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1. Introduction
Our immune system is a complicated network of cells, tissues and organs to keep us healthy and
fight off diseases and infection. The immune system is composed of two major parts: the innate
immune system and adaptive immune system. The macrophages and neutrophils of the innate
immune system provide a first line of defense against many common micro-organisms and are
essential for the control of common bacterial infections. However, they cannot always eliminate
infectious organisms and there are some pathogens that they cannot recognize. Moreover,
because there is a delay of 4-7 days before the initial adaptive immune response takes effect,
the innate immune response has a critical role in controlling infections during this period.

Immunodeficiency (or immune deficiency) is a state in which the immune system’s ability
to fight infectious disease is compromised or entirely absent. Primary immunodeficiencies are
disorders in which part of the body’s immune system is missing or does not function normally.
Most of the primary immunodeficiencies are genetic disorders. Majority are diagnosed in
children under the age of one, although milder forms may not be recognized until adulthood.
About 1 in 500 people in the United States are born with primary immunodeficiency. People with
primary immunodeficiencies are more prone to infections. So in case of an epidemic, people with
primary immunodeficiencies are more likely to be infected than other people [5], [6], [7], [8], [9].

The delays or lags can represent gestation times, incubation periods, transport delays or
can simply lump complicated biological processes together. Such models have the advantage
of combining a simple, intuitive derivation with a wide variety of possible behavior regimes
for a single system. Delay models are becoming more common, appearing in many branches of
biological modelling. They have been used for describing several aspects of infectious disease
dynamics namely primary infection, drug therapy and immune response. Delays have also
appeared in the study of chemostat models, epidemiology, the respiratory system, tumor growth
and neural networks. In the context of epidemiology, delays can be caused by a variety of
factors. The most common reasons for a delay are (i) the latency of the infection in a vector
and (ii) the latency of the infection in an infected host. In these cases, some time should elapse
before the level of infection in the infected host or the vector reaching a sufficiently high level to
transmit the infection further [10].

In Section 2, we have formulated the mathematical model. Basic properties of the model
are discussed in Section 3. In Section 4, the global stability of the disease-free equilibrium
is analysed. Global stability of endemic equilibrium is discussed in Section 5. Numerical
simulations of the mathematical model are given using MATLAB in Section 6. Numerical
simulations are discussed in Section 7.

2. Mathematical Model
Let us consider the following continuous time SIR (Susceptible-Infected-Recovered) model with
distributed delays. Let S(t), A(t), I(t) and R(t) denote the proportion of population susceptible
to disease without primary immunodeficiency disorders, population susceptible to disease with
primary immunodeficiency disorders, population of infective members and members who have
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been removed from the possibility of infection at time t, respectively.
dS(t)

dt
= bpQ−µS(t)−βαqS(t)

∫ h

0
f (τ)I(t−τ)dτ ,

dA(t)
dt

= b(1− p)Q−µA(t)−β1α1A(t)
∫ h

0
f (τ)I(t−τ)dτ ,

dI(t)
dt

=βαqS(t)
∫ h

0
f (τ)I(t−τ)dτ+β1α1A(t)

∫ h

0
f (τ)I(t−τ)dτ− (µ+γ+δ)I(t) ,

dR(t)
dt

=µR(t)+γI(t) . (1)

Let us consider this as system (1), where

• b is the birth rate of the population.

• α is the immunity rate of population S.

• α1 is the immunity rate of population A.

• p is rate of population without primary immunodeficiency.

• Q denotes the constant population.

• µ is the natural death rate.

• δ is the death rate due to infection.

• q is the rate at which population A comes in contact with population S.

• γ is the recovery rate.

• β is the transmission rate of population S.

• β1 is the transmission rate of population A.

We assume the following condition:

• β1 > β, that is the infection rate of the population with primary immunodeficiency is
greater than that of population without primary immunodeficiency.

Infectiousness is assumed to vary over time from the initial time of infection until a duration
h has passed and the function f (τ) denotes the fraction of vector population in which the time
taken to become infectious is τ. Here β, β1 and f (τ) are chosen such that it is non negative and
continuous on [0,h] and assume for∫ h

0
f (τ)dτ= 1 . (2)

System (1) has the disease free equilibrium

E0 =
(bpQ

µ
,
b(1− p)Q

µ
,0,0

)
Furthermore, if R0 > 1, the system (1) has an unique endemic equilibrium

E∗ = (S∗, A∗, I∗,R∗),

where

S∗ = bpQ
µ+βαqI∗

, A∗ = b(1− p)Q
µ+β1α1I∗

,
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where I∗ is the positive root of the following equation.

A1I∗2 + A2I∗+ A3 = 0, (3)

where

A1 =ββ1αα1q > 0 ,

A2 = µ(βαq+β1α1)
µ+γ+δ − ββ1αα1bqQ

µ+γ+δ ,

A3 =µ2 −R0 < 0 .

The basic reproduction number (usually denoted by R0), is a significant epidemiological quantity,
which plays an important role in the dynamics of disease transmission. It is a useful metric
that helps us to predict whether an infectious disease will spread through a population or not.
If it is less than one, the infection will die out in the long run, otherwise, the infection will keep
persistent in the population.

The basic reproduction number of the model is given by

R0 = bQ(βαpq+β1α1(1− p))
µ+γ+δ . (4)

We propose the following discrete epidemic model which is derived from system (1), by applying
variation of Backward Euler Method:

S(t+1)−S(t)= bpQ−µS(t+1)−βαqS(t+1)
m∑

j=0
f ( j)I(p− j) ,

A(t+1)− A(t)= b(1− p)Q−µA(t+1)−β1α1A(t+1)
m∑

j=0
f ( j)I(p− j) ,

I(t+1)− I(t)= [βαqS(t+1)+β1α1A(t+1)]
m∑

j=0
f ( j)I(p− j)− (µ+γ+δ)I(t+1) ,

R(t+1)−R(t)= γI(t+1)−µR(t+1) . (5)

This can be taken as system (5), where f ( j) ≥ 0, j = 0,1,2, . . . ,m. For simplicity, we may

assume that
m∑

j=0
f ( j) = 1. Similar to the continuous case system, System (5) has a disease

free equilibrium,

E0 =
(bpQ

µ
,
b(1− p)Q

µ
,0,0

)
.

Furthermore, if R0 > 1, system (5) has an unique endemic equilibrium

E∗ = (S∗, A∗, I∗,R∗)

with initial conditions

S(t)=φ(t)≥ 0, I(t)=ψ(t)≥ 0, A(t)= θ(t)≥ 0, R(t)=σ(t)≥ 0

t =−m,−(m−1), . . . ,−1

S(0)> 0, A(0)> 0, I(0)> 0, R(0)> 0 . (6)

We have the same threshold value, that is, the basic reproduction number,

R0 = bQ(βαpq+β1α1(1− p))
µ+γ+δ .
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3. Basic Properties
For system (5), since the variable R does not appear in the first three equations, it is sufficient
to consider the 3 dimensional system:

S(t+1)−S(t)= bpQ−µS(t+1)−βαqS(t+1)
m∑

j=0
f ( j)I(p− j) ,

A(t+1)− A(t)= b(1− p)Q−µA(t+1)−β1α1A(t+1)
m∑

j=0
f ( j)I(p− j) ,

I(t+1)− I(t)= [βαqS(t+1)+β1α1A(t+1)]
m∑

j=0
f ( j)I(p− j)− (µ+γ+δ)I(t+1) . (7)

This can be taken as system (7) with initial conditions

S(t)=φ(t)≥ 0, I(t)=ψ(t)≥ 0, A(t)= θ(t)≥ 0

t =−m,−(m−1), . . . ,−1

S(0)> 0, A(0)> 0, I(0)> 0 . (8)

Lemma 3.1. Let (S(t), A(t), I(t)) be the solution of system (7) with initial condition (8). Then
S(t)> 0, A(t)> 0 and I(t)> 0.

Proof. Assume that S(p− j), A(p− j), I(p− j)> 0, j = 0,1,2, . . . ,m. Then system (7) becomes

S(t+1)

{
1+µ+βαq

m∑
j=0

f ( j)I(p− j)

}
= bpQ+S(t)> 0 ,

A(t+1)

{
1+µ+β1α1

m∑
j=0

f ( j)I(p− j)

}
= b(1− p)Q+ A(t)> 0 ,

I(t+1)(µ+γ+δ)= I(t)+
{

[βαqS(t+1)+β1α1A(t+1)]
m∑

j=0
f ( j)I(p− j)

}
> 0 .

From the first equation, we have S(t+1) > 0 and by the second and third equation, we have
A(t+1)> 0, I(t+1)> 0. Hence by induction, we prove this lemma.

Lemma 3.2. Any solution (S(t), A(t), I(t)) of system (7) with initial condition (8) satisfies

limsup
t→∞

(S(t), A(t), I(t))≤ bQ
µ

.

Proof. Let V (t)= S(t)+ A(t)+ I(t). From system (7) we have that

V (t+1)−V (t)= bQ−µV (t+1)− (γ+δ)I(t+1) ,

V (t+1)−V (t)≤ bQ−µV (t+1)

from which we have that

limsup
t→∞

(S(t), A(t), I(t))≤ bQ
µ

.

Hence the proof is complete.
Now put

Š = liminf
t→∞ S(t), Ŝ = limsup

t→∞
S(t) ,
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Ǎ = liminf
t→∞ A(t), Â = limsup

t→∞
A(t) ,

Ǐ = liminf
t→∞ I(t), Î = limsup

t→∞
I(t) .

Lemma 3.3. For any solution (S(t), A(t), I(t)) of system (7) with initial condition (8), we have
that

0< bpQ
µ+βαqÎ

< Š ≤ Ŝ ≤ bpQ
µ+βαqǏ

≤ bQ
µ

,

0< b(1− p)Q
µ+β1α1 Î

< Ǎ ≤ Â ≤ b(1− p)Q
µ+β1α1 Ǐ

≤ bQ
µ

,

βαqŠ+β1α1 Ǎ
µ+γ+δ ≤ 1 if Ǐ > 0 ,

βαqŜ+β1α1 Â
µ+γ+δ ≥ 1 if Î > 0 .

4. Global Stability of the Disease-free Equilibrium
Lemma 4.1. If R0 ≤ 1, then

lim
t→∞S(t)= bpQ

µ
, lim

t→∞ A(t)= b(1− p)Q
µ

, lim
t→∞ I(t)= 0

and E0 is globally asymptotically stable.

Proof. For any ε> 0, there exists a positive integer t0 ≥ 0 such that

S(t+1)≤ bpQ
µ

+ε for all t ≥ t0 ,

A(t+1)≤ b(1− p)Q
µ

+ε for all t ≥ t0 .

Consider the following sequence {w(t)}+∞t=t0
defined by

w(t)= u(t)+v(t)+ I(t) for all t ≥ t0 ,

where

u(t)=βαq
m∑

j=0
f ( j)

t∑
k=t− j

S( j+k+1)I(k) for all t ≥ t0

v(t)=β1α1

m∑
j=0

f ( j)
t∑

k=t− j
A( j+k+1)I(k) for all t ≥ t0

u(t+1)−u(t)=βαq
m∑

j=0
f ( j)S(t+ j+2)I(t+1)−S(t+1)I(t− j)

v(t+1)−v(t)=β1α1

m∑
j=0

f ( j)A(t+ j+2)I(t+1)− A(t+1)I(t− j)

w(t+1)−w(t)=βαq
m∑

j=0
f ( j)S(t+ j+2)I(t+1)

+β1α1

m∑
j=0

f ( j)A(t+ j+2)I(t+1)− (µ+γ+δ)I(t+1)
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≤βαq
m∑

j=0
f ( j)

(
bpQ
µ

+ε
)

I(t+1)

+β1α1

m∑
j=0

f ( j)
(

b(1− p)Q
µ

+ε
)

I(t+1)− (µ+γ+δ)I(t+1)

≤βαq
(

bpQ
µ

+ε
)

I(t+1)+β1α1

(
b(1− p)Q

µ
+ε

)
I(t+1)− (µ+γ+δ)I(t+1)

=βαq
(

bpQ
µ

+ε
)

I(t+1)+β1α1

(
b(1− p)Q

µ
+ε

)
I(t+1)− (µ+γ+δ)I(t+1)

=
{

bpQ(βαq+β1α1(1− p)Q)
µ

− (µ+γ+δ)
}

I(t+1)+ (
βαq+β1α1

)
εI(t+1)

Since ε> 0 is arbitrary, we obtain that if R0 ≤ 1, then

w(t+1)−w(t)≤
{

bpQ(βαq+β1α1(1− p))
µ

}
I(t+1)≤ 0

and the non negative sequence {w(t)}+∞t=t0
is monotone decreasing. Therefore, there exists a non

negative constant w such that

lim
t→∞w(t)= w .

We will prove that w = 0.

If R0 < 1, then
{

bpQ(βαq+β1α1(1− p))
µ

}
< 0, we conclude that lim

t→∞ I(t)= 0.

Then w = 0 and we obtain, lim
t→∞S(t)= bpQ

µ
, lim

t→∞ A(t)= b(1− p)Q
µ

, lim
t→∞ I(t)= 0.

Suppose R0 = 1, we can write

S(t+1)= bpQ
1+µ + S(t)

1+µ − βαqS(t+1)
1+µ

m∑
j=0

f ( j)I(t− j) , (9)

A(t+1)= b(1− p)Q
1+µ + A(t)

1+µ − β1α1A(t+1)
1+µ

m∑
j=0

f ( j)I(t− j) , (10)

I(t+1)= I(t)
1+µ+γ+δ + βαqS(t+1)

1+µ+γ+δ
m∑

j=0
f ( j)I(t− j)+ β1α1A(t+1)

1+µ+γ+δ
m∑

j=0
f ( j)I(t− j) . (11)

It can be written as

S(t+1)= b̃+ c̃S(t)− β̃S(t+1)
m∑

j=0
f ( j)I(t− j) , (12)

A(t+1)= b̃1 + c̃A(t)− β̃1A(t+1)
m∑

j=0
f ( j)I(t− j) , (13)

I(t+1)= d̃I(t)+ β̃′S(t+1)
m∑

j=0
f ( j)I(t− j)+ β̃′

1A(t+1)
m∑

j=0
f ( j)I(t− j) , (14)

where

b̃ = bpQ
1+µ , b̃1 = b(1− p)Q

1+µ , c̃ = 1
1+µ , β̃= βαq

1+µ ,

β̃′ = βαq
1+µ+γ+δ , β̃′

1 =
β1α1

1+µ+γ+δ , β̃1 = β1α1

1+µ .
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We now claim that there is a sequence {tk}+∞k=0 such that each of I(tk − j), j = 0,1,2, . . . ,m
converges to 0 as k →∞.
If I = 0, then the claim is evident.
Now suppose I > 0, there exists a sequence {tk}+∞k=0 such that

lim
t→∞S(tk +1)= S, lim

t→∞ A(tk +1)= A ,

S(tk +1)= b̃+ c̃S(tk)− β̃S(tk +1)
m∑

j=0
f ( j)I(tk − j) ,

S(tk +1)=
b̃− c̃[S(tk +1)−S(tk)]− β̃S(tk +1)

m∑
j=0

f ( j)I(tk − j)

1− c̃
,

S(tk +1)→ S as k →+∞ .

We easily obtain that,

lim
k→+∞

[c̃[S(tk +1)−S(tk)]+ β̃S(tk +1)
m∑

j=0
f ( j)I(tk − j)]= 0 .

Therefore

limsup
k→+∞

[S(tk +1)−S(tk)]= 0 and limsup
k→+∞

m∑
j=0

f ( j)I(tk − j)= 0 .

Thus it holds that

lim
k→+∞

[S(tk +1)−S(tk)]= 0 and lim
k→+∞

m∑
j=0

f ( j)I(tk − j)= 0 .

Hence, it follows that ,

lim
k→+∞

S(tk)= lim
k→+∞

S(tk +1)= S

and

lim
k→+∞

m∑
j=0

f ( j)I(tk − j)= 0 ,

A(tk +1)= b̃1 −
c̃[A(tk +1)− A(tk)]+ β̃1A(tk +1)

m∑
j=0

f ( j)I(tk − j)

1− c̃
A(tk +1)→ A as k →+∞.
We easily obtain that,

lim
k→+∞

[c̃[A(tk +1)− A(tk)]+ β̃1A(tk +1)
m∑

j=0
f ( j)I(tk − j)]= 0 .

Therefore,

limsup
k→+∞

[A(tk +1)− A(tk)]= 0, limsup
k→+∞

m∑
j=0

f ( j)I(tk − j)= 0 .

Thus it holds that

lim
k→+∞

[A(tk +1)− A(tk)]= 0, lim
k→+∞

m∑
j=0

f ( j)I(tk − j)= 0 .
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Hence it follows that,

lim
k→+∞

A(tk)= lim
k→+∞

A(tk +1)= A

and we can obtain that

I(tk − l− j)= 0, l = 0,1,2, . . . ,m .

Hence the claim is proved.

Lemma 4.2. If I(t+1)< min
0≤ j≤m

I(t− j), then

S(t+1)< S∗ inversely if S(t+1)≥ S∗, then I(t+1)≥ min
0≤ j≤m

I(t− j) .

Proof. By the third equation of system (7),we have that

I(t+1)= I(t)− I(t+1)
µ+γ+δ + βαqS(t+1)+β1α1A(t+1)

µ+γ+δ
m∑

j=0
f ( j)I(t− j) .

Therefore, if I(t+1)< min
0≤ j≤m

I(t− j), then by I(t)− I(t+1)> 0 and
m∑

j=0
f ( j)I(t− j)> I(t+1)

I(t+1)> βαqS(t+1)+β1α1A(t+1)
µ+γ+δ I(t+1) ,

I(t+1)> βαqS(t+1)
µ+γ+δ I(t+1) ,

I(t+1)> S(t+1)
S∗ I(t+1) ,

S(t+1)< S∗ .

Inversely, if S(t+1)≥ S∗, then I(t+1)≥ min
0≤ j≤m

I(t− j).

Similarly if I(t + 1) < min
0≤ j≤m

I(t − j), then A(t + 1) < A∗. Inversely if A(t + 1) ≥ A∗, then

I(t+1)≥ min
0≤ j≤m

I(t− j).

5. Global Stability of the Endemic Equilibrium
Consider the following Lyapunov function,

U(t)=US(t)+UA(t)+UI(t)+U+(t) ,

where

US(t)= g
(S(t)

S∗
)
, UA(t)= g

( A(t)
A∗

)
,

UI(t)= g
( I(t)

I∗
)
, U+(t)=

m∑
j=0

f ( j)
t∑

k=t− j
g
( I(k)

I∗
)

and g(x)= x−1− In(x), x > 0.
We now show that, U(t+1)−U(t)≤ 0.
First, we calculate US(t+1)−US(t),

US(t+1)−US(t)= S(t+1)−S(t)
S∗ − In

S(t+1)
S(t)
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≤ S(t+1)−S(t)
S∗ − S(t+1)−S(t)

S(t+1)

≤ S(t+1)−S∗

S∗S(t+1)
[S(t+1)−S(t)]

= S(t+1)−S∗

S∗S(t+1)

{
−µ(S(t+1)−S∗)+βαqS∗I∗−βαqS(t+1)

m∑
j=0

f ( j)I(t− j)

}

=− µ

S∗
(S(t+1)−S∗)2

S(t+1)
+βαqI∗

m∑
j=0

f ( j)
[
1− S∗

S(t+1)

][
1− S(t+1)

S∗
I(t− j)

I∗

]
,

UA(t+1)−UA(t)= A(t+1)− A(t)
A∗ − In

A(t+1)
A(t)

≤ A(t+1)− A(t)
A∗ − A(t+1)− A(t)

A(t+1)

≤ A(t+1)− A∗

A∗A(t+1)
[A(t+1)− A(t)]

= A(t+1)− A∗

A∗A(t+1)

{
−µ(A(t+1)− A∗)+β1α1A∗I∗−β1α1A(t+1)

m∑
j=0

f ( j)I(t− j)

}

=− µ

A∗
(A(t+1)− A∗)2

A(t+1)
+β1α1I∗

[
1− A∗

A(t+1)

][
1− A(t+1)

A∗
I(t− j)

I∗

]
,

UI(t+1)−UI(t)= I(t+1)− I(t)
I∗

− In
I(t+1)

I(t)

≤ I(t+1)− I(t)
I∗

− I(t+1)− I(t)
I(t+1)

≤ I(t+1)− I∗

I∗I(t+1)
[I(t+1)− I(t)]

= I(t+1)− I∗

I∗I(t+1)
[
βαqS(t+1)+β1α1A(t+1)

] m∑
j=0

f ( j)I(t− j)− (µ+γ+δ)I(t+1)

=
m∑

j=0
f ( j)βαqS∗

[
1− I∗

I(t+1)

]{
S(t+1)

S∗
I(t− j)

I∗
− I(t+1)

I∗

}
.

Finally calculating,

U+(t+1)−U+(t)=
m∑

j=0
f ( j)

{
t+1∑

k=t+1− j
g

(
I(k)
I∗

)
−

t∑
k=t− j

g
(

I(k)
I∗

)}

=
m∑

j=0
f ( j)

{
g

(
I(t+1)

I∗

)
− g

(
I(t− j)

I∗

)}

=
m∑

j=0
f ( j)g

(
I(t+1)

I∗

)
−

m∑
j=0

f ( j)g
(

I(t− j)
I∗

)
.

Defining,

xt+1 = S(t+1)
S∗ , yt+1 = A(t+1)

A∗ , zt+1 = I(t+1)
I∗

, zt, j = I(t− j)
I∗

.
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We obtain that

U(t+1)−U(t)≤ µ

S∗
(S(t+1)−S∗)2

S(t+1)
+βαqI∗

m∑
j=0

f ( j)
[
1− S∗

S(t+1)

][
1− S(t+1)

S∗
I(t− j)

I∗

]

− µ

A∗
(A(t+1)− A∗)2

A(t+1)
+β1α1I∗

m∑
j=0

f ( j)
[
1− A∗

A(t+1)

][
1− A(t+1)

A∗
I(t− j)

I∗

]

+
m∑

j=0
f ( j)βαqS∗

[
1− I∗

I(t+1)

]{
S(t+1)

S∗
I(t− j)

I∗
− I(t+1)

I∗

}

+
m∑

j=0
f ( j)β1α1A∗

[
1− I∗

I(t+1)

]{
A(t+1)

A∗
I(t− j)

I∗
− I(t+1)

I∗

}

+
m∑

j=0
f ( j)g

(
I(t+1)

I∗

)
−

m∑
j=0

f ( j)g
(

I(t− j)
I∗

)
, (15)

U(t+1)−U(t)≤− µ

βαqS∗
(S(t+1)−S∗)2

S(t+1)
− µ

β1α1A∗
(A(t+1)− A∗)2

A(t+1)

+
m∑

j=0
f ( j)

[
1− 1

xt+1

][
1− xt+1zt, j

]+ m∑
j=0

f ( j)
[
1− 1

yt+1

][
1− yt+1zt, j

]
+

m∑
j=0

f ( j)
[
1− 1

zt+1

][
yt+1zt, j − zt+1

]+ m∑
j=0

f ( j)
[
1− 1

zt+1

][
xt+1zt, j − zt+1

]
+

m∑
j=0

f ( j)g(zt+1)−
m∑

j=0
f ( j)g(zt, j), (16)

U(t+1)−U(t)≤− µ

βαqS∗
(S(t+1)−S∗)2

S(t+1)
− µ

β1α1A∗
(A(t+1)− A∗)2

A(t+1)

+
m∑

j=0
f ( j)

[
1− 1

xt+1

][
1− xt+1zt, j

]+ m∑
j=0

f ( j)
[
1− 1

yt+1

][
1− yt+1zt, j

]
+

m∑
j=0

f ( j)
[
1− 1

zt+1

][
yt+1zt, j − zt+1

]+ m∑
j=0

f ( j)
[
1− 1

zt+1

][
xt+1zt, j − zt+1

]
+

m∑
j=0

f ( j)g(zt+1)−
m∑

j=0
f ( j)g(zt, j) (17)

= µ

βαqS∗
(S(t+1)−S∗)2

S(t+1)
− µ

β1α1A∗
(A(t+1)− A∗)2

A(t+1)

+
m∑

j=0
f ( j)

[
2− 1

xt+1
− 1

yt+1
+ zt, j − zt+1 −

xt+1zt, j

zt+1
− yt+1zt, j

zt+1
− In zt+1 + In zt, j

]
.

(18)
Finally, we get

= µ

βαqS∗
(S(t+1)−S∗)2

S(t+1)
− µ

β1α1A∗
(A(t+1)− A∗)2

A(t+1)

−
m∑

j=0
f ( j)

[
g

(
1

xt+1

)
+ g

(
1

yt+1

)
+ g

( xt+1zt, j

zt+1

)
+ g

( yt+1zt, j

zt+1

)
− g (zt+1)− g

(
zt, j

)]
. (19)

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 873–887, 2017



884 A SIR Epidemic Model With Primary Immunodeficiency and Time Delay: E. Sebastian and P. Victor

Hence U(t+1)−U(t)≤ 0 for all t ≥ 0. Since U(t)≤ 0 is a monotonic decreasing sequence. Then

lim
t→∞U(t+1)−U(t)= 0 . (20)

Hence the proof.

6. Numerical Simulation
We take the following set of parametric values. Here we consider the population with primary
immunodeficiency as susceptible 1 (green).

Case 1. b = 0.75, p = 100, µ= 0.5, β= 0.4, α= 0.7, q = 0.3, p1 = 10, β1 = 0.8, α1 = 0.3, γ= 0.4,
δ= 0.2, we get R0 = 3.02.

Case 2. In Case 2, we have increased the transmission rates. b = 0.75, p = 100, µ= 0.5, β= 0.7,
α= 0.7, q = 0.3, p1 = 10, β1 = 0.9, α1 = 0.3, γ= 0.1, δ= 0.2. The R0 for the above set of values is
R0 = 7.14.

Case 3. In Case 3, we consider same values as Case 2, but increase the rate of contact between
the susceptible population and the people with primary immunodeficiency. b = 0.75, p = 100,
µ= 0.5, β= 0.7, α= 0.7, q = 0.6, p1 = 10, β1 = 0.9, α1 = 0.3, γ= 0.1, δ= 0.2, we get R0 = 14.03.

Case 4. In Case 4, we consider low transmission rates and high recovery rate. b = 0.75, p = 100,
µ= 0.5, β= 0.3, α= 0.7, q = 0.1, p1 = 10, β1 = 0.5, α1 = 0.3, γ= 0.7, δ= 0.2, we get R0 = 0.45.

Figure 1. The dynamical behaviours of the system (III) for Case 1
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Figure 2. The dynamical behaviours of the system (III) for Case 2

Figure 3. The dynamical behaviours of the system (III) for Case 3
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Figure 4. The dynamical behaviours of the system (III) for Case 4

7. Discussion
We have analysed a Discrete-time SIR (Susceptible-Infected-Recovered) model with time delay
and primary immunodeficiency. We have divided the susceptible in to two populations, a small
part of the population is affected with primary immunodeficiency and the other population
without primary immunodeficiency. We have considered five cases and observe the changes
in the numerical simulations. In Case 1, we see the susceptible, susceptible 1 and infected
populations. In Case 2, we have increased the transmission rates and see that there is a decrease
in susceptible population and increase in infected population. In Case 3, there is considerable
increase in infected population due to the increase in contact rate. In Case 4, there is a decrease
in infected population and the susceptible population is high. In Case 5, the infected population
decreases to zero due to low transmission rate.

8. Conclusion
In this paper, we have proposed a SIR (Susceptible-Infected-Recovered) epidemic model with
primary immunodeficiency and time delay and have analyzed its dynamical behaviour. We have
derived the basic reproduction number R0 of the model. For the discrete-time model, we have
analyzed the global asymptotic stability of the disease-free equilibrium and endemic equilibrium
respectively. Finally, we have provided a numerical simulations through MATLAB for the model
and have discussed about the effect of transmission rates on the spread of the epidemic.
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