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Abstract. The present study deals with heat transmission of a Williamson nanofluid on a porous
plate in a Darcy-Forccheimer flow through Cattaneo-Christov heat flux, velocity, temperature and
concentration slips. The basic leading equations were converted by means of similarity transformations.
Later, obtained equations were resolved by “Runge-Kutta-Felhberg Method”. The velocity, temperature
and the concentration profiles were driven clearly and discussed thoroughly. The values of Nusselt
number and reduced Sherwood number were given in tabulated form.
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1. Introduction
Heat transfer is necessary in our day-to-day life and often not even recognized as we go about
with our lives. These heat characteristics were explored by Fourier law [8] in 18th century,
but this was not adequate for any initial troubles is felt promptly all over the entire material,
to overawed this problem. Cattaneo [3] introduced thermal relaxation time in the traditional
Fourier’s of heat conduction. This model helps in transport of heat through circulation of thermal
waves along through determinate speed.
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In order to obtain the material invariant formulation Christov [5] changed the Catteneo law
with thermal relaxation time together with Oldroyd’s upper-convected derivatives Cattaneo-
Christov model along with thermal convection was studied by Straughan [21]. Later, this term
was used by many of the researchers [10,11,15].

The applications of heat transfer study on nanofluids have novel properties fuel cells
pharmaceutical processes, hybrid-powered engines microelectronics fuel, and polymer dyes
etc. When compared with base fluids the nano fluids exhibit the enhancement in coefficient of
convective heat transfer along with thermal conductivity. Various experimental studies proved
that the heat transfer coefficient become improved up to 40% and enhancement in thermal
conductivity with a range of fifteen to forty percent when compared to the standard fluid. There
must be some other mechanism that plays a vital role in increasing thermal conductivity viz.,
volume fraction, particle shape/surface area, nanoparticle size particle accumulation, liquid
layering on the interface of the nanoparticle-liquid and dimensions fraction.

The updated cooling techniques are essential in industrial sectors majorally in transport,
manufacture, electricity, and electronic industries etc. This technology is essentially required
in the forthcoming world of thin-film solar energy collector devices. Metals have three times
higher thermal conductivity properties when compared to the aimed fluids so it is advantages to
cartel these two materials to produce a heat transmission middling that acts as a fluid but has
metal thermal properties. The term nanofluid was first coined by Choi and Eastman [4] which
indicates engineered colloids that compose nanoparticles disbursed in the base fluid. Masuda et
al. [13] studied the thermal enhancement characteristic of nanofluids.

The investigation of flow in porous media attracts many researchers since its vast industrial
applications. The Darcy’s law was one of the popular model in flow in porous media. This law
was recognised because it over predicts the convective flow when vorticity diffusion coefficient
and inertial drag coefficient was considered. Extending this work, Forchhimer [7] included the
square velocity factor. Later, Forchheimer term was introduced by Mustak and Wyckoff [14] and
he concluded that this term is valid for high Renold’s numbers also.

Forchheimer effect has importance in non-Newtonian like processing of ceramic and
improving the oil repossession. Later, the Darcy-Forchheimer flow of free, forced and combined
convection over non-isothermal structures of arbitrary shaped embedded in non-Newtonian
power-law fluid-drenched porous medium has been investigated by Shenoy [20].

Saddeek [19] analyzed the Darcy-Forchheimer mixed convection flow of mass and heat
transfer towards an isothermal vertical flat plate. He conducted his study in two cases, one
is with viscous dissipation and the other is without it. Later, Younghae et al. [6] conducted a
numerical investigation for Darcy-Forchheimer nanoliquid flows over an unsteady extending
sheet with convective thermal boundary conditions and Navier’s slip condition with spectral
relaxation method. Pal and Mondal [17] conducted an numerical investigation on Darcy-
Forchheimer porous medium with effects of convective diffusion, hydromagnetic, flexible
viscosity filed and non-uniform heat source/sink. After this, the Darcy-Forchheimer flow of
Maxwell fluid was studied by Sadiq and Hayat [18]. Due to the vast application porous medium
over shrinking sheet, Bakar et al. [1, 2] did her investigation on the stagnation point flow of
Darcy-Forchheimer porous medium past a shrinking sheet.
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Later, this study was extended by many researchers by considering various effects. For
example, Ganesh et al. [9] explored some important results on Darcy-Forchheimer flow.

Since the study on different fluid gives interesting results, Khan et al. [12] did their research
on estimation of entropy optimization about the Darcy-Forchheimer flow of Carreau-Yasuda
fluid.

Inspired by the above studies the present study was carried out to fulfill the gap of
Forchheimer flow. Therefore, the study deals with the free convection flow and heat transmission
of a Williamson nanofluid over a porous plate in a Darcy-Forccheimer flow with velocity,
temperature, and concentration slips.

2. Mathematical Formulation
A steady two dimensional (x, y) boundary layer flow of a Williamson nanofluid over linearly
stretching sheet with stretching velocity uw = ax. The flow was imperiled to the effect of
magnetic field of strength B0 which is applied perpendicular to the sheet for which we
considered.

The Williamson fluid model can be obtained Nadeem et al. [16]. For the fluid prototypical,
Cauchy stress tensor S is given as

S =−pI +τ ,

τ=
(
µ∞+ µ0 −µ∞

1−Γγ
)

A1 ,

where p is the pressure term τ is the extra stress tensor, µ0, I is the identity vector,
the preventive viscosities at zero and immeasurable shear rates was denoted by µ∞, A1 is the
first Rivlin-Erickson tensor, Γ> 0 is a time constant and γ is distinct as

γ=
√
π

2
, π= trace(A2

1) .

Herein π is the second invariant strain tensor. For this problem we have considered only the case
for which

µ∞ = 0 and < 1.

Therefore, we obtain

τ=
(

µ0

1−Γγ
)

A1 or τ=µ0(1+Γγ)A1 .

By observing the above, the above given governing equations over a stretching sheet was
expressed as:
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u
∂C
∂x

+v
∂C
∂y

= DB
∂2C
∂y2 +

(
DT

T∞

)(
∂T
∂y

)2
, (4)

where u,v represents the velocity components in x, y direction, respectively. The variables x and
y indicate the Cartesian coordinates along and normal to the sheet. Similarly, T is temperature,
C is nanoparticle volumetric fraction, k is nanofluid thermal conductivity, DB is Brownian
diffusion coefficient. DT is thermophoretic diffusion coefficient and T∞ is the ambient fluid
temperature, ν is the kinematic viscosity, Γ> 0 is the characteristic time, ρ was viscosity, α is
the thermal diffusivity of the fluid, Cp the specific heat, Fr= cb

xk
1
2

be the inertia coefficient of

porous medium and the permeability of the porous medium was denoted by K .
With respected boundary conditions are given by

u = uw, v = 0, T = Tw, C = Cw at y= 0,

U →U∞, T → T∞, C → C∞ as y→∞.

}
(5)

The following are the similarity transformations used in the problem

η= y
(a
ν

) 1
2
ψ= (aν)

1
2 xf (η) and u = ∂ψ/∂y and u =−∂ψ/∂x

u = axf ′(η), v =−(aν)
1
2 f (η) ,

f ′′′+ f f ′′− f ′2 −K f ′+We f ′′ f ′′′−M f ′−Fr( f ′)2 = 0 , (6)
1
Pr
θ′′+γ( f 2θ′′− f f ′θ′)+ f θ′+Nbφ′θ′+Nt(θ′)2 = 0 , (7)

φ′′+Le fφ′+ Nt
Nb

θ′′ = 0 . (8)

Wessienberg number We=p
2Γa

3
2 x
ϑ

, Magnetic parameter M = Γβ0
2

δa ,

Forchhiemer flow parameter Fr= cϑ

xk
1
2

, Porosity parameter K = ϑ
ka ,

Prandtl number Pr= α
ϑ

, Brownian motion parameter Nb= ρpCpDB(Cw−C∞)
Sc f ν

,

Thermophoresis parameter Nt= DT (Tw−T∞)
T∞ν , Lewis number Le = ν

DB
.

The parameters k, λ, M, Fr indicates the porosity parameter, Williamson parameter,
Magnetic parameter, and Forchheimer flow parameters, respectively, and similarly Pr, γ,
Nb, Nt, Le represents the Prandtl number, thermal relaxation parameter, Bromian motion
parameter, thermophoresis parameter and Lu is number, respectively.

3. Numerical Discussion
The partial differential equations were transfigured into ODE later these equations were solved
by using Runge-Kutta-Felberg method. To verify the methodology comparison was done with
the previous results. The values of − f ′′(0), −θ′(0), φ′(0) for several values of the constraints
were presented in the tables.

Figure 1 depicts the properties of magnetic restriction on velocity profile. It was very
clear that the velocity was decreased with the rise of magnetic parameter M. The electrically
conducting fluid introduces the Lorentz force which drags the flow if the magnetic field is
applied perpendicular to the sheet.
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Figure 1. f ′(η) for various estimates of M (magnetic parameter)

Figure 2 indicates the effect of inertia parameter on velocity profile. The graphs indicates
that effects of Forchheimer parameter Fr, i.e., inertial force on fluid velocity. From the figure,
the increment of Forchheimer parameter decreases the fluid momentum. Physically, this is
because of the stronger resistance power diminishes the velocity of the flow and also the edge
layer thickness of flow momentum.

Figure 2. f ′(η) for various estimates of Fr (inertia parameter)

Figure 3 portray the impact of porous parameter on flow momentum, it is clear from the
graph that the porosity parameter decreases the flow momentum this is because of the frictional
forces that resists the flow fluid.
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Figure 3. f ′(η) for various estimates of K (thermal relaxation parameter)

The progressive values of Weissenberg number on velocity profile was depicted on Figure 4.
This is because of that relaxation time of the fluid increases for complex results of Weissenberg
number We causes the decrement in velocity.

Figure 4. f ′(η) for various estimates of λ (Weissenberg number)

Figure 5 indicates the effects of Brownian motion parameter Nb on temperature profiles
the hike of Nb up rises the temperature and increases the thermal frontier layer thickness. On
the other hand the same result found on temperature profile i.e., in the case of Thermophoresis
parameter Nt which was clearly presented in Figure 6.
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Figure 5. θ(η) for various estimates of Pr (Prandtl number)

Figure 6. θ(η) for various estimates of Nt (Brownian motion number)

Figure 7 explores the actions of Prandtl number on temperature profile θ(η). It was noted
that the augmentation of Prandtl number decreases the temperature profile. It is due to the
Prandtl number being the percentage of kinematic viscosity to thermal diffusivity. Increment of
Pr means the lower thermal diffusivity, therefore whenever the thermal diffusivity is low the
temperature outline and the thermal edge layer depth decreases.
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Figure 7. θ(η) for various estimates of Nb (thermophoresis)

In Figure 8 it was noticed that the hike in thermal relaxation parameter γ decrease both
the temperature profile and the thermal edge layer thickness.

Figure 8. θ(η) for various estimates of γ (relaxation parameter)

The properties of Lewis number on concentration profile were depicted on Figure 9.
Generally, the Brownian diffusion coefficient varies inversely with respect to Lewis number.
Therefore, Brownian diffusion coefficient converts smaller with respect to the larger values of
Lewis number. The small amount of Brownian diffusion coefficient depicts the decrement in the
absorption profile and thickness of edge layer too.
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Figure 9. φ(η) for various estimates of Le (Lewis number)

Figure 10 and Figure 11 indicates the effects of Brownian motion parameter Nb and
thermophoresis parameter Nt on the concentration profile. It was noticed that increase in
Nb decreases the concentration profile whereas an increment in Nt gives the increment in
concentration profile as well as concentration edge layer also decreases.

Figure 10. φ(η) for various estimates of Nt (Brownian motion number)
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Figure 11. φ(η) for various estimates of Nb (thermophoresis)
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