Ωd2

µ

)2

Pr = µφ

ρ0kT
, λ= λ1kT

d2 ,

γ= (ρc) f

(ρc)m
φ.

All quantities which are used in the above equations have been described in the nomenclature.
We now eliminate the pressure by taking the third component of curl of (9) and curl of curl of
(9), one obtains(

1+λ ∂

∂t

)(
1

Pr
∂

∂t

)
ωz +ωz −Ta

∂w
∂z

= 0, (12)(
1+λ ∂

∂t

)(
1

Pr
∂

∂t

)
(−∇2w)−∇2w+Rθ

(
1+λ ∂

∂t

)
(∇h)2 −Ta

∂ωz

∂z
= 0, (13)

where ωz = (∇×V) · êz and ∇2
h = ∂2

∂x2 + ∂2

∂y2 .
By removing ωz and θ from eqs. (12), (13), (10) one obtains,

Lw =N , (14)

where

L=
(
1+

(
1+λ ∂

∂t

)(
1

Pr
∂

∂t

))((
∂

∂t
−∇2

)
∇2 +

2
Ta

(
∂

∂t
−∇2

)
∂2

∂z2

+
(
1+λ ∂

∂t

)(
1

Pr
∂

∂t

(
∂

∂t
−∇2

)
∇2 −R(∇h)2

))
, (15)
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N=−R(∇h)2
(
1+λ ∂

∂t

)(
1+

(
1+λ ∂

∂t

)(
1

Pr
∂

∂t

))
γ(u ·∇)θ. (16)

3. Linear Stability Analysis
Let us substitute w = sinπzei(lx+my)+iωt in Lw = 0, hence one obtains

R = (−iδ2 +ω)(π2 Pr2 Ta2+δ2(Pr+ω(i−λω))2)
Pr q2(−i+λω)(Pr+ω(i−λω))

. (17)

3.1 Stationary Convection
First, we consider stationary instability, i.e., σ= 0 is real. The stationary Rayleigh number Rs

can be written as

Rs = π2 Ta2δ2 +δ4

q2 . (18)

3.2 Oscillatory Convection
Now consider the real and imaginary parts of R, which require the imaginary part of R to
vanish. Substituting ω2into the real part of R yields the thermal Rayleigh number, Roc

T , for
oscillatory convection.

4. Weakly Non-linear Analysis
Let us introduce the following series expansion interms of ϵ

u = ϵu0 +ϵ2u1 +ϵ3u2 +·· · ,

v = ϵv0 +ϵ2v1 +ϵ3v2 +·· · ,

w = ϵw0 +ϵ2w1 +ϵ3w2 +·· · ,

θ = ϵθ0 +ϵ2θ1 +ϵ3θ2 +·· · ,

C = ϵC0 +ϵ2C1 +ϵ3C2 +·· · ,


(19)

where

ϵ2 = R−Rsc

Rsc
<< 1.

The first approximations are

u0 = iπ
lsc

[Aei(lscx+msc y) cosπz− c.c],

v0 = π

ilsc
[Aei(lscx+msc y) cosπz− c.c],

w0 = [Aei(lscx+msc y) sinπz+ c.c],

θ0 = γ

δ2
sc

[Aei(lscx+msc y) sinπz+ c.c,


(20)

where the amplitude, A = A(X ,Y , Z,T), is the amplitude and the complex conjugate is denoted
by c.c. The variables X ,Y , Z and T can be scaled as

X = ϵx, Y = ϵ 1
2 y, Z = z, T = ϵ2t,
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Using the above scaling differential operators can be written as
∂

∂x
→ ∂

∂x
+ϵ ∂

∂X
,

∂

∂y
→ ∂

∂y
+ϵ 1

2
∂

∂Y
,

∂

∂z
→ ∂

∂Z
,

∂

∂t
→ ϵ2 ∂

∂T
.


(21)

By using eq. (21), the operators L and N of eq. (14) can be written as
L=L0 +ϵL1 +ϵ2L2 · · · ,

N=N0 +ϵN1 +ϵ2N2 · · · .

}
(22)

On substituting eq. (22) into eq. (14), and comparing the coefficients of ϵ, ϵ2 and ϵ3, one obtains

L0w0 = 0, (23)

L0w1 +L1w0 =N0, (24)

L0w2 +L1w1 +L2w0 =N1. (25)

where

L0 =−∇4 −R∇2
h −D2∇2

2
Ta, (26)

L1 = 2
∂2

∂x∂X
(−2∇2 −R−D2

2
Ta), (27)

L2 = ∂2

∂X2 (−2∇2 −R−D2
2

Ta)+
(
2

∂2

∂x∂X

)2

(∇2 −D2
2

Ta)

+ ∂

∂τ

(
∇2 +D2

2
Ta−Rλ∇2

h −
1

Pr
(2∇4 −R∇2

h)
)
. (28)

Let us substitute the solution w0 in to L0w0 = 0. One obtains

Rsc = π2 Ta2δ2 +δ4

q2 , (29)

from the equation L0w1 +L1w0 =N0, N 01 = 0 and Lw0 = 0. The equation reduces to w1 = 0,
which implies u1 = 0, and also,

θ1 = γ

2πδ2
scπ

|A|2 sin2πz . (30)

On substituting the first order solutions into the eq. (25), we obtain Newell-Whitehead
equation in the form of

λ0
∂A
∂T

−λ1

(
∂

∂X
− i

2qsc

∂2

∂Y 2

)2

A−λ2A+λ3|A|2A = 0, (31)

where

λ0 =Rscλq2
sc −δ2

sc −π2
2

Ta− 1
Pr

(2δ4
sc +Rscq2

sc),

λ1 =2δ2
sc −Rsc +π2

2
Ta,
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λ2 =−δ4
sc +Rscq2

sc −π2
2

Taδ2
sc,

λ3 = γ

2πδ2
sc

Rscq2
sc . (32)

Dropping t and y-dependence terms in the eq. (31), one obtains
d2A
dX2 + λ2

λ1

(
1− λ3

λ1
|A|2

)
A = 0. (33)

Therefore,

A(x)= A0 tanh
(

x
Λ0

)
, (34)

where

A0 =
(
λ2

λ3

) 1
2

and Λ0 =
(
2λ1

λ2

) 1
2

.

4.1 Heat Transport by Convection
From equation (34), we obtain maximum of steady amplitude A (|Amax|) as

|Amax| =
(
ϵ2λ2

λ3

) 1
2

. (35)

We define the Nusselt number in terms of amplitude A as

Nu= 1+ ϵ2

δ2
sc
|Amax|2. (36)

From eq. (36), we obtain convection for R > Rsc and conduction for R ≤ Rsc . Eq. (31) is valid for
λ3 > 0 which is possible when R > Rsc, Thus we get

(i) convection for Nu> 1,

(ii) conduction for Nu≤ 1 (see in Figure 1).

5. Results and Discussions
In the present analysis, the numerical results and conclusions are presented. The linear and non-
linear instability of Darcy-Benard setup saturated by a Maxwell fluid with rotation confined
between two horizontal boundaries is studied. The linear instability threshold parameters
consisting of the Rayleigh number R, Taylor numberTa, relaxation parameter λ and Prandtl
number Pr are shown in Table 1-3.

Table 1. Critical Rayleigh number at the onset of stationary convection versus Taylor number

Ta Rsc
c Ta Rsc

c Ta Rsc
c

400 1618520.3233 2400 58252032.2439 4400 195790561.1939

800 6472821.3451 2800 79287336.6715 4800 233006869.0274

1200 14563323.0480 3200 103558841.7804 5200 273459377.5421

1600 25890025.4321 3600 131066547.5704 5600 317148086.7380

2000 40452928.4974 4000 161810454.0415 6000 364072996.6150
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Table 2. Critical Rayleigh number at the onset of oscillatory convection versus Ta fixed at λ= 0.8

Pe= 0.001 Pe= 0.01 Pe= 0.1

Ta Roc
c Roc

c Roc
c

400 20213002.8335 1999590.0068 178835.4255

800 20212015.9025 1999403.4566 178917.9303

1200 20211054.0222 1999348.9338 179055.9854

1600 20210206.9685 1999337.3702 179248.6488

2000 20209476.0403 1999345.0151 179495.1632

2400 20208846.7657 1999363.9661 179794.6591

2800 20208303.9211 1999391.0889 180146.0610

3200 20207834.2074 1999424.9620 180548.1727

3600 20207426.4861 1999464.8709 180999.6829

4000 20207071.5092 1999510.4265 181499.0948

Table 3. Critical Rayleigh number at the onset of oscillatory convection versus λ fixed at Ta= 800

Pe= 0.001 Pe= 0.01 Pe= 0.1

λ Roc
c Roc

c Roc
c

0.50 1190331.2286 116794.0248 13552.3204

0.55 2122849.7122 209444.1885 21095.4959

0.60 3588517.0008 354891.1087 33642.2843

0.65 5808631.4859 574942.4725 53115.7906

0.70 9066983.7370 897556.2319 81793.8314

0.75 13720716.0801 1357884.8303 122543.6830

0.80 20212015.9025 1999403.4566 178917.9303

0.85 29080674.0240 2875120.1685 255218.1061

0.90 40977506.7848 4048867.3903 356563.3972

0.95 56678623.8238 5596675.0544 488966.2117

The behavior of critical Rayleigh number at the onset of stationary convection Rsc
c versus

Ta is displayed in Table 1. In this table, enhancing of Rsc
c with the enhancement in the value of

Ta is observed. Hence Rsc
c has a stabilizing effect on the system.

Table 2 shows that change of critical Rayleigh number at the onset of oscillatory convection
Roc

c with Ta for different values of Pe and for fixed value of λ= 0.8. This table shows that, Ta
increases as Roc

c decreases at Pe= 0.001. Also, at Pe= 0.01, increasing of Ta the value of Roc
c is

monotonically decreasing as well as increasing at certain point, but it is different at Pe= 0.1,
that is Ta increases as Roc

c increases.
Table 3 depicts the variation of Roc

c versus λ for different values of Pe with other parameters
held constant. In this table, the enhancement of Roc

c is observed with the increase in the value
of λ and Pe. As a result, λ and Pe have a stabilizing effect on the system.
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Figure 1. The figure is plotted for the fixed values of Ta= 50, λ= 0.5, Pr= 5

6. Conclusion
In this study, we have examined the linear and non-linear instability of Darcy-Benard setup
saturated by a Maxwell fluid with rotation. The behaviour of various parameters like the
Rayleigh number R, Taylor number Ta, relaxation parameter λ, wavenumber q, relaxation
parameter γ and Prandtl number Pr have been analysed. The results can be summarized as
follows:

• For oscillatory convection, the critical Rayleigh number increases with as increase in
relaxation parameter by varing different Prandtl number, which is stabilizing factor to
make the system more stable.

• For stationary convection, the critical thermal Rayleigh number increases with as increase
in the Taylor number, which is stabilizing factor to make the system more stable.

Nomenclature

V Fluid velocity
u, v, w velocity components
Ω Angular Velocity
θ Temperature
t Time
P Pressure
g acceleration due gravity

kT Thermal diffusivity
κ Permeability
d Length

Dimensionless Parameters
A Complex Amplitude
R Rayleigh number

Communications in Mathematics and Applications, Vol. 14, No. 5, pp. 1847–1856, 2023



Weakly Nonlinear Convection of a Maxwell Fluid in a Porous Layer With Coriolis Effect: C. Bheemudu et al. 1855

Ta Hartmann number
λ relaxation parameter
Pr Prandtl number
q Wave number
Nu Nusselt number

Greek Symbols
α Thermal expansion coefficient
ϵ Porosity
ρ Fluid density
ν Kinematic viscosity
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