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1. Introduction

The concept of domination defect of a graph was first introduced by Das and Desormeaux [4]
in 2018. We studied this concept in [6] and investigated it for graphs resulting from some
binary operations such as the join and corona. In this paper, we further explore the concept and
examine it for some known parameterized families of graphs.

In what follows are some of the concepts and notations which are used in this paper.
Let G = (V(G),E(G)) be a graph. For each x € V(G), the set Ng(x) ={y € V(G) | xy € E(G)} is
the open neighborhood of x in G while the set Ng[x] = Ng(x)U{x} is the closed neighborhood of x
in G. For a nonempty set S € V(G), the open neighborhood of S in G and the closed neighborhood

of S in G are given by the sets Ng(S) = | Ng(x) and Ng[S1=Ng(S)US, respectively.
xeS
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A nonempty set S € V(G) is a dominating set of G if Ng[S]1=V(G). The minimum cardinality
of a dominating set in G is the domination number of G, denoted by y(G). The minimality of
Y(G) implies that if a particular set W of vertices of G has cardinality less than y(G), then
there is at least one vertex of G that is not dominated by W. This leads then to the concept of
k-domination defect of a graph introduced by Das and Desormeaux [4] and further studied by
Miranda and Eballe [6]].

Let G be a specific graph of order n with y(G)=2 and let 1 <k <y(G). Let S € V(G) with
IS| =y(G)—k. The k-defect of S is {1(S) = |V(G)\ Ng[S1| = n—|Ng[S]|. The k-domination defect
of G, denoted by (%(G), is the minimum cardinality of the set V(G)\ Ng[W] for W € V(G) with
[W|=y(G)—-Fk. Aset S<V(G) of cardinality y(G)— & for which [V(G)\ Ng[S]1| = {%(G) is called a
(1-set of G. We emphasize that if G is a graph with y(G) =2 and S € V(G) is a {}-set of G, where
1<k <y(G), then |S| =y(G) — k such that |[Ng[S]| = max{|[Ng[W]|: W < V(G),|W|=y(G) - k}.

In this paper, we characterize the (j-sets of the path P,, cycle C,,, centipede graph G,,,
sunlet graph S,,, bi-star graph B(r,s), crown graph G(n,n), and complete bipartite graph K, ,,.
Our final goal here is to obtain the corresponding £-domination defect of the aforementioned
graphs, similar to those done in Militante et al. [7], Balandra and Canoy [1], and Consistente
and Cabahug [3], hoping that results generated in this study will be of use when one considers
more complex graphs.

For basic graph theoretic terminologies not given here, please refer to Chartrand and
Zhang [2]. Throughout this paper, all graphs are considered finite, undirected, and simple
graphs. To avoid triviality, only graphs with domination number at least 2 will be considered
here, equivalent to the condition that only graphs with no spanning stars shall be investigated.

In 6], we presented and proved the following lemma:

Lemma 1.1 ([6]). Let G be a nontrivial graph such that y(G) = 2 and let k = y(G)— 1.
Then S < V(G) is a (p-set of G if and only if S = {v} for some v € V(G) with degg(v) = A(G).

The above lemma is useful in proving some of the results in this paper.

2. Main Results

Recall that the path P,, of order n is the graph with n distinct vertices vq,ve,..., v, and n -1
distinct edges vive,vovs,...,U,-1U,. The cycle C,, of order n =3 is the graph that consists of n
distinct vertices v1,v9,...,v, and n distinct edges v1vg,v9Vs,...,Un—1Uys,U,v1. Figure [I] provides
skeletal diagrams of these parameterized graphs.

U2

o—0—~0 - 0—O0 Un-1 U1
U1 U2 U3 Up-17Up ’

Py

Figure 1. The path P, and cycle C,,
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Lemma 2.1. Let G be a path or a cycle graph of order n =4 and let 1<k <y(G). If S<V(G) is
a (p-set of G, then 3|S| < n.

Proof. For a (3-set S < V(G) of a graph G, we have |S|=y(G) -k, where 1 <k < y(G). Using
the fact that y(G) = [%] (see for instance, Frendrup et al. [5]) and some properties of the basic
ceiling function, we obtain |S| = [2] -k = [2-k]| <% -k +1, implying that 3|S|<n-3(k - 1).
Since k =1, it follows that 3(k — 1) = 0; hence, 3|S| < n. O

The (1-sets of the path P, and cycle C,,, where n =4, are characterized below.

Theorem 2.2. Let G be a path or a cycle graph of order n =4 and let k €{1,2,...,y(G)—1}. A set
S € V(G) of cardinality y(G)—k is a (p-set of G if and only if INg[S1] = 3|S]|.

Proof. Assume S € V(G) is a (3-set of G. By definition, |[Ng[S]| is maximum among values
INgIW] such that W c V(G), IW| =y(G) -k, where 1 <k <y(G). By the nature of the path and
cycle graphs, 3 is always an upper bound for the maximum cardinality of the closed neighborhood
of any vertex v € S. Now, for notational convenience, denote the vertices of G by {v1,vs,...,v,}
with v;v;41 € E(G) for all i =1,2,...,n - 1 (with v,v1 € E(G) if G is a cycle) and choose [% —k]-
element set S = {v2,vs,...,v3;-1}, where t =1,2,3,..., [2—k]. In this case, every v € S has exactly
2 unique neighbors in G. Thus, [Ng[S]1| = |S|+|Ng(S)| = |S|+|Ngw2)|+|Ng(ws)|+...+|Ng(3t-1) =
IS|+2|S|=3]S]|.

Conversely, let S < V(G) such that |S| =y(G) -k, where 1 <k < y(G), and that |[Ng[S]| = 3|S]|.
Since |Ngl[v]|l = 3 for each v € S, it follows that |[Ng[S]1| is maximum for all [Ng[W], where
WcV(G), IW|=y(G)—-k. As a consequence, S is a {,-set of G. O

A slightly different but equivalent characterization of the {;-sets of the path P,,, n =4, is
given next.

Theorem 2.3. Let P, be a path of order n = 4. Then a set S < V(P,) of cardinality y(P,)—k,
where 1 <k <y(Py), is a {}-set of P, if and only if the following conditions hold:

(i) for each v €S, degp (v)=2;

(ii) for all distinct vertices v;,v; €S, Np,[v;]nNp,[v;]=0.

Proof. Let P, = [v1,v9,...,u,] be a path of order n = 4 and let S <€ V(P,,) be a (;-set of
P,. We note that Np [S]=U{Np,[v]:v € S} and |Np,[v;]| < 3, for every v; € V(P,). Since
INp,[S1l =3IS| by Theorem it follows that |[Np [v]| = 3 for each v € S, implying degpn(v) =2
for each v € S, and that for all distinct vertices v;,v; €S, Np, [v;InNp, [v;]1=9.

Conversely, conditions (i) and (ii) immediately imply that |[Ng[S]| = 3|S|. By Theorem[2.2] S is a
{p-set of P,,. d

Corollary 2.4. If P,, is a path of order n =4 and S < V(P,) is a {;-set of P,,, where 1 <k <y(P,),
then (,(P,)=n-3|S|.

Proof. Suppose that S € V(P,) is a (;-set of P,. By definition, (3(P,) = n—|Np [S]l. By
Theorem 2.2} {,(P,)=n-3|S|. O

Commaunications in Mathematics and Applications, Vol. 15, No. 2, pp.[921 , 2024



924 Domination Defect of Some Parameterized Families of Graphs: A. T. Miranda and R. G. Eballe

Corollary 2.5 (Das’ Theorem 1.1, [4]). If P, is a path with n vertices, then
3k—-2, ifn=3t+1,
(r(Pr)=13k—-1, ifn=38t+2;
3k, if n =3t.

Proof. Let S be a (;-set of P,,. If n = 3¢+ 1, then the equation {;(P,)=n —3|S| in Corollary [2.4]
becomes (;(P,) = (3t +1) - 3|S|. From the identity |S| =y(P,) -k and the fact that y(P,) = [5]
(Frendrup et al. [5]), we have |S| = [%] — k. By substitution, {3(P,)=@3t+1)-3([%]-k)
=(3t+1)-3([24 Y] — ). Simplifying further, {z(P,) = (3t +1)-3([t+3] —%) = Bt +1)
—3(t+1—-k)=3k—2. In a similar fashion, {3(P,) =3k —1 and {3(P,) =3k if n =3t+2 and
n = 3t, respectively, for some # € N. O

The next result is a slightly different characterization of the {-sets of the cycle C,,, n = 4.

Theorem 2.6. Let C,, be a cycle of order n = 4. Then a set S < V(C,,) of cardinality y(C,)—k,
where 1 <k <y(C,), is a {1-set of Cy, if and only if Nc, [v,1nN¢, [vjl =9, for all distinct vertices
Ui, U; € S.

Proof. The reasoning here runs almost the same as in Theorem except that deg,cc (v) =2
is already a fact rather than an assumption for the converse. O

Corollary 2.7. If C,, is a cycle of order n =4 and S € V(C,,) is a {-set of C,,, where 1 <k <y(Cp),
then (,(C,)=n-3|S|.

Proof. This is very similar to the process in which Corollary was argued. O

For our second group of special parameterized graphs, we consider the centipede G, and
sunlet S,,.

Recall that a centipede graph G, is a tree with 2n vertices obtained by joining the bottoms of
n copies of the path graph P laid in a row with edges forming a path P,, as its spine. Graph G,
has n pendant vertices {u1,uq,...,u,} and n spine vertices {v1,vg,...,v,}. On the other hand,
the n-sunlet graph on 2n vertices is obtained by attaching n-pendant vertices to the cycle C,
and is denoted by S, . Graph S, has n pendant vertices {u1,u9,...,u,} and n cycle vertices
{vi,v9,...,v,}. These graphs are illustrated in Figure

uz

Ui U2 U3 Up-1Un U9

ui us

Und..-d4U
U1 V2 U3 Up-1Un 4

Unp Uy

Figure 2. The centipede G, and sunlet S,
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From the graph illustrations above, we note that the domination number y of G, and S,, is
equal to n. Further, the following observations are straightforward.

Remark 2.1. Let G be a centipede G, or sunlet graph S, of order 2n, n =3. Let S < V(G),
IS|=n—-Fk, where k =1,2,...,n—1. To maximize |Ng[S]|, it is necessary that {u;,v;}NS| <1, for
alli=1,2,...,n.

Remark 2.2. Let G be a centipede G, or sunlet graph S, of order 2n, n =3. Let S € V(G),
IS| =n—Fk, where k =1,2,...,n—1. Let T be the set of pendant vertices of G and let T' = TnNg,[S].
If {u;,v;}nS|<1, forall i=1,2,...,n, then |T'| =|S]|.

Theorem 2.8. Let G be a centipede G,, or sunlet graph S, of order 2n, n = 3. Let H be the spine
of G, or the cycle of S,. If S € V(@) with |S|=n—k, where k =1,2,...,n—1, is a {p-set of G,
then the maximum cardinality of the closed neighborhood of S in G is given by:

4(n—Fk), ifI1S1€{l,2,...,y(H)-1},

|NG[S]|:{ )
2n—-k, if|Sle{yH),yH)+1,...,n—-1}.

Proof. Let G and H be defined as given above, and let T' be the set of all pendant vertices of G.
Let H =HnNNg,[S]and let 7' = TN Ng,[S]. Note that H' nT' = @. Hence, [Ng[S1| = |H'| +|T"|.
We consider the following two cases for the value of |S|:

Case 1. Suppose |S| €{1,2,...,y(H)—1}. Then |H'| < n and by Remark |T'| = |S|. Since
IS| < y(H), S < V(H). By Theorem |H'| = 3|S|. Hence, |Ng[S1| = |H'| +|T'| = 3|S| +1|S| =
4|S|=4(n - k).

Case 2. Suppose |S|e{y(H),y(H)+1,...,n—1}. Since |S| > y(H), we can distribute the vertices
of S in a manner that will dominate the entire vertices of H, giving |H'| = n. Therefore,
INg[S1 = |H'| +|T'|=n+|S|=2n—k. O

Theorem 2.9. Let G, be a centipede graph of order 2n, n = 3 with spine P,. Let S € V(G,) with
IS|=n—Fk, where k =1,2,...,n—1, such that {u;,v;}nS|<1, forall i =1,2,...,n. Then S is a
(p-set of G, if and only if any of the following holds:

() 1S1€{1,2,...,y(P,) -1}, where S € V(P,) and |[Ng, [S1] = 4|S|;

1) ISIe{y(Py),y(Pr)+1,...,n—1}, where S NV (P,) is a dominating set in P,.

Proof. Let G, be a centipede graph of order 2n, n = 3 with spine P,,. Let T be the set of pendant
vertices of G, let H' =P, N Ng,[S] and let T' = TN Ng,[S]. Suppose S € V(G), with |S|=n -k,
is a (j-set of G,,. We consider the following cases:

Case 1. Suppose |S|€{1,2,...,y(P,)— 1}. Since |S| < y(P,), consequently S < V(P,). Set S being
a (;-set of G, implies that [Ng, [S]l is maximum among sets W € V(G), |W| = n -k, where
k=1,2,...,n—1. By Theorem NG, [S]1l = 4(n — k) = 4|S|. Conversely, suppose S < V(P,)
and [Ng, | = 4|S|. Then |Ng, [v]| = 4, for all v € S € V(P,). With the nature of the centipede,
4 is the upper bound of [Ng, [v], for any v € G,,. It follows that [Ng, [S] = 4|S]| is maximum
among the subsets W € V(G,,). Hence, S is a (-set of G,,.

Case 2. Suppose |S| € {y(P,),y(Pr)+1,...,n—1}. Set S being a {;-set of G, implies that |[Ng, [S]|
is maximum among the subsets W < V(G,), |W|=n—k, where £k =1,2,...,n—1. By Theorem 2.8,
INg,[S1l=2n—-k =n+(n—k)=n+|S|. Since |INg[S]| = |[H'|+|T"|, it follows that |H'| = n implying
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that S nV(P,) dominates P,,. For the converse, if SNV (P,) is a dominating set of P,,, it follows
that H' = n. From the fact that 1 < |H'| <n and with Remark[2.2] |S| = |T"|, implying further
that |[Ng,[S1l=|H'| +|T'| = n +|S| is maximum among the subsets W € V(G,) with [W|=n —k.
Hence, S is a (3-set of G,,. O

Corollary 2.10. Let G,, be a centipede graph of order 2n, with spine P,, n = 3. Then,

k, if k=n—-y(Pp),n—(y(Pp)—1),...,n—-1;

4k -2n, ifk=1,2,...,n—y(Py).

Proof. Suppose S €V (G,) is a {i-set of G,. By definition, {,(G,) =2n —|Ng,[S]|. We consider
the following two cases for the values of |S|:

Case 1. Suppose |S| € {y(P,),y(P,)+1,...,n —1}. By Theorem ING,[S1] = 2n — k. Hence,
(r(Gr)=2n—|Ng,[Sll=2n-2n—-k)=k.

Case 2. Suppose |S|€{1,2,...,y(H) - 1}. By Theorem [2.8] |Ng,[S]| = 4(n — k). Hence, {1(G,) =
2n—|Ng,[S]l=2n-4(n—k) =4k —2n. O

The next theorem and corollary are derived in a similar fashion as that of Theorem [2.9|and
Corollary 2.10| respectively.

Theorem 2.11. Let S,, be a sunlet graph of order 2n, with its cycle C,,, n=3. Let S < V(S,)
with |S|=n—-k, where k =1,2,...,n—1, such that |{u;,v;}nS| <1, forall i =1,2,...,n. Then S
is a (p-set of S,, if and only if any of the following holds:

(i) 1S1€11,2,...,y(C,) -1}, where S V(C,) and |[Ng,[S]I=4IS]|, forall veS;

(1) IS1e{y(Cp),y(Cp)+1,...,n -1}, where SNV (C,) is dominating set in C,,.

Corollary 2.12. Let S,, be a sunlet graph of order 2n, with its cycle C,, n = 3. Then
k, ifk=1,2,...,n—y(S,),

S,) =
¢4(5n) {4k—2n, ifk=n—y(Sp),n - Sy -1),....n—1.

For our third and last group of special parameterized graphs, we consider the bi-star graph
B(r,s), crown graph G, ,, and complete bipartite graph K, ,,.

Recall that the bi-star graph B(r,s) for r,s = 2 is the graph obtained by joining thru an edge
the centers of two stars K1, and K1 ;. The crown graph G, , is the graph on 2n vertices with
two sets of vertices u; and v; where u,;v; € E(G(n,n)) whenever i # j, for i, =1,2,...,n. On
the other hand, a graph G is called bipartite if its vertex-set V(G) can be partitioned into two
nonempty subsets V; and V; such that every edge of G has one end in V; and one end in V.
The sets V1 and V; are called the partite sets of G. If, in addition, each vertex in V7 is adjacent
to every vertex in Vs, then ( is called a complete bipartite graph. If |V1| = m and |Vs| = n, then
the complete bipartite graph is denoted by K, ,,. Figure |3| provides skeletal diagrams of these
graphs.

Note that these graphs have domination number y(B(r,s)) = y(G, ) = YK, ») =2. If G is
any of these graphs, then every (1-set S of G is such that |S|=y(G)-k =1.

With Lemma the (1-sets of the bi-star graph B(r,s), crown graph G, ,, and complete
bipartite graph K, , can easily be determined. Consequently, the corresponding 1-domination
defect numbers of these graphs immediately follow. These are given in the theorems below
whose proofs are omitted since they are straightforward.
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Vg VUr Us Ug Us

(a)B(r,s) b)Gn

Figure 3. The bi-star B(r,s), crown G, ,, and complete bipartite K, ,

Theorem 2.13. The 1-domination-defect number of the bi-star graph B(r,s) with r,s =2 is given
by (1(B(r,s)) = min(r, ).

Theorem 2.14. The 1-domination-defect number of the crown graph G, , of order 2n with n = 2
is given by (1(G, ) = n.

Theorem 2.15. The 1-domination-defect number of the complete bipartite graph K,, , with
partite sets V1 of order m =2 and Vs of order n =2 is given by {1(K,, ,) =min(m —1,n—1).

3. Final Remarks

The concept of k-domination defect of a graph allows us to study the vulnerability of a facility if
it would be guarded with fewer than the minimum number of necessary guards. In this paper,
we produced characterizations of the £Z-domination defect sets of some known parameterized
families of graphs such as path, cycle, centipede graph, sunlet graph, bi-star graph, crown
graph, and complete bipartite graph. Further, the corresponding 2-domination defects of said
graphs were successfully obtained.
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