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Abstract. The radio antipodal mean labeling of a graph G is a function f that assigns to each vertex
u, a non-negative integer f (u) such that f (u) ̸= f (v) if d(u,v) < diam(G) and d(u,v)+

⌈
f (u)+ f (v)

2

⌉
≥

diam(G), where d(u,v) represents the shortest distance between any pair of vertices u and v of G and
diam(G) denotes the diameter of G. The radio antipodal mean number of f , denoted by ramn( f ) is the
maximum number assigned to any vertex of G. The radio antipodal mean number of G, denoted by
ramn(G) is the minimum value of ramn( f ) taken over all antipodal mean labeling f of G. In this paper,
the exact values of radio antipodal mean number of some grid related graphs have been obtained.
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1. Introduction
The graphs considered here are simple, finite, connected and undirected. For terms not defined
here, one can refer to West [18]. The process of assigning labels (non-negative integers) to either
vertices or edges or to both subject to certain condition is known as graph labeling (Gallian [5]).
Many researchers around the world are working on different kind of graph labeling till date
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even though the first paper on graph labeling was presented by Rosa in 1966 [15]. The main
reason behind is that it has a wide range of applications in various fields. To list a few, graph
labeling is useful in coding theory, astronomy, circuit design,communication network addressing,
secret sharing (Giridaran et al. [6]).

One of the major application of graph labeling is in telecommunication networks. An
important problem in telecommunication network is channel (frequency) assignment problem,
which can be addressed using graph labeling technique. The process of assigning channels
(frequencies) efficiently to all radio transmitters is popularly known as the channel (frequency)
assignment problem (Kang et al. [13]). The elementary challenge in designing mobile networks
is also similar to channel (frequency) assignment problem, where set of radio frequency band
has to be assigned to radio transmitters such that the interference is avoided (Havet [10]). The
channel assignment problem has become an important problem since there is a speedy growth in
the wireless communication services. Even though the radio spectrum bandwidth is costly, the
insufficiency of the same is also high (Saha and Panigrahi [16]). Mathematically, the channel
assignment problem can be viewed as an optimization problem where the radio spectrum
bandwidth has to be minimized and the usage of it should be maximum. This problem can be
viewed as a graph theoretical problem where the transmitters are considered as vertices and
adjacent transmitters are connected by an edge (Jose and Giridaran [12]). Hale [9] formulated
the channel assignment problem as a graph coloring problem in the year 1980. This was further
developed by Griggs and Yeh [8]. This development led them in defining a new graph labeling
technique called L(2,1) labeling or distance 2 labeling. The L(2,1) labeling (Griggs and Yeh [8])
was defined as follows. Given a real number d > 0, an Ld(2,1)-labeling of G is a non-negative
real-valued function f : V (G)→ [0,∞) such that, whenever x and y are two adjacent vertices in
V , then | f (x)− f (y)| ≥ 2d, and whenever the distance between x and y is 2, then | f (x)− f (y)| ≥ d.

The generalized form of the L(2,1) labeling is known as radio labeling which was introduced
by Chartrand et al. [3] in the year 2001. The radio labeling of a graph G is an injection from the
set of vertices of G to the set of natural numbers such that, d(u,v)+| f (u)− f (v)| ≥ diam(G)+1,
where d(u,v) represents the shortest distance between every distinct pair of vertices u and v of
G. The span of a radio labeling f is max{| f (u)− f (v)| : u,v ∈V (G)}. The radio number of G is the
minimum span of all radio labeling of G and it is denoted by rn(G). It has been proved that the
problem of finding the radio number of an arbitrary graph is NP complete (Kchikech et al. [14]).

Since there is a scarcity for the radio spectrum bandwidth and also because of its high cost,
it is very important that the network operators have to maximize the usage of available radio
spectrum efficiently. In order to achieve the efficient spectrum usage, the concept of frequency
reuse is used (Janssen [11]). That is, in different locations of the communication network(at
sufficiently large distance) the same frequency can be reused. If we reuse frequencies to the
nearby radio transmitters, it may result in interference. Therefore, to avoid the interference,
the difference between the channels assigned to the nearby radio stations must be sufficiently
large (Vaidya and Vihol [17]).

Based on the concept of frequency reuse, Chartrand et al. [2] introduced a new graph labeling
technique called radio antipodal labeling in the year 2002. The radio antipodal labeling of a
graph G is a function f : V (G)→ N such that d(u,v)+| f (u)− f (v)| ≥ diam(G). The span obtained
by radio antipodal labeling of a graph is less compared to radio labeling of a graph as the
vertices at diametric distances are assigned the same label in antipodal labeling.
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Based on the concept of radio antipodal labeling, Xavier and Thivyarathi [19] in the year
2018, introduced a new graph labeling technique called radio antipodal mean labeling. The radio
antipodal mean labeling of graph G is a function f that assigns to each vertex u, a non-negative
integer f (u) such that f (u) ̸= f (v) if d(u,v) < diam(G) and d(u,v)+

⌈
f (u)+ f (v)

2

⌉
≥ diam(G). If

d(u,v) = diam(G), then f (u) = f (v). The antipodal mean number of f , denoted by ramn( f ) is
the maximum number assigned to any vertex of G. The antipodal mean number of G, denoted
by ramn(G) is the minimum value of ramn( f ) taken over all antipodal mean labeling f of G.
For our convenience, throughout this paper ramn(G) will be denoted as ramn(G). Xavier and
Thivyarathi [19] has obtained the upper bounds of mesh related networks.

In this paper, the radio antipodal mean number of triangular grid and torus grid graphs
have been obtained.

2. Radio Antipodal Mean Number of Triangular Grid
We begin this section by defining T∞ graph from which triangular grid graph is formed and
have obtained the radio antipodal mean number of triangular grid graph.

The triangular grid graph is obtained from an infinite graph which denotes the arrangements
of transmitters in a network. The transmitters in the triangular lattice is considered as vertices
and adjacent transmitters are connected by an edge. It is assumed that such arrangement
of transmitters in the network gives a good coverage (Havet [10]). Based on this pattern of
arrangements of transmitters, a triangular grid graph has been defined as follows:

Definition 2.1 ([7]). The infinite graph T∞ associated with the two dimensional triangular
grid graph or triangular tiling graph is a graph drawn in the plane with straight line edges and
vertices defined as follows.

A linear combination xp+ yq of two vectors p = (1,0) and q = (1
2 ,

p
3

2

)
with integers x and y

represents the vertices of T∞. Thus the vertices of T∞ are points with Cartesian coordinates(
x+ y

2
, y

p
3

2

)
. Two vertices of T∞ are adjacent if and only if the Euclidean distance between them

is equal to 1.

Definition 2.2. A triangular grid graph is a finite induced sub-graph of T∞. The nth dimension
of triangular grid graph is denoted by TG(n). The construction of TG(n) from T∞ is shown in
Figure 1.

Figure 1. Construction of TG(n) from T∞
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Remark 1. The vertices of triangular grid graph is arranged in such a way that the first row
contains a single vertex, second row with 2 vertices and so on. In general, ith row of TG(n),
denoted by r i will have i vertices.

Lemma 2.1. Radio antipodal mean number of TG(2) is 4.

Proof. TG(2) has 6 vertices, 9 edges and it’s diameter is 2. Out of this 6 vertices, two pair of
vertices are at diametric distance and hence they can receive same label.
Therefore, f (v1)= f (v4)= f (v6)= 1.
Since the distance between any two vertices will be at least 1, the remaining 3 vertices can be
labeled with the labels 2, 3 and 4. Hence, ramn(TG(2))≥ 4.
From Figure 2, it is observed that ramn(TG(2))≤ 4.
Therefore, ramn(TG(2))= 4.

2 3

4

1

1 1

Figure 2. TG(2)

Lemma 2.2. The radio antipodal mean number of TG(3) is 8.

Proof. It is easy to observe from Figure 3 that ramn(TG(3))≤ 8.
The graph TG(3) has 10 vertices out of which 2 pairs of vertices are at diametric distance.
Therefore these vertices can be assigned same label. To label the remaining 7 vertices, we need
at least 7 labels. Hence, all together we need at least 8 labels to label all the vertices of TG(3).
Therefore, ramn(TG(3))≥ 8.
As a consequence, we get ramn(TG(3))= 8.

1

2 3

6

87

54

11

Figure 3. TG(3)
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Corollary 2.1. It is easy to verify that,
(i) ramn(TG(4))= 13.

(ii) ramn(TG(5))= 20.

Lemma 2.3. The radio antipodal mean number of triangular grid graph, ramn(TG(n)) ≥
n
(

n+5
2

)
−5, n ≥ 6.

Proof. The graph TG(n) has 1
2 (n2 +3n+2) vertices and 3

2 n(n+1) edges. In the vertex set of
TG(n), the vertices v1, v⌊

n2+n+3
2

⌋, v n2+3n+2
2

are at diametric distance and hence they can be given

the same label. The diameter of TG(n) is n. Here, the vertex v1 is labeled as n−3. If not,
suppose if the vertex v1 receives the label less than n−3 for instance let f (v1)= n−5. Then by
the definition of radio antipodal mean labeling, the label n−4 can be assigned to a vertex vi
which should be at a distance n−2 from v1. The label n−3 can be then given to a vertex which
is at a distance n−3 from the vertex vi which is not possible as d(vi,v j)< n−3, j = ⌊n2+n+3

2

⌋
,

n2+3n+2
2 . Hence, the vertex label starts from n−⌊n

2

⌋
and all the labels from 1 to n−⌊n

2

⌋−1 are
left out. Since, there are 1

2 (n2 +3n+2) vertices to be labeled, we need at least n
(n+5

2

)−5 labels
to label all the vertices of TG(n).
Therefore, ramn(TG(n))≥ n

(n+5
2

)−5, n ≥ 6.

Theorem 2.1. The radio antipodal mean number of triangular grid graph, ramn(TG(n)) ≤
n
(n+5

2

)−5, n ≥ 6.

Proof. Let the vertex set of TG(n) be denoted as v1,v2, . . . ,v 1
2 (n2+3n+2). In this vertex set, there

are 2 pairs of vertices which are at diametric distance and hence these vertices can be given
same labels. Therefore, f (v1)= f

(
v n2+3n+2

2

)= f
(
v⌊

n2+n+3
2

⌋)= n−3.

Next, we label the vertices v2,v3,v4 and v5 as follows. The vertex v2 is labeled as n, v3 as n+1.
Similarly, f (v4)= n−2 and f (v5)= n−1.
The remaining vertices of TG(n) are labeled by the mapping:

f (vi)=
{

n+ i−4, 6≤ i ≤ n(n+1)
2 ,

n+ i−5,
⌈n2+n+3

2

⌉≤ i ≤ 1
2 n(n+3) .

(2.1)

Now we claim that the above mapping (2.1) is an valid radio antipodal mean labeling.
Let u,v be any two vertices of TG(n). In order to prove the above claim, the following cases are
considered.

Case 1. If the vertices u and v lies in the same row r i , where 3< i < n+1.

Case 1.1. If the vertices u and v are adjacent in r i .
By the mapping (2.1), f (u j)= n+ j−4 and f (vk)= n+k−4.
Also, d(u j,vk)= 1.

Thus, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n.

Case 1.2. If the vertices are not adjacent in r i .
As the vertices are not adjacent, d(u,v)> 1.
Using function (2.1), f (u j)= n+ j−4 and f (vk)= n+k−4.
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This implies, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n.

Case 2. If the vertices u ∈ r i and v ∈ r j , 3< i, j < n+1, i ̸= j.

Case 2.1. If r i and r j are neighbours.

In this case, d(ui,v j)≥ 1.

By (2.1), f (ui)= n+ i−4 and f (v j)= n+ j−4.

Hence, d(ui,v j)+
⌈ f (ui)+ f (v j)

2

⌉≥ 1+⌈2n+i+ j−8
2

⌉> n.

Case 2.2. If r i and r j are non-neighbours.

This case will be similar to the previous case except the fact that d(ui,v j)> 1.

Therefore, d(ui,v j)+
⌈ f (ui)+ f (v j)

2

⌉≥ n.

Case 3. If the vertices lies in the (n+1)th row.

Case 3.1. Let ui,v j ∈Vi ,
⌈n2+n+3

2

⌉≤ i ≤ 1
2 n(n+3).

Here, d(u,v)≥ 1.
Also by the function (2.1), f (ui)= n+ i−5 and f (v j)= n+ j−5.

This guarantees that d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n.

Case 3.2. ui ∈Vi ,
⌈n2+n+3

2

⌉≤ i ≤ 1
2 n(n+3) and v = v⌊

n2+n+3
2

⌋.

In this case, the distance between the vertices ui and v will be at least 1.
By function (2.1), f (ui)= n+ i−5 and f (v)= n−1.
Hence, in this case d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ n.

Case 3.3. ui ∈Vi ,
⌈n2+n+3

2

⌉≤ i ≤ 1
2 n(n+3) and v = v n2+3n+2

2
.

This case will be similar to the previous case and hence d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n is assured.

Case 4. If the vertex u ∈ r1 and v ∈ rn+1.

Case 4.1. Suppose u = u1 and v ∈Vi ,
⌈n2+n+3

2

⌉≤ i ≤ 1
2 n(n+3).

In the considered case, the distance between the vertices u and v will be n which is the diameter
of G.
From (2.1), f (u1)= n−3 and f (vi)= n+ i−5.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ n.

Case 4.2. If u = u1 and v = vi , i = ⌊n2+n+3
2

⌋
, n2+3n+2

2 .
The distance between the vertices u and v will be equal to diameter of G.
Also,

⌈ f (u)+ f (v)
2

⌉= 1.

Therefore, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n.

Case 5. Suppose u = v1 and v ∈ r2.
Here, d(u,v)= 1.
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Also by the function (2.1), f (u)= n−3 and f (v)≥ n.
This assures that,

⌈ f (u)+ f (v)
2

⌉≥ ⌈2n−3
2

⌉≥ n.

Hence, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n.

Case 6. Suppose u,v ∈ r2.
In this case, u = v2 and v = v3. Since u and v are neighbours, d(u,v)= 1.
Also by the function (2.1), we have f (u)= n and f (v)= n+1.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+1
2

⌉≥ n.

Case 7. Let u,v ∈ r3.
In this case, the distance between the vertices u and v will be at least 1.
Also, f (u)≥ n−2 and f (v)= n+2.
This guarantees that, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ n.

Case 8. If u = v1 and v ∈ r3.
Here, the distance between the vertices u and v will be at least 2.
By mapping (2.1), f (v1)= n−3 and the label of f (vi), i = 2,3 will be at least n.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 2+⌈2n−5
2

⌉≥ n.

Case 9. Let u ∈ r2 and v ∈ r3.
From the mapping (2.1), f (u)≥ n and f (v)= n−2.
Thus,

⌈n+n−2
2

⌉= n−1.
Also, here the distance between u and v will be at least 1.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ n.

Case 10. Let u ∈ r2 and v ∈ rn+1.
Here, d(u,v)= n−1.
By mapping (2.1), f (u)≥ n and f (v)= n−3.
Therefore,

⌈ f (u)+ f (v)
2

⌉≥ ⌈2n−3
2

⌉≥ n.

This guarantees that, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ n.

Case 11. Suppose u ∈ r3 and v ∈ rn+1.
Using mapping (2.1), f (u)≥ n−2 and f (v)= n−3.
Hence,

⌈ f (u)+ f (v)
2

⌉≥ ⌈2n−5
2

⌉≥ n.
In this case, d(u,v)= n−2.
Consequently, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ n.

Case 12. If ui ∈Vi , 6≤ i ≤ n(n+1)
2 and v j ∈Vj ,

⌈n2+n+3
2

⌉≤ j ≤ n(n+3)
2 .

In the case considered, d(u,v)≥ 1.
From function (2.1), f (ui)= n+ i−4 and f (v j)= n+ j−5.

Hence,
⌈ f (ui)+ f (v j)

2

⌉= ⌈2n+i+ j−9
2

⌉
.

This assures that d(u,v)+⌈ f (ui)+ f (v j)
2

⌉≥ n.
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Case 13. Let ui ∈ r2, vi ∈ r j , 4≤ j ≤ n.
In this case, by the function (2.1) f (ui)≥ n. Also, f (v j)= n+ j−4.
Also, the distance between the vertices ui and v j will be at least 2.

Therefore, d(ui,v j)+
⌈ f (ui)+ f (v j)

2

⌉≥ n.

Hence, in all the above considered cases, the mapping (2.1) satisfies the radio antipodal mean
labeling condition.
Therefore, the mapping (2.1) is an valid radio antipodal mean labeling.
By this mapping, the vertex v⌊1

2(n2 +3n+1)
⌋ receives the maximum label, which is given by,

n
(n+5

2

)−5.
Therefore, ramn(TG(n))≤ n

(n+5
2

)−5, n ≥ 6.

Theorem 2.2. For n ≥ 6, ramn(TG(n))= n
(n+5

2

)−5.

Proof. The proof follows from Lemma 2.3 and Theorem 2.1.

3. Radio Antipodal Mean Number of Torus Grid
We commence this section by providing the application of torus grid graph followed by the
definition and then have obtained the radio antipodal mean number of the same.

In super computing, a torus network is now found every where due to it’s efficient parallel
processing by which it can maximize the computing performance. For the high-performance
systems, the torus topology has been proven to be the popular interconnect (Bossard [1]). This
motivated us to interpret channel assignment problem on torus grid network.

Definition 3.1 ([4]). Torus grid graph are obtained from the Cartesian product of two cycles
Cm ×Cn. Here we restrict ourself to consider only the case m = n, that is Cn ×Cn. The nth
dimension of torus grid graph is denoted by T(n×n). T(n×n) has n2 vertices and 2n2 edges.
T(3×3) has been shown in Figure 4.

3

3 4

1

1

1

2

2 3

Figure 4. Labeled T(3×3)

Lemma 3.1. The radio antipodal mean number of Torus grid graph of order 3 is 4.

Proof. TG(3×3) has 9 vertices and 18 edges. The diameter of T(3×3) is 2. The vertices v1,v5
and v9 are at diametric distance and hence they can receive same label. Let f (vi)= 1, i = 1,5,9.
Similarly, the vertices v2 and v7 are at diametric distance and hence they can receive same label
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which is given by, f (vi)= 2, i = 2,7. The vertices v3,v4 and v8 are also at diametric distance and
hence they are labeled as 3. The remaining vertex v6 is labeled as 4. Hence, ramn(T(3×3))≥ 4.
From Figure 4, it can be observed that ramn(T(3×3))≤ 4.
Therefore, ramn(T(3×3))= 4.

Corollary 3.1. It is easy to check that ramn(T(4×4))= 8.

Lemma 3.2. The radio antipodal mean number of torus grid graph, ramn(T(n×n))≥ n2+n−6,
n > 4.

Proof. The graph T(n× n) has n2 vertices and 2n2 edges. In the vertex set of T(n× n), the
vertices v1 and v n(n+1)

2 +1 are at diametric distance and hence they can be given the same label.

The diameter of T(n×n) is 2
⌊n

2

⌋
. If the vertex v1 is assigned the label n−5, then by the definition

of radio antipodal mean labeling, the label n−4 can be assigned to a vertex which is at distance
n−2 from v1. This is not possible since the vertex which is at distance n−2 from v1 has distance
less than n−2 from v n(n+1)

2 +1 and hence it is not possible to assign the label n−4 to any vertex.
Therefore, the first n−5 labels are excluded and from n−4 the vertices of T(n×n) are labeled.
Since there are n2 vertices, we need at least n2 +n−6 labels to label all the vertices of T(n×n).
Hence, ramn(T(n×n))≥ n2 +n−6, n > 4.

Theorem 3.1. The radio antipodal mean number of torus grid graph, ramn(T(n×n))≤ n2+n−6,
n ≡ 0(mod2), n ≥ 6.

Proof. Let the vertex set of T(n×n) be {v1,v2, . . . ,vn2−1,vn2}. In this vertex set, the vertices v1
and v n(n+1)

2 +1 are at diametric distance and hence these two vertices can be given same label.
The remaining vertices of T(n×n) are labeled by the mapping,

f (vi)=



n+ i−3, 1≤ i ≤ 2n−1,
n−3, i = 2n,
n+ i−4, 2n+1≤ i ≤ n(n+1)

2 ,
n+ i−5, n(n+1)+4

2 ≤ i ≤ n2 −2,
n−4, i = n2 −1,
n+ i−6, i = n2.

(3.1)

Claim. The mapping (3.1) is an valid radio antipodal mean labeling.

Let u,v be any two vertices of T(n×n). The following cases are considered in-order to prove the
above claim.

Case 1. Let u,v ∈ vi,1≤ i ≤ 2n−1

Case 1.1. If u and v are adjacent.
Here, f (ui)= n+ i−3 and f (v j)= n+ j−3.
Also, d(ui,v j)= 1.

Hence, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ 1+⌈2n+i+ j−6
2

⌉≥ n.

This assures, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ diam(G).
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Case 1.2. If u and v are non adjacent.
In this case, the distance between the vertices ui and v j will be at least 2.
By mapping (3.1), f (ui)= n+ i−3 and f (v j)= n+ j−3.

Thus, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ 2+⌈2n+i+ j−6
2

⌉≥ diam(G).

Case 2. Suppose, u,v ∈ vi , 2n+1≤ i ≤ n(n+1)
2 .

Case 2.1. If the vertices u and v are adjacent.
In this case, d(u,v)= 1.
From (3.1), f (ui)= n+ i−4 and f (v j)= n+ j−4.

This guarantees that d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ diam(G).

Case 2.2. Suppose the vertices u and v are not adjacent.
In the case considered, by the function (3.1), we have f (ui)= n+ i−4 and f (v j)= n+ j−4.
Also, d(u,v)> 1.
Thus, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ diam(G).

Case 3. If u,v ∈ vi , n(n+1)+4
2 ≤ i ≤ n2 −2.

Case 3.1. Let u and v be neighbours.
By mapping (3.1), f (ui)= n+ i−5 and f (v j)= n+ j−5.
It is obvious that, d(u,v)= 1.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+i+ j−10
2

⌉≥ diam(G).

Case 3.2. If u and v are not neighbours.
Then, d(u,v)> 1.
Also, by (3.1), f (ui)= n+ i−5 and f (v j)= n+ j−5.

Therefore, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ 2+⌈2n+i+ j−10
2

⌉> diam(G).

Case 4. Let u ∈ vi , 1≤ i ≤ 2n−1 and v = v2n.

Case 4.1. If d(u,v)= 1.
Here, u = ui , i = n, n+1, 2n−1 and v = v2n.
By (3.1), f (ui)= n+ i−3, f (v2n)= n−3.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ diam(G).

Case 4.2. Suppose d(u,v)> 1.
In the case considered,u = ui , for i ̸= n,n+1,2n−1.
By the mapping (3.1), f (ui)= n+ i−3, f (v2n)= n−3.
This guarantees that d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ diam(G).

Case 5. u ∈ vi , 2n+1≤ i ≤ n(n+1)
2 ,v = v2n.

The distance between the vertices u and v will be at least 1.
By (3.1), f (ui)= n+ i−4 and f (v2n)= n−3.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ diam(G).
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Case 6. u ∈ vi , n(n+1)+4
2 ≤ i ≤ n2 −2 and v = v2n.

By (3.1), f (ui)= n+ i−5, f (v2n)= n−3.
Also, d(u,v)≥ 1.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+i−8
2

⌉≥ n.

Case 7. u ∈ vi , 2n+1≤ i ≤ n(n+1)
2 , v ∈ vi , n(n+1)+4

2 ≤ i ≤ n2 −2.
In this case, d(u,v)≥ 1.
By the function (3.1), f (ui)= n+ i−4, f (v j)= n+ j−5.

Thus, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ 1+⌈2n+i+ j−9
2

⌉> diam(G).

Case 8. u = un2−1 and v = v2n.
The distance between the vertices u and v in this case will be more than 1, i.e., d(u,v)> 1.
From the function (3.1), f (un2−1)= n−4, f (v2n)= n−3.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n−7
2

⌉≥ diam(G).

Case 9. If u = vn2 and v = v2n.
By the function (3.1), f (un2)= n2 +n−6, f (v2n)= n−3.
The distance between the vertices u and v will be 2.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 2+⌈n2+2n−9
2

⌉> diam(G).

Case 10. u ∈ vi , 1≤ i ≤ 2n−1 and v = vn2−1.
From the mapping (3.1), f (ui)= n+ i−3 and f (vn2−1)= n−4.
Also, d(u,v)> 1 in this case.
Thus, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 2+⌈2n+i−7
2

⌉≥ diam(G).

Case 11. u ∈ vi , n(n+1)+4
2 ≤ i ≤ n2 −2 and v = vn2−1.

In this case, the distance between the vertices u and v will be at least 1.
Also by mapping (3.1), f (ui)= n+ i−5 and f (vn2−1)= n−4.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+i−9
2

⌉≥ diam(G).

Case 12. u ∈ vi , n(n+1)+4
2 ≤ i ≤ n2 −2 and v = n2.

By the function (3.1), f (ui)= n+ i−5 and f (vn2)= n2 +n−6.
Also, d(u,v)≥ 2.
Hence, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈n2+2n+i−11
2

⌉> diam(G).

Case 13. u ∈ vi , 2n+1≤ i ≤ n(n+1)
2 , v = vn2−1.

The distance between the vertices u and v will be at least 1.
By (3.1), f (ui)= n+ i−4 and f (vn2−1)= n−4,
d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+i−8
2

⌉≥ diam(G).

Case 14. u ∈ vi , 2n+1≤ i ≤ n(n+1)
2 , v = vn2 .

Here, d(u,v)> 1.

By the function (3.1), f (ui)= n+ i−4 and f (vn2)= n2 +n−6.
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d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ 2+⌈n2+2n+i−10
2

⌉> diam(G).

Case 15. u = n2 −1 and v = n2.
The distance between the vertices u and v will be 1.
From (3.1), f (un2−1)= n−4 and f (vn2)= n2 +n−6.

Thus, d(u,v)+⌈ f (u)+ f (v)
2

⌉≥ 1+⌈n2+2n−10
2

⌉> diam(G).

Case 16. u ∈ vi , 1≤ i ≤ 2n−1 and v ∈ v j , 2n+1≤ j ≤ n(n+1)
2 .

Here by the function (3.1), f (ui)= n+ i−3 and f (v j)= n+ j−4.
Also in this case, the distance between the vertices u and v will be at least 1.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+i+ j−7
2

⌉≥ diam(G).

Case 17. u ∈ vi , 1≤ i ≤ 2n−1 and v ∈ v j , n(n+1)+4
2 ≤ j ≤ n2 −2.

From (3.1), f (ui)= n+ i−3 and f (v j)= n+ j−5.
In this case, the distance between the vertices u and v will be at least 1.
Therefore, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ 1+⌈2n+i+ j−8
2

⌉≥ diam(G).

Thus from all the cases considered above, it is evident that d(u,v)+ ⌈ f (u)+ f (v)
2

⌉ ≥ diam(G) for
any pair of vertices u,v ∈ T(n×n).
Therefore, the mapping (3.1) is an valid radio antipodal mean labeling.
By the mapping (3.1), the vertex vn2 receives the maximum label which is given by, n2 +n−6.
Therefore, ramn(T(n×n))≤ n2 +n−6, n ≡ 0(mod2), n ≥ 6.

Theorem 3.2. The radio antipodal mean number of torus grid graph, ramn(T(n×n))≤ n2+n−6,
n ≡ 1(mod2), n ≥ 5.

Proof. Let {v1,v2, . . . ,vn2−1,vn2} be the vertex set of T(n×n), n ≡ 1(mod2). Here the vertices
v1 and v n(n+1)

2 −2 are at diametric distance and hence they can be given same label. Therefore,

f (v1)= f
(
v n(n+1)

2 −2

)
. The vertices of T(n×n) are labeled by the function,

f (vi)=


n+ i−4, 1≤ i ≤ 2n−1,
n−4, i = 2n,
n+ i−5, 2n+1≤ i ≤ n(n+1)

2 −3,
n+ i−6, n(n+1)

2 −1≤ i ≤ n2.

(3.2)

Claim. The mapping (3.2) is an valid radio antipodal mean labeling.
In order to prove this claim, we have to show that for any two vertices of T(n×n), the radio
antipodal mean labeling condition, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ diam(G) is preserved.
The cases will be similar to the previous proof and hence it is left to the reader.
Hence, in all the cases considered it can be seen that, d(u,v)+⌈ f (u)+ f (v)

2

⌉≥ diam(G). Thus the
mapping (3.2) is an valid radio antipodal mean labeling.
By the function (3.2), the vertex vn2 receives the maximum label given by n2 +n−6.
Therefore, ramn(T(n×n))≤ n2 +n−6, n ≡ 1(mod2), n ≥ 5
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Theorem 3.3. ramn(T(n×n))= n2 +n−6, n ≡ 1(mod2), n ≥ 5.

Proof. The proof can be obtained directly from Lemma 3.2 and Theorems 3.1 and 3.2.

4. Conclusion
In this paper, the radio antipodal mean number of triangular grid and torus grid graph have been
obtained. This work can be further extended to other communication networks like butterfly
and benes which are under investigation.
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