
Communications in Mathematics and Applications
Vol. 11, No. 1, pp. 113–120, 2020
ISSN 0975-8607 (online); 0976-5905 (print)
Published by RGN Publications http://www.rgnpublications.com

DOI: 10.26713/cma.v11i1.1310

Research Article

Strong Convergence Results for Continuous
Hemicontractive Mappings in Hilbert Spaces
B. G. Akuchu , A. O. Okoro, K. T. Nwigbo* and P. C. Chukwuyere
Department of Mathematics University of Nigeria, Nsukka, Nigeria
*Corresponding author: kenule.nwigbo@unn.edu.ng

Abstract. We use an iteration process due to Rafiq (A. Rafiq, On Mann iteration in Hilbert spaces,
Nonlinear Analysis 66 (2007), 2230 – 2236) to approximate fixed points of continuous hemicontractive
mappings in Hilbert spaces. We drop the compactness condition on the domain of the operator, imposed
in [1] and [26]. Our results extend several well known results in the literature and complement the
results in [1] and [26].
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1. Introduction
Let H be a real Hilbert space and T : H → H, be a self map of H. We denote by F(T) := {x ∈ H :
Tx = x}, the set of fixed points of T . Then T is called:

(i) Nonexpansive (see e.g. [13]) if

‖Tx−T y‖ ≤ ‖x− y‖ for all x, y ∈ H .

(ii) Pseudocontractive (see e.g. [5]) if

‖Tx−T y‖2 ≤ ‖x− y‖2 +‖(I −T)x− (I −T)y‖2, for all x, y ∈ H .

(iii) Hemicontractive (see e.g. [1]) if F(T) 6= ; and

‖Tx− p‖2 ≤ ‖x− p‖2 +‖x−Tx‖2, for all x ∈ H, p ∈ F(T). (1.1)
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It is easily seen that if a pseudocontractive mapping has a nonempty fixed point set, then it is a
hemicontraction. Hence the class of pseudocontracion mappings with a nonempty fixed-point
set is a subclass of the class of hemicontractive mappings. In [17], Rhoades shows that this
inclusion is proper.

In the recent past, many authors (see e.g. [1, 2], [4–16], [18–25]) have studied existence
and convergence results of fixed points of nonexpansive mappings and their generalizations,
amongst which are pseudocontractions, hemicontractions and asymptotically hemicontractions.
In order to obtain the existence and convergence results, authors (see e.g. [1]) have placed
compactness, compactness-type and several other conditions on the domain of the operator or
on the operator itself.

The construction of fixed points of nonexpansive mappings and their generalizations is
achieved through iterative search techniques amonst which are the Mann, Mann-type, Ishikwa
and Ishikawa-type schemes. Let X be a linear space and T : X → X be a map. The Mann
iteration scheme (see e.g. [17]) is the sequence generated from an arbitrary x0 ∈ X by

xn+1 =αnxn + (1−αn)Txn, (1.2)

where {αn} is a real nonnegative sequence satisfying certain conditions.
In 2007, Rafiq [1] studied the convergence to fixed points of hemicontractive mappings in

Hilbert spaces using a Mann-type iteration scheme generated from an arbitrary x0 ∈ H by
xn =αnxn−1 + (1−αn)Txn, where {αn} is a real sequence in [0,1], satisfying certain conditions.
More precisely, the author stated and proved the following theorems:

Theorem 1 ([1]). Let K be a compact convex subset of a real Hilbert space H; T : K → K be a
hemicontractive map. Let {αn} be a real sequence in [0,1] satisfying {αn} ⊂ [δ,1−δ] for some
δ ∈ (0,1). For arbitrary x0 ∈ K , define the sequence {xn} by xn =αnxn−1 + (1−αn)Txn. Then {xn}
converges strongly to a fixed point of T .

Corollary 1 ([1]). Let H,K T be as in Theorem 1 and {αn} be a real sequence in [0,1] satisfying
{αn}⊂ [δ,1−δ] for some δ ∈ (0,1). Let PK : H → K be the projection operator of H onto K . Then
the sequence xn = PK (αnxn−1 + (1−αn)Txn), n ≥ 1 converges strongly to a fixed point of T .

We observe that the compactness condition imposed on the subset K is rather strong. It is
our purpose in this paper to prove convergence results for continuous hemicontractive mappings
in Hilbert spaces, using the iteration process due to Rafiq, without imposing the condition that
K be compact. Furthermore, we show that if error terms are added as in [26], our results still
hold, without any compactness assumption on the subset K. Our results generalize many well
known results in the literature and compliment the results of Rafiq [1].

Example 1. Let R denote the reals with the usual norm. Define T : R → R by Tx =−2x.
Observe that

〈x−Tx− (y−T y), x− y〉 = 3|x− y|2 ≥ 0.

Thus, T is pseudocontractive. Since ; 6= F(T)= {0}, then T is hemicontractive. It is easily seen
that T is continuous.
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Before we state and prove our main results, we give some lemmas which will be useful in
the sequel:

Lemma 1 (see e.g. [14]). Let {an}, {bn} and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1+δn)an +bn, for all n ≥ 1.

If
∑
δn < ∞ and

∑
bn < ∞, then liman exists. If in addition {an} has a subsequence which

converges strongly to zero, then liman = 0.

Lemma 2 (see e.g. [3,11]). Let H be a real Hilbert space. Then for all x, y ∈ H, and λ ∈ [0,1] the
following well-known identity holds:

‖(1−λ)x+λy‖2 = (1−λ)‖x‖2 +λ‖y‖2 −λ(1−λ)‖x− y‖2 . (1.3)

2. Main Results
We now state and prove our main results.

Lemma 3. Let H be a real Hilbert space and C be a nonempty closed and convex subset of H.
Let T : C ⊆ H → C be a hemicontractive mapping. Let {xn} be the sequence generated from an
arbitrary x0 ∈ C by

xn =αnxn−1 + (1−αn)Txn, (2.1)

where {αn} is a real sequence in (0,1) satisfying 0 < a ≤ αn ≤ b < 1 for some real constants
a,b ∈ (0,1).
Then

(a) lim‖xn − p‖ exists, where p ∈ F(T) := {x ∈ C : Tx = x}

(b) lim‖xn −Txn‖ = 0

Proof. Computing as in [1], using (1.3), (2.1) and the fact that T is hemicontractive, we have,
for p ∈ F(T)

‖xn − p‖2 = ‖αn(xn−1 − p)+ (1−αn)(Txn − p)‖2

=αn‖xn−1 − p‖2 + (1−αn)‖Txn − p‖2 −αn(1−αn)‖xn−1 −Txn‖2

≤αn‖xn−1 − p‖2 + (1−αn)[‖xn − p‖2 +‖xn −Txn‖2]−αn(1−αn)‖xn−1 −Txn‖2

=αn‖xn−1−p‖2+(1−αn)‖xn−p‖2+αn
2(1−αn)‖xn−1−Txn‖2 −αn(1−αn)‖xn−1 −Txn‖2

=αn‖xn−1 − p‖2 + (1−αn)‖xn − p‖2 −αn(1−αn)2‖xn−1 −Txn‖2 .

This implies

‖xn − p‖2 ≤ ‖xn−1 − p‖2 − (1−αn)2‖xn−1 −Txn‖2 . (2.2)

Hence {‖xn − p‖} is a monotone deceasing sequence of positive real numbers which is bounded
below, so that lim‖xn − p‖ exists.

From (2.2) and the condition 0< a ≤αn ≤ b < 1, we have

‖xn − p‖2 ≤ ‖xn−1 − p‖2 − (1−b)2‖xn−1 −Txn‖2 .
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This implies∑
(1−b)2‖xn−1 −Txn‖2 ≤∑

[‖xn−1 − p‖2 −‖xn − p‖2]

≤ ‖x0 − p‖2 .

Hence

lim‖xn−1 −Txn‖ = 0 . (2.3)

Also,

‖xn −Txn‖ =αn‖xn−1 −Txn‖ ≤ ‖xn−1 −Txn‖→ 0 as n →∞.

Remark 1. Observe that if T : C → C is a hemicontractive map, then for every fixed u ∈ C and
t ∈ (0,1), the operator St : C → C defined for all x ∈ C by

Stx = tu+ (1− t)Tx

satisfies

‖Stx−St y‖ ≤ (1− t)‖x− y‖, for all x, y ∈ C .

Since t ∈ (0,1), it follows that St is a contraction map and hence has a unique fixed point xt in
C. This implies that there exists a unique xt ∈ C such that

xt = tu+ (1− t)Txt.

Thus the implicit iteration process (2.1) is defined in C.

Theorem 2. Let H be a real Hilbert space and C be a nonempty closed and convex subset of
H and let T : C ⊆ H → C be a continuous hemicontractive mapping. Then the sequence {xn}
generated from an arbitrary x0 ∈ C by xn =αnxn−1 + (1−αn)Txn, where {αn} is a real sequences
in (0,1) satisfying 0< a ≤αn ≤ b < 1 for some real constants a,b ∈ (0,1), converges strongly to a
fixed point of T .

Proof. Using (2.1) and (2.3), we have

‖xn − xn−1‖ = (1−αn)‖xn−1 −Txn‖ ≤ ‖xn−1 −Txn‖→ 0 as n →∞. (2.4)

Now, using (2.1), (2.3), (2.4) and for any positive integers n and m with m > n, we have

‖xn − xm‖ = ‖αn(xn−1 − xm)+ (1−αn)(Txn − xm)‖
≤αn‖xn−1 − xm‖+ (1−αn)‖Txn − xm‖
≤αn‖xn−1 − xm‖+ (1−αn)[‖Txn − xn−1‖+‖xn−1 − xm)‖]

≤ ‖xn−1 − xm‖+‖Txn − xn−1‖
≤ ‖xn−1−xn‖+‖xn−xn+1‖+. . .+‖xm−1−xm‖+‖Txn−xn−1‖ → 0 as n,m →∞.

Therefore, {xn} is a Cauchy sequence in C and thus xn → z ∈ C. Since T is continuous, we have
Txn → Tz. From Lemma 3(b), we have 0 = lim‖xn −Txn‖ = ‖z−Tz‖. This implies z ∈ F(T).
Setting z = p in Lemma 3(a), our proof is complete.

Corollary 2. Let H, C and {αn} be as in Theorem 2. Let T : C → C be a continuous pseudo-
contractive mapping with a non-empty fixed point set. Then starting from an arbitrary x0 ∈ C,
the sequence {xn} generated by (2.1) converges strongly to a fixed point of T .
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Proof. Every pseudocontractive mapping with a non empty fixed point set is a hemicontraction.
Hence the proof follows from the proof of Theorem 2 above.

Corollary 3. Let H, C, T and {αn} be as in Theorem 2. Let PC : H → C be the projection operator
of H onto C. Then the sequence {xn} defined iteratively by xn = PC(αnxn−1 + (1−αn)Txn), n ≥ 1,
converges strongly to a fixed point of T .

Proof. Using the fact that PC is nonexpansive, the computations and analyses follow as in the
proof of Theorem 2 above. This completes our proof.

Remark 2. If error terms are added to (2.1) (as in [26]), the computations and analyses still
follow through. We simply impose the boundedness condition on the subset C in order to obtain
our results.

More precisely, the author in [26] stated and proved the following theorem:

Theorem 3 ([26]). Let K be a compact convex subset of a real Hilbert space H; T : K → K a
continuous hemicontractive map. Let {an}, {bn} and {cn} be real sequences in [0,1] such that
an +bn + cn = 1 and satisfying

(a) bn ⊂ [δ,1−δ] for some δ ∈ (
0, 1

2

)
(b)

∑
cn <∞

For arbitrary x0 ∈ K , define the sequence {xn} by

xn = anxn−1 +bnTxn + cnun,

where {un} is an arbitrary sequence in K . Then {xn} converges strongly to a fixed point of T .

We can drop the compactness assumption imposed on K as in the following theorem:

Theorem 4. Let C be bounded, closed and convex subset of a real Hilbert space H; T : C → C be
a continuous hemicontractive map. Let {an}, {bn} and {cn} be real sequences in [0,1] such that
an +bn + cn = 1 and satisfying

(a) bn ⊂ [δ,1−δ] for some δ ∈ (
0, 1

2

)
(b)

∑
cn <∞

For arbitrary x0 ∈ C, define the sequence {xn} by

xn = anxn−1 +bnTxn + cnun, (2.5)

where {un} is an arbitrary sequence in C. Then {xn} converges strongly to a fixed point of T .

Proof. Let p ∈ F(T). Computing as in [26], we obtain the following:

(i) lim‖xn−1 −Txn‖ = 0

(ii) lim‖xn −Txn‖ = 0

(iii) lim‖xn − p‖ exists (using [26, Lemma 1 and eq. (3.6)]).

Furthermore, letting M = diam(C), using (i) and hypothesis (b) of the theorem, we have

‖xn − xn−1‖ = ‖bn(Txn − xn−1)+ cn(un − xn−1)‖ ≤ bn‖Txn − xn−1‖+ cn‖un − xn−1‖
≤ ‖Txn − xn−1‖+Mcn → 0 as n →∞ .
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Hence,

lim‖xn − xn−1‖ = 0 . (2.6)

Next, using (i), (2.5), (2.6) and hypothesis (b) of the theorem and for any two positive integers
m and n with m > n, we have

‖xn − xm‖ = ‖an(xn−1 − xm)+bn(Txn − xm)+ cn(un − xm)‖
≤ an‖xn−1 − xm‖+bn‖Txn − xm‖+ cn‖un − xm‖
= an‖xn−1 − xm‖+ [1−an − cn]‖Txn − xm‖+ cn‖un − xm‖
≤ an‖xn−1 − xm‖+ [1−an]‖Txn − xm‖+Mcn

≤ an‖xn−1 − xm‖+ [1−an][‖Txn − xn−1‖+‖xn−1 − xm‖]+Mcn

≤ ‖xn−1 − xm‖+‖Txn − xn−1‖+Mcn

≤ ‖xn−1 − xn‖+‖xn − xn+1‖+. . .+‖xm−1 − xm‖+‖Txn − xn−1‖+Mcn → 0 as n,m → ∞.

Therefore, {xn} is a Cauchy sequence in C and thus xn → z ∈ C. Since T is continuous, we have
Txn → Tz. From (ii), we have 0= lim‖xn −Txn‖ = ‖z−Tz‖. This implies z ∈ F(T). Setting z = p
in (iii), our proof is complete.

3. Further Research
It would be of interest if the results can be proven in arbitrary Banach spaces. Furthermore,
relaxing the continuity condition placed on the operators would also be interesting.
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