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1. Introduction
The C∗-algebra generated by all words of the form SαS∗

β
, α,β ∈Wk

n , and it is isomorphic to the

matrix algebra Mnk (C). The Fn, the norm closure of
∞⋃

k=0
Fk

n , is the uniformly hyperfinite-algebra

of type n∞, called the core uniformly hyperfinite-subalgebra of On. It is the fixed point algebra
for the periodic gauge action of the reals: α : R →Aut(On) defined on generators as αt(Si)= eitSi ,
t ∈ R (see Cuntz [9]).

We denote by Sn the group of those unitaries in On which can be written as finite sums of

words, i.e., in the form u =
m∑

j=1
Sα j S

∗
β j

for some α j,β j ∈Wn. It turns out that Sn is isomorphic to

the Higman-Thompson group Gn,1. We also denote Pn = Sn ∩U(Fn). Then Pn =⋃
k

Pk
n , where Pk

n
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are permutation unitaries in U(Fk
n). That is, for each u ∈ Pk

n there is a unique permutation σ of
multi-indices Wk

n such that u = ∑
α∈Wk

n

Sα(α)S∗
α (Nekrashevych [23]).

For u a unitary in On we denote by λu the unital endomorphism of On determined by
λu(Si)= uSi , i = 1, . . . ,n. We denote by ϕ the canonical shift: ϕ(x)=∑

i
SixS∗

i , x ∈On. Note that

ϕ commutes with the action α. If u ∈U(On) then for each positive integer k we denote

uk = uϕ(u) . . .φk−1(u).

We agree that u∗
k stands for (uk)∗. If α and β are multi-indices of length k and m, respectively,

then λu(SαS∗
β
)= ukSαS∗

β
u∗

m. This is established through a repeated application of the identity
Sia =ϕ(a)Si , valid for all i = 1, . . . ,n and a ∈On (Cuntz [9], and Nekrashevych [23]).

2. The Cuntz Algebra Which Preserve the Diagonal Subalgebra
If n is an integer greater than 1, then the Cuntz algebra On is unital, simple C∗-algebra

generated by n isometries S1, . . . ,Sn satisfying
n∑

i=1
SiS∗

i = 1, we denote by Wk
n the set of k-tuples

α = (α1, . . . ,αk) with αm ∈ {1, . . . ,n}, and we denote by Wn the union
∞⋃

k=0
Wk

n where W0
n = {0}.

Elements of Wn are called multi-indices and if α ∈ Wk
n then l(α) = k, the length of α. If

α= (α1, . . . ,αk) ∈Wk
n , then Sα = Sα1 , . . . ,Sαk , with S0 = 1 by convention [7,14,15]. Every Sα is an

isometry and its range projection are SαS∗
α. Every word in {Si,S∗

i , i = 1, . . . ,n} can be uniquely
expressed as SαS∗

β
for some α,β ∈Wn (Cuntz [7,9], and Hong [14]).

Lemma 2.1 ([6]). If λw ∈Aut(On,Dn) and w ∈ Fn then λw(Fn)⊆ Fn.

Proof. Let γ be the standard gauge action of the circle group on On, for which Fn is the fixed-
point algebra. Then for each z ∈ U(1) we have λwγz = γzλw. Thus, also λ−1

w γz = γzλ
−1
w and

consequently λ−1
w preserves the fixed-point algebra of γ. That is λ−1

w (Fn)⊆ Fn, as required.
Since NDn(On) = U(Dn)⋊Sn by Cuntz [9], it easily follows that NDn(Fn) = U(Dn)⋊Pn,

where Pn = Sn ∩Fn. We see that Pn is contained in the algebraic part
∞⋃

k=0
Fk

n of Fn, and write

Pk
n = Pn ∩Fk

n . It is not difficult to see that unitaries in Pnare related to permutations of multi-

indices, as follows. Let Pk
n denote the set of permutations of Wk

n , and let Pn =
∞⋃

k=0
Pk

n . Then, for

each unitary w ∈ Pk
n there exists a permutation σ ∈ Pk

n such that

w = ∑
α∈Wk

n

Sσ(α)S∗
α . (2.1)

In that case we write w ∼σ and λw =λσ. We denote

λ(Pn)−1 = {λw ∈Aut(On) : w ∈ Pn}. (2.2)

Theorem 2.2. Aut(On,Dn)∩Aut(On,Fn)∼=U(Dn)∼=λ(Pn)−1. In particular, λ(Pn)−1 is a subgroup
of Aut(On,Dn)∩Aut(On,Fn).
If u ∈U(On), then Ad(u)=λΦ(u)u∗ is the inner automorphism of On determined by u. We denote
by Inn(On) the group of inner automorphisms of On (Conti et al. [6]).
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Theorem 2.3. If u ∈ Pn and λu is invertible then the following conditions are equivalent:
(i) automorphism λu has infinite order,

(ii) the Z action on On generated by λu is outer,

(iii) the Z action on Xn generated by λu is topologically free.

Proof. (i)⇒(ii): This follows from the fact that if λw ∈ Inn(On) then λu has finite order.

(ii)⇒(iii): If the action is not topologically free then for some m the set of hm
u has a non-empty

interior. Thus, there exists (x1, . . . , xr) such that hm
u fixes each sequence (yi) whose initial

segment coincides with (x1, . . . , xr). But then hm
u is inner.

(iii)⇒(i): This is obvious.

We now give a practical criterion of invertibility of endomorphisms corresponding
to permutations (Szymański [25]). First recall that End(On) contains a distinguished
endomorphism Φ, called shift, such that

Φ(a)=
n∑

i=1
SiaS∗

i . (2.3)

Let u ∈ pk
n. If k ≥ 2 then we define

Bw = {w,Φ(w), . . . ,Φk−2(w)}′∩ f k−1
n . (2.4)

Here prime denotes the commutant. k ≤ 1 then we set Bw = C1. One checks that b ∈ f k−1
n

belongs to Bw if and only if for each pair α,β ∈W l
n, l ∈ {0,1, . . . ,k−2}, S∗

αbSβ commutes with w.
We define a vector space Vw as the quotient

Vw = f k−1
n

Bw
. (2.5)

Now for each pair i, j ∈ {1, . . . ,n} we define a linear aw
i j : f k−1

n → f k−1
n such that

aw
i j(b)= S∗

i wbw∗S j. (2.6)

One checks that aw
i j(Bw)⊆ Bw for each i, j. Thus, aw

i j induces a linear map

ãw
i j : Vw →Vw . (2.7)

With this preparation we make the following definition:

Aw = the subring of End(Vw) generated by {ãw
i j : i, j = 1, . . . ,n}. (2.8)

Now we are ready to showed the following.

Theorem 2.4. If w ∈ Pn then endomorphism λw is invertible if and only if the corresponding
ring Aw is nilpotent.

Proof. Let w ∈ pk
n and suppose that λw is invertible. There exists u ∈ pn such that λ−1

w = λu.
Thus, there exists positive integer l such that λ−1

w ( f k−1
n ) ⊆ f l

n. For each a ∈ f l
n the sequence

Ad(w∗Φ(w∗) . . .Φm(w∗))(a) stabilizes from m = l−1 at the value λw(a). Consequently, for each
b ∈ f k−1

n the sequence Ad(Φm(w) . . .Φ(w)w)(b) stabilizes from m = l−1 at the value λ−1
w (b). There

exist elements cµν(b) ∈ f k−1
n , µ,ν ∈W l

n, such that for each r ≥ 1 we have
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∑
µ,ν∈W l

n

Sµcµν(b)S∗
ν =Ad(Φl−1(w) . . .Φ(w)w)(b)

=Ad(Φl−1+r(w) . . .Φ(w)w)(b)

= ∑
µ,ν∈W l

n

SµAd(Φr−1(w))(cµν(b))S∗
ν .

Hence cµν(b) = Ad(Φr−1(w))(cµν(b)). Thus {cµν(b) : b ∈ f k−1
n , µ,ν ∈ W l

n} ⊆ Bw. If α = (i1, · · · , i l)
and β = ( j1, · · · , jl), then, let Tα,β = aw

i j j j
. . .aw

i1 j1
. For each b ∈ f k−1

n , we have Tα,β(b) = cα,β(b).

Consequently, Al
w = {0} and Aw is nilpotent.

Now, Let w ∈ pk
n and suppose that Al

w = {0}. Let b ∈ f k−1
n and define Tα,β as above. Tα,β(b)

commutes with Ad(Φm(w)) for any m. Hence if r ≥ 1, then we have

Ad(Φl−1+r(w) . . .Φ(w)w)(b)= ∑
µ,ν∈W l

n

SµAd(Φr−1(w))(Tµν(b))S∗
ν

= ∑
µ,ν∈W l

n

SµTµν(b)S∗
ν .

Thus, for each b ∈ f k−1
n the sequence Ad(Φm(w) . . .Φ(w)w)(b) stabilizes m = l − 1. We have

w∗ =
n∑

i, j=1
Sibi jS∗

j for some bi j ∈ f k−1
n . It follows from the above argument that the sequence

Ad(Φl−1+r(w) . . .Φ(w)w)(w∗)=∑
i j

Ad(Φ(Φm−1(w) . . .Φ(w)w))(SiBi jS∗
ν)

=∑
i j

SiAd((Φm−1(w) . . .Φ(w)w))(bi j)S∗
j

stabilizes from m = l at the value λ−1
w (w∗). Consequently, λw is invertible (Izumi [16],

Kawamura [20], and Pask and Rennie [24]).

3. Canonical Uniformly Hyperfinite-subalgebra
We expand the initial observations on endomorphisms preserving the canonical uniformly
hyperfinite-subalgebra in a more systematic manner (Cuntz [8]). We study a particularly
interesting class of such endomorphisms related to certain elements in the normalizer of the
canonical (Cuntz [9]).

Proposition 3.1 ([6]). Let u be a unitary in On and let v be a unitary in the relative commutant
λu(Fn)′∩On. Define w := uϕ(v). Then the restrictions of endomorphisms λu and λw coincide on
Fn. Likewise, if w̃ = vu then the restrictions of endomorphisms λu and λw̃ coincide on Fn.

Proof. It is enough to compute the action of λw on all elements of the form Sα1 . . .Sαk S∗
βk

. . .S∗
β1

for every integer k ≥ 1 and all αi and β j in {1, . . . ,n}, for all 1≤ i, j ≤ k. To this end, we verify by
induction on k that

λw(Sα1 . . .Sαk S∗
βk

. . .S∗
β1

)=λu(Sα1 . . .Sαk S∗
βk

. . .S∗
β1

).

Indeed, for k = 1, we have

λw(Sα1 S∗
β1

)= wSα1 S∗
β1

w∗ = uϕ(v)Sα1 S∗
β1
ϕ(v)∗u∗ = uSα1 S∗

β1
u∗ =λu(Sα1 S∗

β1
).
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Since ϕ(v) and Sα1 S∗
β1

commute. Now assuming the identity holds for k−1, we have

λw(Sα1 . . .Sαk S∗
βk

. . .S∗
β1

)=λw(Sα1)λw(Sα2 . . .Sαk S∗
βk

. . .S∗
β2

)λw(S∗
β1

)∗

= uϕ(v)Sα1λu(Sα2 . . .Sαk S∗
βk

. . .S∗
β2

)S∗
β1
ϕ(v)∗u∗

= uSα1 vλu(Sα2 . . .Sαk S∗
βk

. . .S∗
β2

)v∗S∗
β1

u∗

= uSα1λu(Sα2 . . .Sαk S∗
βk

. . .S∗
β2

)S∗
β1

u∗

=λu(Sα1 . . .Sαk S∗
βk

. . .S∗
β1

),

since v is in the commutant of λu(Fn). The proof of the remaining claim is similar.

Proposition 3.2. Let u be a unitary in On, then

λu(Fn)′∩On = ⋂
k≥1

(Adu◦φ)k(On).

Proof. Clearly, an element x ∈On lies in λu(Fn)′∩On if and only if, for all k ≥ 1 and all y ∈ Fk
n ,

x commutes with λu(y)= uk yu∗
k , i.e.,

u∗
kxuk ∈ (Fk

n)′∩On =ϕk(On).

This means precisely that, for each k ≥ 1, x lies in the range of Ad(uk)ϕk = (Adu◦ϕ)k.
It is also useful to observe that Adu ◦ϕ restricts to an automorphism of λu(Fn)′∩On. This
follows from the following simple lemma.

Lemma 3.3. Let A be a unital C∗-algebra and ρ an injective unital ∗-endomorphism of A, then
ρ restricts to a ∗-automorphism of

Aρ := ⋂
k∈N

ρk(a).

Proof. One has a descending tower of unital C∗-subalgebras of A,

A ⊃ ρ(a)⊃ ρ2(a)⊃ . . . ,

thus Aρ is a unital C∗-subalgebra of A. An element x ∈ Aρ satisfies

x = ρ(x1)= ρ2 (x2)= . . .= ρk(xk)= . . .

for elements x1, . . . , xk, . . . in A. It is then clear that ρ maps Aρ into itself, and moreover
x1, . . . , xk, . . . ∈ Aρ so that in particular ρ(Aρ)= Aρ .

Endomorphisms ρ for which Aρ = C1 are often called shifts.

To this end, it suffices to find a unitary u ∈ Fn such that the relative commutant λu(Fn)′∩On is
not contained in Fn. This is possible. In fact, one can even find unitaries in a matrix algebra Fk

n
such that λu(Fn)′∩On is not contained in Fn. The existence of such unitaries was demonstrated
in [8], [18], [22]. The relative commutant λu(On)′∩On coincides with the space (λu,λu) of
self-intertwiners of the endomorphism λu, which can be computed as

(λu,λu)= {x ∈On : x = (Adu◦ϕ)(x)}.

Proposition 3.4. There are sequences {vn} and {wn} of unitaries in F2 such that
(i) {λvn} is asymptotically central in O2,

(ii) ∥wnλvn+1(S j)w∗
n −λvn(S j)∥ < 2−n, for all n ∈ N and for j = 1,2,
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1580 Localized Automorphisms and Endomorphisms: A.A. Hassan

(iii) ∥wnS jw∗
n −S j∥ < 2−n, for all n ∈ N and for j = 1,2.

Proof. Let {vn} be as in Proposition 3.2. Then {vn} and any subsequence there of will satisfy (i).
Upon passing to a subsequence we can assume that

∥λvm(Si)λvn(S j)−λvn(S j)λvm(Si)∥ < 1
n

, (3.1)

for all m > n ≥ 1 and for all i, j = 1,2. We claim that one can find a sequence {wn} of unitaries
in F2 satisfying (ii) and (iii) above — provided that we again pass to a subsequence of {vn}.
It suffices to show that for each δ> 0 there exists a natural number n such that for each natural
number m > n there is a unitary w ∈ F2 for which

∥wλvm(S j)w∗−λvn(S j)∥ < δ, ∥wS jw∗−S j∥ < δ
for j = 1,2. We give an indirect proof of the latter statement. If it were false, then there would
exist δ> 0 and a sequence 1≤ n1 < n2 < n3 < . . . such that one of

∥wλvnk+1
(Si)w∗−λvnk

(Si)∥, ∥wSiw∗−Si∥,

i = 1,2, is greater than δ for every k and for all unitaries w in F2. We proceed to show that this
will lead to a contradiction.
Choose a free ultrafilter ω on N and consider the relative commutant O′

2 ∩ (O2)ω inside
the ultrapower (O2)ω. This C∗-algebra is purely infinite and simple. Consider the unital
∗-homomorphisms η1,η2 : O2 →O′

2 ∩ (O2)ω given by

η1(x)=πω(λvn2
(x),λvn3

(x),λvn4
(x), . . .),

η2(x)=πω(λvn1
(x),λvn2

(x),λvn3
(x), . . .),

x ∈O2, where πω : ℓ∞(O2)→ (O2)ω is the quotient mapping. The images of η1 and η2 commute
by (3.1). Put

u = η2(S1)η1(S1)∗+η2(S2)η1(S2)∗ =πω(vn1 v∗n2
,vn2 v∗n3

,vn3 v∗n4
, . . .),

and notice that u is a unitary element in O′
2 ∩ (F2)ω ⊆O′

2 ∩ (O2)ω. To obtain a sequence {wn} of
unitaries in C∗(η1(F2),u)⊆O′

2 ∩ (F2)ω such that wnη1(S j)w∗
n → η2(S j) for j = 1,2. By [8] there

is a single unitary w in O′
2 ∩ (F2)ω such that wη1(S j)w∗ = η2(S j) for j = 1,2 (and hence such

that wη1(x)w∗ = η2(x) for all x ∈O2).
Each unitary element in the ultrapower (F2)ω lifts to a unitary element in ℓ∞(F2), so we can
write

w =πω(w1,w2,w3, . . .),

where each wn is a unitary element in F2. This establishes the desired contradiction, as

lim
n→ω

∥S jwn −wnS j∥ = 0, lim
n→ω

∥wnλvnk+1
(S j)w∗

n −λvnk
(S j)∥ = 0,

for j = 1,2 and for all k.

Theorem 3.5. There is a unitary element u ∈ F2 such that the relative commutant λu(O2)′∩O2

contains a unital copy of O2.

Proof. Let {vn} and {wn} be as in Proposition 3.4 and define endomorphisms on O2 by

λn(x)= w1w2 . . .wnλvn+1(x)w∗
n . . .w∗

2 w∗
1 , ρn(x)= w1w2 . . .wnxw∗

n . . .w∗
2 w∗

1 ,
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for x ∈O2. Then

∥λn(S j)−λn−1(S j)∥ < 2−n, ∥ρn(S j)−ρn−1(S j)∥ < 2−n

for j = 1,2, and λn(x)ρn(y)−ρn(y)λn(x)→ 0 for all x, y ∈O2. Using that

wλu(x)w∗ =λwuϕ(w)∗(x)

whenever w is a unitary in O2 and x ∈ O2, we see that λn = λun for some unitary un in F2.
It follows from the estimates above that the sequences {λn(S j)} and {ρn(S j)}, j = 1,2, and hence
also the sequence {un}, are Cauchy and therefore convergent. Let λ : O2 →O2 and ρ : O2 →O2

be the (pointwise-norm) limits of the sequences {λn} and {ρn}, respectively, and let u ∈ F2 be the
limit of the sequence {un}. Then λ=λu and the images of λ and ρ commute.

Corollary 3.6. There is a unital ∗-homomorphism σ : O2 ⊗O2 →O2 such that σ(F2 ⊗F2)⊆ F2.

Proof. Take λ : O2 →O2 and ρ : O2 →O2. Recall that λ and ρ have commuting images and that
λ(F2)⊆ F2 and ρ(F2)⊆ F2. We can therefore define a ∗-homomorphism σ : O2 ⊗O2 →O2 by

σ(x⊗ y)=λ(x)ρ(y), x, y ∈O2.

Then

σ(F2 ⊗F2)=λ(F2)ρ(F2)⊆ F2.

We know that O2⊗O2 and O2 are isomorphic, but we do not know if one can find an isomorphism
σ : O2 ⊗O2 →O2 such that σ (F2 ⊗F2) is contained in (or better, equal to) F2.
Below, φ denotes the standard left inverse of ϕ, i.e., the unital, completely positive map given
by φ(x) := 1

n
∑

S∗
i xSi , x ∈On.

Theorem 3.7. Let u ∈U(On), then the following conditions are equivalent:
(i) φ(u) ∈U(On),

(ii) u ∈ϕ(On),

(iii) S∗
i uSi = S∗

j uS j ∈U(On), for all i, j ∈ {1, . . . ,n}.

Proof. (i)⇒(ii): It follows from (i) that u lies in the multiplicative domain of φ and therefore, by
Choi’s theorem, φ(Siu)=φ(Si)φ(u), that is uSi = Siφ(u) for all i = 1, . . . ,n. Thus, u =ϕ(φ(u)).
The implications (ii)⇒(iii) and (iii)⇒(i) are obvious.

Proposition 3.8. Let w ∈ U(On) be such that λwt(F1
n) ⊆ Fn. Then the unitary α-cocycle

z(1)
t := φ(w∗αt(w)) is a coboundary, i.e., there exists a unitary z such that z(1)

t = zαt(z∗) for
all t ∈ R.

Proof. Indeed, since λw(F1
n)⊆ Fn there exists a unitary u ∈ Fn such that λw and λu coincide on

F1
n. In fact, we could take as λu an inner automorphism implemented by a unitary in Fn. Then

w∗u commutes with F1
n, and thus there exists a unitary z such that w∗u =ϕ(z). Now we have

ϕ(zαt(z∗))= w∗uαt(u∗)αt(w)= w∗αt(w), since αt(u∗)= u∗.

Proposition 3.9. Let w ∈ Sn be such that λw(Dn)= Dn or, more generally, such that Dn ⊆λw(Fn).
Then λw(Fn)⊆ Fn if and only if w ∈ Pn.
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Proof. An element of Sn normalizes Dn and thus satisfies the first assumption in the previous
corollary. Then, the only nontrivial assertion follows from the fact that an endomorphism λw of
On such that λw(Fn)⊇ Dn is necessarily irreducible in restriction to Fn by Szymański [25] an
argument similar to using the facts that Dn in Fn is simple.

Corollary 3.10. Let D be a unital C∗-algebra, and suppose that ηn,ηn+1 : On+1 → D are unital
∗-homomorphisms with commuting images. There is a sequence {wn} of unitaries in the sub-C∗-
algebra D0 = C∗(ηn(Fn+1),u), where

u = ηn+1(Sn)ηn(Sn)∗+ηn+1(Sn+1)ηn(Sn+1)∗,

such that wnηn(x)w∗
n → ηn+1(x), for all x ∈On+1.

Proof. The ∗-homomorphisms ηn and ηn+1 induce a ∗-homomorphism η : On+1 ⊗On+1 → D
given by

η(x⊗ y)= ηn(x)ηn+1(y), x, y ∈On+1.

In the notation of Proposition 3.8 we have

η(un−1)= u, η(Fn+1 ⊗1)= ηn(Fn+1), η(1⊗Fn+1)= ηn+1(Fn+1).

It follows from Proposition 3.8 and its proof that 1⊗ Fn+1 is contained in the C∗-algebra
generated by {E(0)

i j } and un−1 and hence is contained in C∗(Fn+1 ⊗ 1,un−1) (Cuntz [8]).
The C∗-algebra B from that proposition is therefore generated by Fn+1 ⊗1 and un−1, which
shows that η(b)= Dn−1.
Let {zn} be as in Proposition 3.8 and put wn = η(zn) ∈ Dn−1. Then

wnηn(x)w∗
n = η(zn(x⊗1)z∗n)→ η(1⊗ x)= ηn+1(x),

for all x ∈On+1.

Corollary 3.11. For v,w ∈U(On) the following three conditions are equivalent:
(i) endomorphisms λv and λw coincide on Fn,

(ii) for each ε≥ 0 we have w∗
1+εv1+ε ∈ϕ1+ε(On),

(iii) there exists a sequence of unitaries z1+ε ∈ U(On) such that z1 = φ(w∗v) and z2+ε =
φ(w∗z1+εv) for all ε≥ 0.

Proof. The endomorphisms λv and λw coincide on Fn if and only if they coincide on each
F1+ε

n . Now if α and β are two multi-indices of length 1+ε then λv(SαS∗
β
)= v1+εSαS∗

β
v∗1+ε and

λw(SαS∗
β
)= w1+εSαS∗

β
w∗

1+ε. Thus λv(SαS∗
β
)=λw(SαS∗

β
) for all such α, β if and only if w∗

1+εv1+ε
is in the commutant of F1+ε

n , that is when w∗
1+εv1+ε ∈ϕ1+ε(On). Now it easily follows that this

holds for all 1+ε if and only if condition (iii) above is satisfied.
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