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Abstract. In this paper, the robust stability analysis of a problem is investigated for a class of discrete
recurrent neural networks with distributed time varying delays for delay dependent case. The problem
is to determine the robust stability by employing Lyapunov–Krasovskii stability theory. The class of
neural network under some consideration is globally asymptotically stable if the quadratic matrix
inequality involving several parameters is less than zero. Furthermore, a Linear Matrix Inequality
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the usefulness of the proposed robust stability conditions. The numerical simulation is proved using
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1. Introduction
Recurrent neural networks have been extensively studied in the past decades. They have
been successfully applied to signal processing, pattern recognition, associative memories,
combinatorial optimization, and other engineering and scientific areas [5]. In these applications,
stability and convergence of neural networks are very important. Therefore, the stability
analysis of recurrent neural networks has received much attention and many results on this
topic have been reported in literature [1–14]. A system is said to have a delay, when the rate
of variation in the system state depends on past states. Such a system is called a time-delay
system. Delays appear frequently in real-world engineering systems. They are often a source
of instability and poor performance, and greatly increase the difficulty of stability analysis
and control design. So, many researchers in the field of control theory and engineering study
the robust control of time-delay systems. The study of such systems has been very active for
the last 20 years; and new developments, such as fixed model transformations based on the
Newton Leibnitz formula and parameterized model transformations, are continually appearing.
Although these methods are a great improvement over previous ones, they still have their
limitations [7].

It should be noted, the existing stability criteria for RNNs with time delays can be classified
into the delay-independent and the delay-dependent criteria. In general, when the time delay
is small, the delay-dependent stability criteria are less conservative than delay-independent
one [1, 5–8]. For the delay-dependent stability criteria, the maximum delay bound is a very
important index for checking the criterion’s conservatism. From the Lyapunov stability theory,
there are two effective ways to reduce the conservatism within in stability analysis of networks
and systems. One is the choice of suitable Lyapunov-Krasovskii Functional (LKF) and the other
one is the estimation of its time derivative [9].

There are many cases in recurrent neural network have been assumed to performance in
a continuous time manner. For the sake of computer based simulation, experimentation or
computation, it is useful to discretize the given continuous time neural networks.

In this paper we discussed about the delay dependent robust stability of a discrete time
recurrent neural network with distributed time varying delays. Some new lyapunov krosovki
functions are assumed to analysis the stability of the given systems.

This paper organized as follows, in Section 2, we have discussed some suitable preliminaries
for the main results, in Section 3, we have formed the discrete time neural networks with
distributed time varying delays, in Section 4, we deals with stability analysis of the class of
neural network. Section 5, derives some numerical results and concluding remarks.

2. Preliminaries
Before enter into the main result we need the following assumption and definition.

Assumption 1. The quantities ai and bi j can be initiated as follows:

AI = {A = diag(ai) : 0< A ≤ A ≤ A}
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BI = {B = diag(bi) : 0< B ≤ B ≤ B} .

Denote A∗ = 1
2 (A+ A), A∗ = 1

2 (A− A).

It is clear that A∗ is a nonnegative matrix, and the interval matrix [A, A] can be written
equivalently as [A∗− A∗, A∗+ A∗]; therefore, we have A = A∗+∆A with ∆A ∈ [−A∗, A∗] [10].

Definition 1. The neural network defined by (1) with parameter ranges defined by assumption
(1) is globally asymptotically robust stable if unique equilibrium point x∗ = (x∗1 , x∗2 , . . . , x∗n)T of
the neural system (1) is globally asymptotically stable for all A ∈ AI , B ∈ BI .

Lemma 1 ([10]). S(x) : Rn → Rn is a homeomorphism S(x) satisfies the following conditions:

(1) S(x) is infective, that is, H(x) 6= H(y) for all x 6= y,

(2) S(x) is proper, that is, ‖S(x)‖→∞ as ‖x‖→∞.

3. Mathematical Formulation
Consider the discrete-time neural networks with distributed time varying delays

y (k+1)= A y (k)+Bf (y (k−d (k)))+ J , (1)

y (k)=ϕ(k), k =−dM ,−dM +1, . . . ,0 ,

where y (k)= [y1 (k) , . . . , yn (k)]T ∈Rn denotes the state neuron,

g(y (k))= [g1(y1 (k−d (k)) , . . . , gn(yn (k−d(k))]T ∈Rn,

denotes delayed activation function, ϕ(k) is the given initial condition sequence of y (k) ,
J = [J1, . . . , Jn] ∈Rn denotes the external input vector, A = diag {a1, . . . ,an} ∈Rn×n with |ai| < 1
describes the rate with which the ith neuron will reset its potential to the resting state in
isolation when disconnected from the networks and external inputs, B = Bi j ∈Rn×n is the time
delay connection weight matrix. The delay d (k) represents the time varying delay satisfying
dm ≤ d(k)≤ dM , where dm and dM are prescribed positive integers representing the lower and
upper bounds of the time varying delay, respectively.

The following assumptions are very important, which are useful to our main results.

Assumption 2. For any x, y ∈R,x 6= y, each activation function f i(·) described in (1) satisfy

k−
i ≤ f i (x)− f i(y)

x− y
≤ k+

i , i = 1,2, . . . ,n (2)

where k−
i and k+

i are known constant values. The activation function condition mentioned in
Assumption 1 is widely used in many literatures [1–14].

In stability analysis of the neural networks (1), the equilibrium point y∗ ∈ Rn whose
uniqueness under Assumption 1 can be assured by using Brouwer’s fixed point theorem.
This states that the equilibrium point shifted to the origin by using xi (k) = yi (k)− y∗ and
f i(xi (k))= g i(yi (k)+ y∗i − g i(y∗i ) with f i (0)= 0. Using this condition the equation (1) becomes

x (k+1)= Ax (k)+Bf (x (k−d (k))) ,
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x (k)=; (k) , k =−dM ,−dM +1, . . . ,0, (3)

where x (k)= [x1 (k) , . . . , xn (k)]T ∈Rn denotes the state neuron,

f (x (k))= [ f1(x1 (k−d (k)) , . . . , fn(xn (k−d(k))]T ∈Rn,

denotes delayed activation function, ;(k) is the given initial condition sequence of x (k). From (2),
we have

k−
i ≤ f i (x)

x
≤ k+

i , i = 1,2, . . . ,n .

4. Main Results
Before proofing the theorem we have to mention the following assumptions:

;1 (k)=

x (k−d (k))− x (k−dM)−
k−d(k)−1∑
i=k−dM

η (i)= 0, when d (k) 6= dM ,

x (k−d (k))− x (k−dM)= 0, when d (k)= dM .

Robust Stability Analysis
Theorem 1. Let us assume that the Assumption 2 to be true, then the neural network model (1)
is globally asymptotically robust stable, if

γ= 2Am −ϑM(‖B̂‖1 +‖B̂‖∞)> 0 ,

where Am = min(cm), A∗ = 1
2 (A + A), A∗ = 1

2 (A − A), B̂ = (b∗
i j)n×n,b∗

i j = max{|bi j|, |bi j|} and
ϑM =max(ϑi).

Proof. We first prove the existence and uniqueness of the equilibrium point. To this end, define
the following mapping associated with (1):

S (x)= Ax+Bf (x)+ J . (4)

Let x∗ be an equilibrium point of (1). Therefore, it follows from assumption that, for the system
defined by (1), there exists a unique equilibrium point for every input vector J, if S(x) is a
homeomorphism of Rn. We will now prove that S(x) is a homeomorphism of Rn. To this end, we
choose two vectors x, y ∈Rn such that x 6= y. For S(x) defined by (7), we can write

S (x)−S (y)= A (x− y)+B ( f (x)− f (y)) .

If we multiply both sides of equation (above) by 2(x− y)T , then, we get

2(x− y)T(S(x)−S(y))= 2(x− y)T A(x− y)+2(x− y)TB( f (x)− f (y))

=
n∑

i=1
2ci(xi − yi)+

n∑
i=1

n∑
j=1

2bi j(xi − xi)( f j(x j)− f j(yj))

≤ 2Am‖x− y‖2
2 +2ϑM(‖A∗‖2 +‖A∗‖2)‖x− y‖2

2

+ϑM(‖B̂‖1 +‖B̂‖∞)‖x− y‖2
2 . (5)

For any x− y 6= 0,

2Am‖x− y‖2
2 +2ϑM(‖A∗‖2 +‖A∗‖2)‖x− y‖2

2 +ϑM(‖B̂‖1 +‖B̂‖∞)‖x− y‖2
2 < 0 .
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Using the assumption, (x− y)T(S (x)−S(y))< 0, for which it can concluded that S(x) 6= S(y) for
all x 6= y.

Put y= 0 in equation (4), we have

2(x)T(S(x)−S(0))≤ (2Am +2ϑM(‖A∗‖2 +‖A∗‖2)+ϑM(‖B̂‖1 +‖B̂‖∞))‖x‖2
2 . (6)

From this, we have

‖x‖∞‖S (x)−S(0)‖1 ≥α‖x‖2
2 ,

where

α= 2Am +2ϑM(‖A∗‖2 +‖A∗‖2)+ϑM(‖B̂‖1 +‖B̂‖∞) .

Since ‖S(0)‖1 is finite, we conclude that ‖S(x)‖→∞ as ‖(x)‖→∞. Hence by the given statement,
the system (1) has a unique equilibrium point.

Theorem 2. Given positive integers dm > 0 and dM > 0. Then discrete time delay system in (1)
is asymptotically stable for any time delay d(k) satisfying dm ≤ d(k)≤ dM , if there exist a matrix
P = PT > 0, Q =QT > 0, R = RT > 0 and any appropriately dimensioned matrices Y and T , such
that the following LMI holds:

ϕ=
ϕ11 ϕ12 dATR

∗ ϕ22 dBTR
∗ ∗ −dR

< 0 , (7)

ψ=
X11 X12 Y

∗ X22 T
∗ ∗ Z

≥ 0 , (8)

where

ϕ11 = ATP A− A+Y +Y T +Q+dM X11 ,

ϕ12 = PB+PBT +TT −Y +dM X12 ,

ϕ22 =−T −TT − (dM −dm)Q+dM X22 .

Proof. Consider the following hypothesis for any appropriately dimensioned matrices Y , T and

for any semi positive definite matrix X =
[

X11 X12
∗ X22

]
≥ 0, the following condition holds:

dMδ
T (k) Xδ (k)−

k−1∑
i=k−d(k)

δT (k) Xδ (k)≥ 0 , (9)

where δT(k)= [xT(k) xT(k−d(k))].

Consider the Lyapunov function for equation (1),

V (k)=
3∑

i=1
Vi(k) , (10)

where
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V1 (k)= x(k)TPx(k) ,

V2 (k)=
k−1∑

i=k−d(k)
X T(i)Qx (i) ,

V3 (k)=
−dm−1∑
j=−dM

k−1∑
i=k+ j

η(i)TRη (i) ,

where η (k)= x (k+1)− x(k), the matrices P > 0, Q > 0 and Z > 0.

Now take the derivative of equation (6).

Define ∆V (K)=V (k+1)−V (k) ,

∆V1 (k)=V1 (K +1)−V1 (k)

= xT (k)
[
ATP A−P

]
x (k)+2AT xT (k)PBf (x (k−d (k)))

+BT f (x (k−d (k)))TPBf (x (k−d (k))) ,

∆V2 (k)=V2 (k+1)−V2(k)

≤
k−d∑

i=k+1−d1
xT (i)Qx (i)+ xT (k)Qx (k)− xT (k−d (k))Qx(k−d(k)) ,

∆V3 (k)=V3 (k+1)−V3(k)

= (dM −dm)ηT (k)Rη (k)−
k−dm−1∑
i=k−dM

ηT (i)Rη(i)

= xT (k) [(dM −dm) (A− I)R (A− I)] x (k)

+2xT (k) [(dM −dm) (A− I)RB] f (x (k−d (k))

+ f (x(k−d (k))T
[
(dM −dm)BTRB

]
f (x (k−d (k))−

k−d(k)−1∑
i=k−dM

ηT (i)Rη (i) .

Now, adding ∆V1 (k), ∆V2 (k), ∆V3 (k), we have

∆V (k)=∆V1 (k)+∆V2 (k)+∆V3 (k)

= xT (k)
[
ATP A−P

]
x (k)+2AT xT (k)PBf (x (k−d (k)))

+BT f (x (k−d (k)))TPBf (x (k−d (k)))

+
k−d∑

i=k+1−d1
xT (i)Qx (i)+ xT (k)Qx (k)− xT (k−d (k))Qx (k−d (k))

+ xT (k) [(dM −dm) (A− I)R (A− I)] x (k)

+2xT (k) [(dM −dm) (A− I)RB] f (x (k−d (k))

+ f (x(k−d (k))T
[
(dM −dm)BTRB

]
f (x (k−d (k))

−
k−d(k)−1∑
i=k−dM

ηT (i)Rη (i)+2
[
xT (k)Y + f (x(k−d (k))T (k)

]
Ψ1 (k)
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+dMδ
T (k) Xδ (k)−

k−1∑
i=k−d(k)

δT(i)Xδ (i)

= δT (k)Eδ (k)−
k−1∑

i=k−d(k)
δT(i)ψδ (i) ,

where

δ (k)= [xT (k) f (x(k−d (k))T δT(i)]T ,

E =
[
ϕ11 +dM ATRA ϕ12 +dM ATRB

∗ ϕ22 +dMBTRB

]
.

If E < 0 and ψ≥ 0. Then, we have

∆V (K)< 0

for any δ (k) 6= 0. Applying the Shur Complement, we have E < 0. So equation (1) is
asymptotically stable if the Linear Matrix Inequalities (LMI) given in equation (7) and (8)
are true. This completes the proof.

From Theorem 1 and Theorem 2, we conclude that the given neural system (1) is globally
asymptotically robust stable.

Remark 1. If the matrices Y , T and X in the equation (4) are set to zero and R = εI
(ε is sufficiently small positive scalar), then Theorem 1 is identical to the well known delay
independent stability criterion which are stated in some literature [1–10].

Numerical Examples
Example 1. Assume that the network parameter of neural system (1) is given as follows:

A =
[

0 0
−8 0

]
, A =

[
6 8
0 6

]
,

ϑ1 =ϑ2 =ϑM = 1, c1 = c2 = cm ,

B =
[−1 −1
−1 −1

]
, B =

[
1 1
1 1

]
.

The matrices A∗, A∗, B̂ are obtained as follows:

A∗ =
[

3 4
−4 3

]
, A∗ =

[
3 4
4 3

]
, B̂ =

[
1 1
1 1

]
,

where ‖A∗‖2 = 5, ‖A∗‖2 = 7, ‖B̂‖1 = ‖B̂‖∞ = 2. Substituting the values in to equation (6), this
leads to cm = 14. This shows that the system given in equation (1) is globally robust stability
[10].

Example 2. Assume that the network parameter of neural system (1) is given as follows:

A =
[

0 0
−6 0

]
, A =

[
4 6
0 4

]
,

ϑ1 =ϑ2 =ϑM = 1, c1 = c2 = cm ,
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B =
[−1 −1
−1 −1

]
, B =

[
1 1
1 1

]
.

The matrices A∗, A∗, B̂ are obtained as follows:

A∗ =
[

2 3
−3 2

]
, A∗ =

[
2 3
3 2

]
, B̂ =

[
1 1
1 1

]
,

where ‖A∗‖2 = 5, ‖A∗‖2 = 5, ‖B̂‖1 = ‖B̂‖∞ = 2. Substituting the values in to equation (6), this
leads to cm = 12. This shows that the system given in equation (1) is globally robust stability.
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Figure 1 Represents the conservative process of system(1). After applying theorem (2)
conditions, the system representation given in Figure 2. The conservative process of Figure 2
shows the stability analysis of system (1).

5. Conclusion
In this paper, we have studied the global robust stability problem for a class of discrete time
recurrent neural networks with time delays. By using Laypunov krosvskii and some well known
inequalities, we have established a stability analysis. And also we have proved the existence
and uniqueness and global asymptotically robust stable for discrete case. The obtained condition
can be easily verified in terms of neural parameters only. The numerical simulation is provided
through MATLAB.

Competing Interests
The authors declare that they have no competing interests.

Authors’ Contributions
All the authors contributed significantly in writing this article. The authors read and approved
the final manuscript.

References
[1] B. Zhang, S. Xu and Y. Zou, Improved delay dependent exponential stability criteria for discrete

recurrent neural networks with time varying delays, Neurocomputing 72 (2008), 321 – 330.

[2] B. Zhang, S. Xu and Y. Li, Delay-dependent robust exponential stability for uncertain recurrent
neural networks with time-varying delays, International Journal of Neural Systems 17 (3) (2007),
207 – 218.

[3] C. Hua, C. Long and X. Guan, New results on stability analysis of neural networks with time
varying delays, Physics Letters 352 (2006), 335 – 340.

[4] E. Kaslik and St. Balint, Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield
neural network, Chaos, Solitons and Fractals 34 (2007), 1245 – 1253.

[5] E. Kaslik and St. Balint, Bifurcation analysis for a discrete-time Hopfield neural network of two
neurons with two delays and self-connections, Chaos, Solitons and Fractals 39 (2009), 83 – 91.

[6] H. Zhang, Z. Wang and D. Liu, Global Asymptotic stability of recurrent neural networks with
multiple time-varying delays, IEEE Transactions on Neural Networks 19 (5) (May 2008), 855 – 873.

[7] M.-Z. Luo and S.-M. Zhong, Improved delay-dependent stability criteria for discrete-time stochastic
neural networks with time-varying delays, Procedia Engineering 15 (2011), 4456 – 4460.

[8] M. Wu, Y. He, J.-H. She and G.-P. Liu, Delay dependent criteria for robust stability of time varying
delay systems, Automatica 40 (2004), 1435 – 1439.

[9] O.M. Kwon, Ju H. Park, S.M. Lee and E.J. Cha, Analysis on delay-dependent stability for neural
networks with time-varying delays, Neurocomputing 103 (2013), 114 – 120.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 863–872, 2017



872 Delay Dependent Robust Stability of A Discrete Time Recurrent. . . : Elizabeth S. and Priya P.

[10] P.-L. Liu, Delay-dependent robust stability analysis for recurrent neural networks with time-
varying delay, International Journal of Innovative Computing, Information and Control 9(8)
(August 2013), 3341 – 3355.

[11] Q. Yang, Q. Ren and X. Xie, New delay dependent stability criteria for recurrent neural networks
with interval time-varying delay, ISA Transactions 53(4) (July 2014), 994 – 999.

[12] S. H. Kim, Further results on stability analysis of discrete-time systems with time-varying delays
via the use of novel convex combination coefficients, Applied Mathematics and Computation 261
(2015), 104 – 113.

[13] Y. He, M. Wu and J.-H. She, Delay-dependent exponential stability of delayed neural networks
with time-varying delay, IEEE Transaction on Circuits and Systems 53 (7) (July 2006), 553 – 557.

[14] Y. He, Q.G. Wang, C. Lin and M. Wu, Delay range dependent stability for systems with time varying
delay, Automatica 43 (2007), 371 – 376.

Journal of Informatics and Mathematical Sciences, Vol. 9, No. 3, pp. 863–872, 2017


	Introduction
	Preliminaries
	Mathematical Formulation
	Main Results
	Conclusion
	References

