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1. Introduction
Electro-conductive polymer material properties in modern smart technologies such as the
aerospace and naval industries. The discrepancy between the nonlinear relations of shear rate
and shear stress is what defines a non-Newtonian fluid. Non-Newtonian fluids have a wide
range of applications in science. Printing colours, greases, blood, inks, toothpaste, greasing oils,
shampoos, cosmetics, nail polish, creams, lotions, shaving suds, and munchies are all examples
of non-Newtonian fluids (see, Attia [5], Keimanesh et al. [22], Shojaeian and Koşar [38], Rehman
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et al. [36], and Yilmaz et al. [41]). Non-Newtonian and Newtonian fluids are the two primary
types of fluids. Non-Newtonian types are studied in many modern engineering applications.
Petroleum drilling muds, biological gels, polymer synthesis, and food processing are just a few
of the industries that use non-Newtonian fluids. On the other hand non-Newtonian fluids with
shear self-governing viscosity, on the other hand, nonetheless show typical stress differences and
non-Newtonian behaviour. Many salt solutions as well as many different liquids encountered in
research and technology, such as detergents, dental creams, and physiological fluids are non-
Newtonian fluids. Furthermore, it can be used in conjunction with magnetohydrodynamics (see,
Eldabe and Sallam [11], Eldabe et al. [12], and Hameed and Nadeem [15]). A colloidal deferment
containing nano particles in a base fluid is referred to as a nanofluid. Because of the unique
qualities of nanofluids, it is necessary to investigate technical applications ranging from being
utilised in the automobile industry and in the medical profession, and in power plant cooling
systems. To name a few, heat transfer applications (as in geothermal energy extraction, smart
fluids, and nuclear reactors). And automotive applications (as nanofluid coolant and nanofluid
in fuel, brakes, and other), when compared to base fluids, nanofluids have improved physical
characteristics such as conductive heat transfer coefficients, thermal diffusivity, mass diffusivity,
viscosity, and connectivity. Casson’s fluid model was originally introduced in 1959. Casson fluid
has yield stress, which alters flow behavior. Casson fluid is a kind of fluid independent of stress
with constant viscosity known as non-Newtonian fluid. With an infinite viscosity at a zero stress
rate, but when shear stress is increased to an unlimited level, the viscosity becomes zero for the
Casson fluid. Because of its elements such as red cells, plasma, protein, and so on, this fluid
model is also recommended for the investigation of human blood. Casson fluids include blood,
stuffs, honey, jelly, slurries, soups, artificial fibres and so on. Ahmad et al. [3] presents Casson
nanofluid along with Newtonian heating. Sarojamma and Vendabai [37] examined the results
of Casson nanofluid passing through a perpendicular cylinder with the effect of a crossways
magnetic field, which resulted in intramural heat production or absorption. Krishnendu et
al. [26] investigated non-Newtonian Casson fluid flow across the stretched decreasing with
magnetohydrodynamics and mass transfer at wall in great detail. Hussanan et al. [19] study the
Casson non-Newtonian fluid in an unstable heat exchange flow with Newtonian heating over a
perpendicular oscillating plate. Hussanan et al. [18] have investigated the MHD Casson fluid
heat transfer and Newtonian heating. Malik et al. [30] utilised the Keller box scheme to explore
the Cattaneo-Christov Casson nanofluid heat flux model with a variable viscosity and magnetic
field influence. Raju et al. [34] investigated the thermal and solute transfer characteristics of
the flow of Casson fluid across an exponentially permeable stretched surface, as well as the
impacts of magnetic field, viscous dissipation, heat radiation, and chemical reaction. Hayat
et al. [16] investigated an impact of Dufour and Soreton the 2-D flow of a non-Newtonian
Casson fluid produced by the stretching of an electrically conducting flat surface, and they
used the homotopy analysis approach to intervene and fix the difficulties. Abolbashari et al. [1]
conducted an analytical study of the fluid flow, thermal, and mass transfer of non-Newtonian
Casson nanofluid over the stretched convective surface boundary conditions. Hussain et al. [17]
investigated an impact of convective thermal, solute circumstances with viscous dissipation on
Casson nanofluid flow. Thermal radiation has a significant influence on industry, particularly
in the assembly of industrial equipment such as rockets, gas turbines, satellites, nuclear power
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plants, space vehicles, and many others. Thermal radiation is about the transmission of energy,
emphasising the need for a better knowledge of radiative transfer in these processes. Dognchi
and Ganji [9] investigated the influence of thermal radiation on nanofluid flow and heat transfer.
Ramesh et al. [35] offered a mathematical study of Casson fluid that took heat radiation into
consideration. Pramanik [32] investigated the combined impact of suction/blowing and heat
radiation in a Casson fluid boundary layer flow over an exponentially extending sheet. Chemical
reaction studies involving heat transfer have major applications in technology and industry.
Chemical reactions occur in a variety of industrial applications, including the manufacture of
ceramics or glassware, polymer synthesis, food processing, and so on, as a result of a chemical
interaction between a foreign material and a fluid Stretching the sheet under different physical
circumstances causes the velocity ratio, momentum slip, and magnetic parameters to rise,
causing the velocity boundary layer thickness to decrease, and they investigated the influence
of chemical reactions on mass and heat transfer. MHD boundary layer flow with viscous
dissipation, thermal radiation, mixed convection, and other phenomena, previous stretched
sheet and discovered that as the magnetic field rose, so did the Nusselt number, skin friction
coefficient, and Sherwood number (see, Kumar and Gangadhar [27], El-Aziz and Afify [10],
Krishnamurthy et al. [25], Mabood et al. [28], and Ibrahim et al. [20]). Non-Newtonian fluids,
unlike viscous fluids, frequently do not define the flow pattern using Navier-Stokes equations
because the fluids include a highly nonlinear relationship between stress and strain. Various
theoretical models, such as Power law fluids, Maxwell fluids, Micropolar fluids, Jeffery fluid,
Williamson fluid, and Giesekus fluid, are proposed to represent the behavior of non-Newtonian
fluids. Furthermore, the Eyring-Powell fluid model is one of the fluid models that displays
non-Newtonian behaviour.For primarily two reasons, the Eyring-Powell fluid model is preferred
over other non-Newtonian fluid models: the kinetic theory of liquids is used to develop the
concept rather than empirical relationships as seen in the power-law fluids model, and (i) the
kinetic theory of liquids is used to develop the concept rather than empirical relationships as
seen in the power-law fluids model. (ii) the behaviour of Newtonian and non-Newtonian fluids
at high and intermediate shear rates The Eyring-Powell model has various applications in
science and technology, including engineering processes, chemical and polymer synthesis, and
so on (Fatunmbi [13]) used the Finite Element Method (FDM) to get the numerical solution
of an Eyring-Powell fluid. Nazeer et al. [31] investigated Eyring-Powell fluid. FEM is used to
numerically test the nanofluid flow. Javed et al. [21] use the Keller-Box technique to provide an
approximate solution for an unsteady flow of Eyring-Powell fluid under magnetic influences.
Rahimi et al. [33] created a numerical collocation technique approach to address the nonlinear
flow issue across a stretched sheet. They discovered that the Eyring-Powell inertial parameter
causes the velocity distribution to accelerate. Khan et al. [24] introduce the concept of Eyring-
Powell fluid cross flow with entropy production. The HAM and Runge-Kutta techniques were
used to arrive at the answer. The perturbation theory was employed by Ahmad et al. [2] to
describe the flow of an Eyring-Powell fluid via a circular conduit. Malik et al. [29] investigated
the Eyring-Powell fluid in mixed convection flow. Chamkha et al. [8] discussed the uniform
wall heat flux and uniform wall temperature cases in which the Nusselt number, Sherwood
number, and skin friction parameters decreased in the presents of magnetic field and porous
medium increased due to imposition of fluid suction at the surface. Chamkha [6] investigated
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the effects of Joule heating and viscous dissipation discussed for three types of thermal boundary
conditions namely isoflux-isothermal, isothermal-isothermal, and isothermal-isoflux for the
Channe’s left-right walls. Takhar et al. [39] investigated the magnetic field, free stream velocity
and hall current characteristics of a rotating fluid layer flow over a moving plate. Impact of
mixed convection of fully developed polar fluid in a vertical channel has carried out by Chamkha
et al. [7]. Heat transfer characteristics of unsteady oscillators two viscous immiscible fluids has
been discussed via a horizontal channel by Umavathi et al. [40]. in their study Al-Mudhaf et
al. [4] numerically investigated the effects of Marangoni convection flow for MHD thermosolutal
in terms of heat generation and absorption. By employing finite-difference method a fluid layer
analysis is discussed for mixed convective nanofluid in a porous medium by Gorla et al. [14].

According to the findings of the preceding research, transport in porous medium flows is
critical in fuel cell technologies, geothermics, materials processing, trickling bed chromatography,
and other fields. Many of these applications include coupled heat and mass transport in
free convection boundary layer flows in porous media. The study of Casson fluid flow in a
porous medium is becoming increasingly important in modern technology and science, such
as petroleum drilling, polymer engineering, specific separation processes, food and paper
production, and other industrial operations.In this work, the flow of Casson nanofluid toward a
stretched porous surface with viscous dissipation, heat radiation, and chemical reaction must
be investigated.

2. Mathematical Flow Model of the Problem
∂u
∂x

+ ∂v
∂y

= 0, (2.1)

u
∂u
∂x

+v
∂u
∂y

=
(
υ+ 1

ρβc

)(
∂2u
∂x2 + ∂2u

∂y2

)
− 1

3ρδ∗c3
∂

∂x

{
2
(
∂u
∂x

)2
+2

(
∂v
∂y

)2
+

(
∂u
∂y

+ ∂v
∂x

)2} ∂u
∂x

− 1
6ρδ∗c3

∂

∂y

{
2
(
∂u
∂x

)2
+2

(
∂v
∂y

)2
+

(
∂u
∂y

+ ∂v
∂x

)2}(
∂u
∂y

+ ∂v
∂x

)
± gβ0(T −T∞)

ρ

± gβ1(C−C∞)
ρ

− µ

k
u, (2.2)

u
∂v
∂x

+v
∂v
∂y

=
(
υ+ 1

ρβc

)(
∂2v
∂x2 + ∂2v

∂y2

)
− 1

6ρδ∗c3
∂

∂x

{
2
(
∂u
∂x

)2
+2

(
∂v
∂y

)2
+

(
∂u
∂y

+ ∂v
∂x

)2}
·
(
∂u
∂y

+ ∂v
∂x

)
− 1

3ρδ∗c3
∂

∂y

{
2
(
∂u
∂x

)2
+2

(
∂v
∂y

)2
+

(
∂u
∂y

+ ∂v
∂x

)2} ∂v
∂y

± gβ0(T −T∞)
ρ

± gβ1(C−C∞)
ρ

− µ

k
u, (2.3)

u
∂T
∂x

+v
∂T
∂y

=α
(
∂2T
∂y2 + ∂2T

∂x2

)
+τ

{
DB

(
∂T
∂x

∂C
∂x

+ ∂T
∂y

∂C
∂y

)
+

(
DT

T∞

)[(
∂T
∂x

)2
+

(
∂T
∂y

)2]}
− 1

(ρc) f

∂qr

∂y
+ ν

ρcp

[(
∂u
∂x

)2
+

(
∂u
∂y

)2]
, (2.4)

u
∂C
∂x

+v
∂C
∂y

= DB

(
∂2C
∂x2 + ∂2C

∂y2

)
+ DT

T∞

(
∂2T
∂x2 + ∂2T

∂y2

)
−k(C−C∞)−γ; . (2.5)

Communications in Mathematics and Applications, Vol. 14, No. 2, pp. 685–705, 2023



Non-Newtonian Eyring-Powell-Casson Nanofluid Flow via Porous Medium. . . : D. Hymavathi 689

Boundary conditions are u = uw(x)= ax, v = 0, −k
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3. Similarity Transformation
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Nusselt number = Nux, Sherwood number =Shx and skin-friction coefficient = C f x,
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By using the similarity transformations described below:
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4. Numerical Solution of the Problem
The Keller-Box technique (Keller [23]) is used to obtain the numerical solution to the modelled
equations. Because of its quick convergence, this approach is chosen above many others. This
system is intrinsically stable and convergent to the second order. Furthermore, it passes the
Von Neumann stability test, which establishes the condition for the convergence of numerical
solutions to the real solution of PDEs through the use of consistency and stability of numerical
solutions. KBM is used to find the localised solution to equations (3.2)-(3.5). This is one of
the most commonly used approaches for getting approximate solutions to the boundary layer
issue. KBM has been frequently used to study laminar boundary layer flows, and its findings
outperform other techniques. The Keller-Box technique is made up of the following steps:

• First, the controlling equations must be written into a first order system of equations.

• The domain is discretized after decreasing the order of equations, allowing us to calculate
the estimated solution across each subdomain rather than the full domain. This produces
more accurate findings.

• In order to get finite difference equations, central difference derivatives and the average
of function midpoints are utilised.

• As Keller detailed, Newton’s technique is next applied to linearize the resulting equations.
And make a tridiagonal matrix out of them.

• Finally, the ultimate result is obtained by LU decomposition.

To apply the Keller-Box method, first construct the equations (3.2)-(3.5) as a system of first
order differential equations with certain variables, and then solve the resulting equations:

f ′ = p, (4.1)
f ′′ = p′ = q, (4.2)
θ = g ⇒ g′ = n, (4.3)
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ϕ= s ⇒ s′ = t, (4.4)
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The corresponding boundary conditions:

f (η)= 0, p(η)= 1,

n(η)=−Bi(1− g(η)), s(η)= 1, at η= 0,
p(η)→ 0, g(η)→ 0, s(η)→ 0, as η→∞. (4.8)

The system of differential equations must be discretized after getting the first-order system in
order to determine the estimated solution. Typically, discretization is accomplished by split the
domain into a consistent grid. A smaller grid yields more precision in numerical calculations:
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In this issue, we have set h = 0.001. Then, using central differences, difference equations are
produced. The mean averages of functions are used to replace them. The ordinary differential
system (4.1)-(4.7) is then transformed into the nonlinear algebraic equations shown below:
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The obtained equations by using Newton’s method for above equations are then linearized the
(i+1)th iterate can be written as
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The above terms substituted into the equations (4.10)-(4.16) and a linear tri-diagonal system is
acquired as
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j−1)

2

= 0, (4.22)

1
Pr

(
1+ 4

3
N

) ((n)(i)
j +δ(n)(i)

j )− ((n)(i)
j−1 +δ(n)(i)

j−1)

h j

+
 (( f )(i)

j +δ( f )(i)
j )+ (( f )(i)

j−1 +δ( f )(i)
j−1)

2


·
 ((n)(i)

j +δ(n)(i)
j )+ ((n)(i)

j−1 +δ(n)(i)
j−1)

2

+Nb

 ((t)(i)
j +δ(t)(i)

j )+ ((t)(i)
j−1 +δ(t)(i)

j−1)

2


 ((n)(i)

j +δ(n)(i)
j )+ ((n)(i)

j−1 +δ(n)(i)
j−1)

2

+Nt

 ((n)(i)
j +δ(n)(i)

j )+ ((n)(i)
j−1 +δ(n)(i)

j−1)

2

2

+Ec

 ((q)(i)
j +δ(q)(i)

j )+ ((q)(i)
j−1 +δ(q)(i)

j−1)

2

2

+Q

 ((g)(i)
j +δ(g)(i)

j )+ ((g)(i)
j−1 +δ(g)(i)

j−1)

2

= 0,

(4.23)

1
Pr

 ((t)(i)
j +δ(t)(i)

j )− ((t)(i)
j−1 +δ(t)(i)

j−1)

h j

+Le

 (( f )(i)
j +δ( f )(i)

j )+ (( f )(i)
j−1 +δ( f )(i)

j−1)

2
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 ((t)(i)
j +δ(t)(i)

j )+ ((t)(i)
j−1 +δ(t)(i)

j−1)

2

+ Nt
Nb

 ((n)(i)
j +δ(n)(i)

j )− ((n)(i)
j−1 +δ(n)(i)

j−1)

h j


−R

 ((s)(i)
j +δ(s)(i)

j )+ ((s)(i)
j−1 +δ(s)(i)

j−1)

2

= 0, (4.24)

(δ( f )(i)
j −δ( f )(i)

j−1)− h
2

(δ(p)(i)
j +δ(p)(i)

j−1)= (r1) j− 1
2
, (4.25)

(δ(p)(i)
j −δ(p)(i)

j−1)− h
2

(δ(q)(i)
j )+ (δ(q)(i)

j−1)= (r2) j− 1
2
, (4.26)

(δ(g)(i)
j )− (δ(g)(i)

j−1)− h
2

(δ(n)(i)
j )+ (δ(n)(i)

j−1)= (r3) j− 1
2
, (4.27)

(δ(s)(i)
j )− (δ(s)(i)

j−1)− h
2

(δ(t)(i)
j )+ (δ(t)(i)

j−1)= (r4) j− 1
2
, (4.28)

(1+ω)

δ(q)(i)
j −δ(q)(i)

j−1

h j

+
δ( f )(i)

j +δ( f )(i)
j−1

2

δ(q)(i)
j +δ(q)(i)

j−1

2

−
δ(p)(i)

j +δ(p)(i)
j−1

2

2

−ωλ
δ(q)(i)

j +δ(q)(i)
j−1

2

2 δ(q)(i)
j −δ(q)(i)

j−1

h j

±β
δ(g)(i)

j +δ(g)(i)
j−1

2


±δ

δ(s)(i)
j +δ(s)(i)

j−1

2

+K

δ(p)(i)
j +δ(p)(i)

j−1

2

 = (r5) j− 1
2
, (4.29)

1
Pr

(
1+ 4

3
N

) (δ(n)(i)
j )− (δ(n)(i)

j−1)

h j

+
 (δ( f )(i)

j )+ (δ( f )(i)
j−1)

2

 (δ(n)(i)
j )+ (δ(n)(i)

j−1)

2


+Nb

 (δ(t)(i)
j )+ (δ(t)(i)

j−1)

2

 (δ(n)(i)
j )+ (δ(n)(i)

j−1)

2

+Nt

 (δ(n)(i)
j )+ (δ(n)(i)

j−1)

2

2

+Ec

δ(q)(i)
j +δ(q)(i)

j−1

2

2

+Q

δ(g)(i)
j +δ(g)(i)

j−1

2

= (r6) j− 1
2
, (4.30)

1
Pr

δ(t)(i)
j −δ(t)(i)

j−1

h j

+Le

δ( f )(i)
j +δ( f )(i)

j−1

2

δ(t)(i)
j +δ(t)(i)

j−1

2

+ Nt
Nb

δ(n)(i)
j −δ(n)(i)

j−1

h j


−R

δ(s)(i)
j +δ(s)(i)

j−1

2

= (r7) j− 1
2
, (4.31)

where

(r1) j− 1
2
=−( f j − f j−1)+ h j

2
(p j + p j−1),

(r2) j− 1
2
=−(p j − p j−1)+ h j

2
(q j + q j−1),
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(r3) j− 1
2
=−(g j − g j−1)+ h j

2
(n j +n j−1),

(r4) j− 1
2
=−(s j − s j−1)+ h j

2
(t j + t j−1),

(r5) j− 1
2
=−(1+ω)(q j − q j−1)−h j

( f j + f j−1

2

)( q j + q j−1

2

)
+h j

( p j + p j−1

2

)2

+ ωλh j

( q j + q j−1

2

)2 ( q j − q j−1

h j

)
±βh j

( g j + g j−1

2

)
±δh j

( s j + s j−1

2

)
− Kh j

( p j + p j−1

2

)
,

(r6) j− 1
2
=− 1

Pr

(
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3
N

)
(n j −n j−1)−h j

( f j + f j−1

2

)(n j +n j−1

2

)
−h j Nb

( t j + t j−1

2

)
·
(n j +n j−1

2

)
−h j Nt

(n j +n j−1

2

)2
−h j Ec

( q j + q j−1

2

)2
−h jQ

( g j + g j−1

2

)
,

(r7) j− 1
2
=− 1

Pr
(t j − t j−1)−h j Le

( f j + f j−1

2

)( t j + t j−1

2

)
−h j

Nt
Nb

(n j −n j−1

h j

)
+h jR

( s j + s j−1

2

)
.

Upon substitution of (i+1) boundary conditions are reduced into

δ f 0 = 0, δp0 = 0,

δn0 = 0, δs0 = 0,

δpJ = 0, δgJ = 0, δsJ = 0. (4.32)

Block tridiagonal matrix is obtained from linearized difference equations (4.25)-(4.32) can be
written as Aδ= B where A is J×J block tridiagonal matrix and order of each block is J+1×J+1.
Whereas δ and B are respectively column matrices of order J×1. The δ is determined by LU
factorization, the (i+1)th iterate is obtained above mentioned Newton’s method. Obtained
solutions start with η= 0 with step size h = 0.001 for o = η= η∞ the convergence criterion has
been taken for Iteration and stopped at

∣∣δ(q0)i∣∣< ϵ is satisfied for ϵ= 10−7.

5. Validation of Numerical Results
To know the exactness of our results we compare with previous study with a specific case the
acquired numerical results are checked and verified for ω= λ= β= δ== k1 = N = Nb = Nt =
Ec=Q =Le= K = 0 and Bi→∞ we are sure about the accuracy of our obtained in geometrically.

Table 1

−θ′(0)

Pr Present study Validation with Malik et al. [30] Validation with Rashmi et al. [33]

0.7 0.8646285 0.86461923 0.862548

2.0 0.9113685 0.91135769 0.91136

3.0 1.89540327 1.89540340 1.89540
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6. Results and Discussions
In this part, all of the numerical results from the figures are displayed visually to discuss
the many resultant parameters encountered in the current study. The Keller-Box technique is
efficient and impressive enough for use in dealing with fluid flow difficulties.

 

  (a)
 

  (b)

 

  (c)

Figure 1

Figure 1(a)-1(c) depict the distribution of velocity, temperature, and concentration of the
fluid with raising of Eyring-Powell fluid parameter ω. From Figures it is observed that as
Eyring-Powell fluid parameter ω increases the momentum boundary layer thickness, and
concentration boundary layer thickness are increasing whereas the thermal boundary layer
thickness is decreasing, this is all only the cause of Eyring-Power fluids are share thinning
fluids the velocity gets high at the share rate increases.

Biot number is characterizing the heat transfer resistance inside a solid body. Biot number is
the ratio of internal conductive resistance to external convective resistance it is used determine
lumped heat analysis temperature gradients within the particle should be considered in order
to correctly predict the heat transfer rate to the surrounding fluid. From Figures 2(a)-2(c) it is
depict that Biot number remarkably shown the power of convective heating. Layer Biot number
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implicit stronger convective heating to which velocity and temperature rises gradually with
increasing of Biot number. While concentration boundary layer thickness is decreasing.

 

  (a)
 

  (b)

 

  (c)

Figure 2

 

  (a)
 

  (b)
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  (c)

Figure 3

 

  (a)
 

  (b)

 

  (c)

Figure 4
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It is evident that the porosity is a significant parameter for characterization of material
microstructures. It corresponds to the volume of pores that can contain fluid related to the
volume of the material. Because of this nature Figure 3(a)-3(b) shows that as the porosity
parameter K increases so as the velocity, concentration profiles of the fluid increases but the
thermal boundary layer thickness is decreases.

It is well known that increasing in radiation parameter enhances the energy transport inside
the fluid, consequently rate of heat transfer at the surface increased. So from Figures 4(a)-4(c)
it is depict that the boundary layer thickness of momentum, thermal, and concentration of the
fluid will increase gradually.

 

  (a)
 

  (b)

 

  (c)

Figure 5

The Eckert number expresses the conversion of kinetic energy into internal energy by
work done against the viscous fluid stress. As a result it is observed that the thermal and
momentum boundary layer becomes thinner with large value of Eckert number. So that the
velocity, and temperature profiles of the fluid is increasing, while the boundary layer thickness
of the concentration of the fluid is reduces gradually which are shown in Figure 5(a)-5(c).
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Figure 6

 

  (a)
 

  (b)

 

  (c)

Figure 7
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Effect of Lewis number is analysed through Figure 6 nanoparticle concentration is a
decreasing function of Le. Since stronger Lewis number intimates a weaker Brownian diffusion
coefficient which result relatively small penetration depth for the concentration boundary layer,
i.e., with an increasing value of Lewis number the concentration profile is decreasing.

Large Brownian motion parameter Nb causes enlargement of the liquid temperature this
ensures on the reason of slow expanse in nanoparticles measurement with Nb. Because of this
nature from Figures 7(a)-7(b) it can revealed that as an increasing in the Brownian motion
parameter Nb, boundary layer thickness of the momentum, temperature, and concentration
of the fluid is thinner hence the velocity, temperature, and nanoparticle volume concentration
profiles are increasing.

 

(a)
  

(b)

 

 (c)

Figure 8

Figures 8(a)-8(c) revels that effect of Thermophoresis parameter Nt on velocity, temperature
and nanoparticle volume concentration profiles. Thermophoresis mechanism is associated with
elements averaged Brownian motion under a steady thermal gradient. This phenomenon leads
to disperse the nanoparticles from the hot surface to the ambient fluid, since the nanometer
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size particles experience resistance from heated surface. Therefore the thermophoretic force
permits nanoparticles to import heat from the surface to the moving fluids consequently
thicken concentration boundary layer hence the velocity, and nanoparticles concentration profile
decreases, and the boundary layer thickness of the temperature is thinner as an increasing
value of the thermophoretic parameter Nt.

7. Conclusions
This work looks at the physical characteristics of Eyring-Powell Casson nanofluid on a stretched
surface. The flow control issue’s numerical solution The characteristics of non-Newtonian Casson
nanofluid mixed convection boundary layer flow through porous media have been finished and
characterised for changing physical parameter values. The following are the study’s key findings:

• As the Eyring-Powell fluid parameter increases in both flow circumstances, the velocity
profile and momentum boundary layer thickness increase.

• the curves of other velocity profile for various values β and at fixed values of other
parameters. The gradual increasing in assisting flow and slow down the in the opposing
flow with various values of β.

• the curves of f ′ for difference of mass buoyancy parameter δ are presented at specific
values of other parameters and for opposing and assisting flows the velocity profile can be
seen as for increase and decreasing respectively .

• Recorded for higher values on Eyring-Powell fluid parameter ω and heat of fluid rises for
opposing assisting flow.

• Temperature rises gradually with increasing of Biot number rises for opposing assisting
flow.

• Also observed that temperature falls down very significantly with increasing values of
Prandtl number. In both cases of opposing and assisting flows.

• The concentration contour increases with increase in Eyring-Powell fluid parameter ω
rises for opposing assisting flow.

• The concentration contours differ that Brownian motion parameter Nb and
thermophoresis parameter Nt. The concentration and the solutal buoyancy layer diameter
within increasing in the thermophoresis parameter, duration of the decrease in the
concentration and solutal buoyancy layer diameter is seen in that increasing rates of the
Brownian motion parameter.

• The concentration buoyancy layer thickness decreases with increase in Le for both cases
which is observed
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